ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

25/411-78 P2 - 11744

Ш-961 5611/2-78 Н.М.Шумейко

О ПРИБЛИЖЕННОМ ВЫЧИСЛЕНИИ ЭЛЕКТРОМАГНИТНЫХ ПОПРАВОК К ГЛУБОКОНЕУПРУГОМУ (N - РАССЕЯНИЮ

P2 - 11744

Н.М.Шумейко*

О ПРИБЛИЖЕННОМ ВЫЧИСЛЕНИИ ЭЛЕКТРОМАГНИТНЫХ ПОПРАВОК К ГЛУБОКОНЕУПРУГОМУ (N - РАССЕЯНИЮ)

Направлено в ЯФ

001	· ····································
ALCOL.	TREEDBOHNE
БИБ	MAOTEKA

* Белорусский государственный университет, Минск.

Шумейко Н.М.

О приближенном вычислении электромагнитных поправок к глубоконеупругому (N -рассеянию

Анализируются приближенные формулы для электромагнитных поправок к глубоконеупругому µр -рассеянию. Предложен вариант приближения пиков, который не использует нефизический параметр мягкости фотона и позволяет значительно ускорить численные расчеты поправок на ЭВМ.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Shumejko N.M.

P2 - 11744

Dubna 1978

On an Approximate Calculation of Electromagnetic Corrections to Deep Inelastic *IN*-Scattering

Approximate formulae for elextromagnetic corrections to deep inelastic μp -scattering are analyzed. A variant of peaking approximation is proposed without taking into account a nonphysical parameter of photon softness which permits to decrease considerably time for correction calculations with a computer.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research.

© 1978 Объединенный институт ядерных исследований Дубна

1. ВВЕДЕНИЕ

В связи с экспериментами по глубоконеупругому рассеянию /ГНР/ мюонов высоких энергий на нуклонах в работах /1÷5/были исследованы электромагнитные поправки /ЭП/ к ГНР. В этих работах даны оценки ЭП к адронному току, эффектов слабых нейтральных токов в ГНР /1,2/, а также получены точные выражения для ЭП низшего поа порядка к лептонному току /3÷5/- доминирующего вклада в ЭП. Однако при обработке данных по ГНР для ускорения ее используют /см., например, /6,7// не точные, а приближенные формулы для ЭП. Последние получаются в ультрарелятивистском приближении и в приближении пиков /ПП/ /8,9/ для вклада тормозного излучения /R - вклада/. Подобные приближенные вычисления ЭП в десятки раз снижают затраты времени на ЭВМ и обеспечивают достаточно высокую точность извлекаемой информации в большей части кинематической области ГНР*. Как показывают оценки /4,5/. такая ситуация может сохраниться и в экспериментах с мюонами высоких энергий. Поэтому в настоящей работе проводится детальное изучение вопроса о применимости приближенных формул. Наряду с имеющимися в литературе /8,9/ мы исследуем также новый вариант формул, получаемых на основе точных выражений работ /4.5/

* Мы не обсуждаем здесь поправки за счет радиационных потерь энергии мюоном в веществе до и после акта рассеяния, поскольку эти эффекты более тесно связаны с конкретными условиями эксперимента /8÷10/. Отметим далее, что вклад в сечение ЭП низшего порядка /см. формулы /Пб/ - /П9/ работы $^{5/\mu}$ /9/ \div /15/ настоящей работы/ логарифмически расходится, если * W^2 равно $M_f^2 = (M_f^2)_{min} = (M+m_\pi)^2$. Наблюдаемое же на опыте сечение ГНР при $W^2 = M_f^2$ /т.е. когда среди продуктов реакции нет фотонов/, строго говоря, должно обращаться в нуль. Подобная нефизическая расходимость, как известно $^{/11,12}$, связана с неучетом вклада более высоких порядков ЭП и устраняется путем экспоненцирования части ЭП низшего порядка, содержащей инфракрасную расходимость.

Мы исследуем различные способы экспоненцирования и обнаруживаем, что простейший из них /формула /22// приводит, по существу, к тем же результатам для ЭП, что и более сложная стандартная процедура /9/.

Численные расчеты ЭП к сплошному спектру в μ р -ГНР при энергии мюона E = 50÷250 ГэВ показывают, что все рассмотренные здесь версии ПП дают результаты, которые в пределах 1% согласуются с точными вычислениями не менее чем в 80% кинематической области. Однако наша формулировка ПП позволяет сделать программу вычислений ЭП еще в несколько раз более быстродействующей. Как и предлагаемые здесь способы экспоненцирования, она явно коварнантна и не содержит нефизический параметр мягкости фотона Δ , который присутствует в стандартных формулах /8,9/ и зависимость от которого становится заметной вблизи порога ГНР.

Что касается вклада в сечение μ р - ГНР радиационного хвоста от упругого пика, то, как показало исследование /3/ формулы ПП для его расчета неприменимы.

2. ПОПРАВКА НИЗШЕГО ПОРЯДКА В ПРИБЛИЖЕНИИ ПИКОВ

Сформулируем ПП для R -вклада в наблюдаемое сечение ГНР и получим приближенные формулы для ЭП к сплошному спектру. Исходим из формул / $\Pi 2/$ ÷ / $\Pi 9/$ работы/⁵/.

Схема приближенного вычисления интегралов в /П2/, /П9/ во многом подобна той, которая предложена в работе ^{/8}. Основные моменты используемой нами схемы следующие.

1. Члены с z_1^{-2} и z_1^{-1} в подынтегральном выражении дают вклад только в k_1 -пик, а члены с z^{-2} и z^{-1} - только в k_2 -пик.

2. Члены с $(z_1z)^{-1}$ и члены, не содержащие z_1 и z в знаменателе, дают вклады наполовину в k_1 -пик, наполовину в k_2 -пик.

Интегралы от перечисленных членов равны

$$J[z_{1}^{-2}] = J[z^{-2}] = 1/(m^{2}v), \quad v = W^{2} - M_{f}^{2}; \qquad /1/$$
$$J[z_{1}^{-1}] = \frac{1}{\sqrt{\lambda}_{x}} \ln \frac{X' + \sqrt{\lambda}_{x}'}{X' - \sqrt{\lambda}_{x}'} = \frac{1}{X'} \ln \frac{(X')^{2}}{m^{2}W^{2}},$$

$$X' = S - Q^{2}, \qquad \lambda_{X'} = (X')^{2} - 4m^{2}W^{2}; \qquad /2/$$

$$J [z^{-1}] = \frac{1}{\sqrt{\lambda_{S'}}} \ln \frac{S' + \sqrt{\lambda_{S'}}}{S' - \sqrt{\lambda_{S'}}} = \frac{1}{S'} \ln \frac{(S')^{2}}{m^{2}W^{2}}, \qquad S' = M^{2} + S - W^{2}, \qquad \lambda_{S'} = (S')^{2} - 4m^{2}W^{2}; \qquad /3/$$

$$J[(z_{1} z)^{-1}] = \frac{2}{v \sqrt{\lambda_{m}}} \ln \frac{\sqrt{\lambda_{m} + Q^{2}}}{\sqrt{\lambda_{m} - Q^{2}}} \simeq \frac{2}{vQ^{2}} \ell_{m}, \quad /4/$$

$$\lambda_{m} = Q^{4} + 4m^{2}Q^{2}, \qquad \ell_{m} = \ell n \frac{Q^{2}}{m^{2}};$$

 $J[1] = v/W^{2}. \qquad (5/)$

^{*} Здесь используются обозначения, принятые в работах /4,5/.

Здесь

$$J[A] = \frac{1}{\pi} \int dt \int \frac{dz}{\sqrt{R}} A , \qquad /6/$$

а приближения сделаны при условии, что S', X', $Q^2 >> m^2$.

3. Коэффициенты при обсуждаемых в пунктах 1 и 2 членах берутся в пиках. Для k_1 -пика t заменяется на

$$Q_1^2 = t_{|\vec{k} \uparrow \uparrow \vec{k}_1} = Q^2 X_1, \quad X_1 = 1 - v_1, \quad v_1 = v / X', /7/$$

адля k₂ -пика - на

$$Q_2^2 = t_{|k\uparrow\uparrow k_2} = Q^2 X_2, X_2 = 1 + v_2, v_2 = v / S', /8/$$

где \simeq означает, что использовано приближение $|\vec{k}_1| \simeq E$, $|\vec{k}_2| \simeq k_2^0$.

4. В полученном после интегрирования по z и t выражении пренебрегаем нелогарифмическими членами, содержащими /5/, и заменяем {n [(X ') ²/(m²W²)]и {n [(S ')²/(m²W²)]} на l . В результате применения такой схемы ПП для части

В результате применения такой схемы ПП для части R-вклада, свободной от инфракрасной расходимости, находим

$$\sigma_{\rm R}^{\rm F}(S,Q^2,W^2) = \frac{d^2 \sigma_{\rm R}^{\rm F}}{dQ^2 dW^2} = \int \frac{dM_{\rm f}^2}{(M+m_{\pi})^2} \left[X_1 t_1 \sigma_0(S_1,Q_1^2,M_{\rm f}^2) - t_r \sigma_0(S_1,Q_1^2,M_{\rm f}^$$

где

$$t_{1} = \frac{\alpha}{\pi} \left[\frac{1}{2} (1 + X_{1}^{2}) \ell_{m} - X_{1} \right], \quad t_{2} = \frac{\alpha}{\pi} \left[\frac{1}{2} (1 + X_{2}^{-2}) \ell_{m} - X_{2}^{-1} \right];$$

$$t_{r} = \frac{\alpha}{\pi} (\ell_{m} - 1), \quad S_{1} = SX_{1};$$
/11/

$$\sigma_0(S,Q^2,W^2) = \frac{d^2 \sigma_0}{dQ^2 dW^2} = /12/$$

$$= \frac{2 \pi \alpha^2}{(SQ^2)^2} [2MQ^2W_1(Q^2,W^2) + \frac{1}{M}W_2(Q^2,W^2) (S(M^2-W^2+X')-M^2Q^2)]$$

сечение ГНР в низшем порядке по а.

Оставшуюся часть ЭП получим из формул /4O/÷/47/ работы/4/ и /П7/, /П8/ работы/ $^{5/}$. Выполняя приближение S',X',Q² >>m², имеем *

$$\delta_{V,R}(Q^2, W^2) \equiv \delta_V^{IR} + \delta_V^F + \delta_R^{IR} \ge \delta^{inf} - \frac{1}{2} \ln^2 \frac{S'}{X'} + \frac{13}{6} \ell_m + \frac{2}{3} \ln \frac{Q^2}{m_\ell^2} - \frac{38}{9} + \Phi \left(\frac{S'X' - W^2 Q^2}{S'X'}\right) - \frac{\pi^2}{6}; \qquad /14/2$$
$$\delta^{inf} = (\ell_m - 1) \ln \left(v_{max}^2 / S'X'\right), \quad v_{max} = W^2 - (M + m_\pi)^2. /15/2$$

Отметим, что из выражения для полного R -вклада $\sigma_{\rm R}({\rm S},{\rm Q}^2,{\rm W}^2)$ /формула /9/ без слагаемых с t_r / можно получить в ПП вклад радиационного хвоста от дискретного адронного состояния /например, от упругого пика/. Действительно, выполняя в $\sigma_{\rm R}$ замену

$$W_{1,2} (Q_{1,2}^2, M_f^2) \rightarrow 2M W_{1,2}^a (Q_{1,2}^2) \delta(M_f^2 - M_a^2) / 16/$$

и вычисляя интеграл по M_{f}^{2} , находим

* Для функции S_Ф в /П7/ используем представление /57/, /58/ работы $^{/13/}$, в котором

$$S_{\Phi} = S_{\Phi} (Q^{2} + 2m^{2}, \lambda_{m} S', X' - 2W^{2}, \lambda_{X'}) \simeq /13/$$

$$1 + 2 + 2m^{2} S' X' = \frac{1}{2} S' S' = \frac{S'X' - W^{2}Q^{2}}{2} \sqrt{\pi^{2}}$$

$$= \frac{1}{2} \ell_{m}^{2} - \ell_{m} \ell_{n} \frac{S'X'}{m^{2}W^{2}} - \frac{1}{2} \ell_{n}^{2} \frac{S'}{X'} + \Phi(\frac{S'X'-W^{2}Q'}{S'X'}) - \frac{\pi^{2}}{3}$$

6

$$\sigma_{R}^{a}(S,Q^{2},W^{2}) \equiv \frac{d^{2}\sigma_{R}^{a}}{dQ^{2}dW^{2}} = \frac{1}{v} \frac{S}{X'} [X_{1}^{2}t_{1}\sigma_{0}^{a}(S_{1},Q_{1}^{2}) + t_{2}\sigma_{0}^{a}(S,Q_{2}^{2})].$$
(17/

Здесь $v = W^2 - M_a^2$,а

$$\sigma_{0}^{a}(S,Q^{2}) = \frac{d\sigma_{0}^{a}}{dQ^{2}} = \frac{4\pi a^{2}}{(SQ^{2})^{2}} \frac{X}{S} [2M^{2}Q^{2}W_{1}^{a}(Q^{2}) + W_{2}^{a}(Q^{2})(S(M^{2} - M_{a}^{2} + X') - M^{2}Q^{2})]. /18/$$

В случае, когда a=N, $M_{a}^{2} = M^{2}$, формула /18/ представляет собой сечение упругого ℓN -рассеяния, а $W_{1,2}^{N}(Q^{2})$. даются, например, выражениями /A18/÷ /A2O/ работы /9/. В л.с. сечение /17/ можно преобразовать в формулу /C11/ работы /8/.

Если в /9/, /17/ произвести замены

$$t_{1,2} + t_{r} \phi(X_{1,2}), \phi(X_{1}) = X_{1} + \frac{3}{4}(1 - X_{1})^{2},$$

$$\phi(X_{2}) = X_{2}^{-1} + \frac{3}{4}(1 - X_{2}^{-1})^{2},$$
 /19/

то мы получим новый вариант формул эквивалентного радиатора /8,9/

3. АНАЛИЗ ЧИСЛЕННЫХ РЕЗУЛЬТАТОВ

Для выяснения степени применимости различных вариантов приближенных формул был выполнен подробный численный расчет поправки

$$\delta = \frac{\alpha}{\pi} \delta_{\mathrm{V,R}} + \sigma_{\mathrm{R}}^{\mathrm{F}}(\mathrm{S}, \mathrm{Q}^{2}, \mathrm{W}^{2}) / \sigma_{0}(\mathrm{S}, \mathrm{Q}^{2}, \mathrm{W}^{2})$$
 /20/

при E = 50, 150, 250 ГэВ в µр-ГНР. Вычисления велись по:

- а/ точным формулам $^{/4,5/}$;
- б/ формулам /9/÷/15/,
- в/ формулам /9/, /11/÷/15/, /19/,

г/ формулам ПП Мо и Тсая ^{/8}//В1/, /В7/, /С7/, /С8/* .

д/ формулам эквивалентного радиатора ^{/8/}/В1/, /В7/, /С7/, /III.15/.

При этом для структурной функции νW_2 бралась подгонка /13/, /14/, /18/, /19/ из работы ^{/6/}, для упругих формфакторов протона - подгонка из работы ^{/14}/а отно-

шение $R = \frac{\sigma_L}{\sigma_T}$ считалось равным O,18.

Как видно из *таблицы 1*, область применимости приближенных формул заметно изменяется с энергией. При более высоких энергиях лучшими являются варианты "д" и "в". В большей части указанных в таблице областей все приближенные формулы работают с точностью d \leq 0,5%, причем предпочтительными по-прежнему являются варианты "д" и "в".

Следует отметить, что при всех приведенных здесь энергиях в значительной части областей, где $d \ge 1\%$, поправка δ , рассчитанная по формулам "а" в низшем порядке по *a*, превышает ЗО% и, таким образом, не может считаться надежно вычисленной. Если такие точки исключить из рассмотрения и снизить требование к точности расчета до d = 3%, то лучшим становится вариант "б", который применим в этом случае практически во всей кинематической области: $x \ge 0,02$, $y \le 0.98$ при $E = 150, 250 \ \Gamma \ni B$; $x \ge 0.10$, $y \le 0.95$ при $E = 50 \ \Gamma \ni B$.

* В формуле /В7/ работы /8/ мы учли поляризацию вакуума как электронами, так и мюонами и добавили пропущенный член $\frac{a}{\pi} \left[\Phi (\cos^2 \frac{\theta}{2}) - \frac{\pi^2}{6} \right]$. Отметим, что этот член учтен в работах /6,9/, но с неправильным знаком.

Таблица 1

Кинематические области μ р-ГНР /в переменных х и у / при E = 50, 150 и 250 ГэВ, в которых приближенные значения поправки δ /варианты "б" ÷ "д"/ отличаются от ее точных значений не более чем на d = 1%. Параметр Δ = 5 МэВ.

E,I	⁻э В		50)			15	0		•	250		
	y≤ ,	0,80	0,90	0,95	0,97	0,80	0,90	0,95	0,97	0,80	0,90	0,95	0,97
-	6)	0,10	0,15	0,33	0,93	0,20	0,40	0,45	0,25	0,25	0,42	0,50	0,50
• \	в)	0,10	0,25	0,73	0,93	0,08	0,15	0,33	0,85	0,05	0,15	0,28	0,70
▲∠	г)	0,10	0,15	0,28	0,50	0,05	0,45	0,60	0,60	0 ,2 6	0,50	0,63	0,68
	д)	0,10	0,25	0,45	0,80	0,08	0,16	0,29	0,45	0,05	0,15	0,26	0,37

С точностью до d = 4% почти во всей этой области применимы и другие варианты.

Мы исследовали также зависимость поправки δ в вариантах "г" и "д" от содержащегося в ней параметра Δ , варьируя Δ в пределах 5÷1ОО *МэВ*. При этом в большей части кинематической области величина δ меняется не более чем на 1%. Это расхождение возрастает с увеличением х достигая нескольких процентов в околопороговой области х <u>1</u>. При фиксированных х зависимость δ от Δ заметнее при возрастании у. Лучшее согласие приближенных расчетов с точными наблюдается при малых Δ . Однако затраты машинного времени на вычисление δ с уменьшением Δ заметно растут.

4. УЧЕТ ИСПУСКАНИЯ МНОГИХ МЯГКИХ ФОТОНОВ

Как видно из /9/, /14/, /15/, сечение ГНР с учетом ЭП порядка *а* расходится при $W^2 \rightarrow (M + m_{\pi})^2 (\sigma_R^F \rightarrow 0$, δ_{V,R} → -∞). Чтобы получить корректное выражение для сечения в этой области, необходимо учесть вклад более высоких порядков ЭП. С этой целью выполним экспоненцирование части ЭП низшего порядка. Вместо

$$\sigma (\mathbf{S}, \mathbf{Q}^2, \mathbf{W}^2) = \sigma_0 (\mathbf{S}, \mathbf{Q}^2, \mathbf{W}^2) (\mathbf{1} + \delta)$$
 /21/

поставим в соответствие наблюдаемому сечению ГНР сечение

$$\sigma_{\exp}(S, Q^2, W^2) = \sigma_0(S, Q^2, W^2) \exp\left(\frac{\alpha}{\pi}\delta^{\inf}\right)(1 + \delta - \frac{\alpha}{\pi}\delta^{\inf}).$$
/22/

Нетрудно видеть, что отношение $v_{max}^2/S'X'$, содержащееся в δ^{inf} , равно

$$\frac{v_{\text{max}}^{2}}{S'X'} = \frac{(k_{0}^{\text{max}})^{2}}{E k_{2}^{0}}, \qquad /23/$$

rge $k_{0}^{\text{max}} = \frac{v_{\text{max}}}{2\sqrt{W^{2}}} -$

- максимальная энергия реального фотона в системе $\vec{p}_1 + \vec{k}_1 - \vec{k}_2 = 0$, в которой распределение фотонов изотропно. Таким образом, в обсуждаемой области W², близких к (M +m_π), где k₀^{max} << E, k₂^o т.е. фотоны - мягкие, способ экспоненцирования /22/ вполне обоснован ^{/8,11,12,15/}. Однако формулу /22/ можно использовать для любых W², поскольку, как показывают расчеты, вне узкой области W², близких к (M +m_π), экспоненцирование практически не сказывается.

Учет мягкого многофотонного излучения во вкладе радиационного хвоста от упругого пика произведем по аналогии с /22/, путем умножения сечения низшего порядка $\sigma_{\rm R}^{\rm N}$ /формула /38/ работы ^{/3/} в переменных (Q², W²)/ на $\exp(\frac{\alpha}{\pi}\delta^{\inf})$, где $v_{\max} = W^2 - M^2$, а S' = S в соответствии с кинематикой упругого ℓ N -рассеяния. Имеем

$$\sigma_{\exp}^{N}(S,Q^{2},W^{2}) = \left[\frac{(W^{2}-M^{2})^{2}}{SX'}\right]^{t_{r}} \sigma_{R}^{N}(S,Q^{2},W^{2}).$$
 /24/

Обсудим теперь иной способ учета высших порядков в ЭП, в известной мере аналогичный тому, который был предложен в работе $^{9}/$ и использован при расчете ЭП в эксперименте 6 . В отличие от $^{9}/$, мы сформулируем его в явно ковариантной форме, не используя параметра мягкости Δ .

R-вклад в ЭП низшего порядка к сплошному спектру /см. выражение /9/ с $t_r = 0$ и формулу /П2/ работы /5/ / можно рассматривать как сумму вкладов радиационных хвостов от дискретных адронных состояний с массой M_f , изменяющейся в пределах $(M + m_\pi) \le M_f \le \sqrt{W^2}$. Вклад в эту сумму /интеграл/ от состояний с $M_{f^2} = W^2$, когда, как видно из /23/, фотон не может быть жестким, должен заметно меняться /16/ за счет испускания многих мягких фотонов. Естественно, что в этом случае для сокращения инфракрасных расходимостей при $M_f^2 = W^2$, t = Q² необходимо учитывать также обмен многими мягкими виртуальными фотонами /12/.

В процедуре учета обсуждаемых эффектов исходной, в соответствии с ^{/9/}, является формула для вклада радиационного хвоста от дискретного адронного состояния. Запишем ее в виде

$$\sigma_{exp}^{a}(S,Q^{2},W^{2}) = (v_{1}\frac{v_{2}}{1+v_{2}})^{t_{r}} \tilde{\sigma}_{R}^{a}(S,Q^{2},W^{2}), /25/$$

где σ_R^a дается формулой /38/ работы ^{/3/}, модифицированной для случая, когда конечный адрон имеет массу .М. – М. и вместо (x,y) используются переменные (Q²,W²).Знак "тильда" здесь и далее означает, что произведена замена структурных функций:

> $W_{1,2}(Q^2, W^2) \rightarrow \tilde{W}_{1,2}(Q^2, W^2) = W_{1,2}(Q^2, W^2) F(Q^2, W^2),$ /26/

где

F
$$(Q^2, W^2) = 1 + \frac{\alpha}{\pi} [\delta_{V,R}(Q^2, W^2) - \delta^{inf}].$$
 /27/

Экспоненциальный множитель в /25/ и множитель $F(t, M_f^2)$ в подынтегральном выражении /25/ учитывают эффекты высших порядков ЭП.

Интегрируя /25/ по M², получаем сечение ГНР с учетом ЭП низшего порядка и вклада мягкого многофотонного излучения во всех порядках теории возмущений. Имеем

$$\sigma_{\exp}(S,Q^2,W^2) = \frac{2a^3}{\lambda_s} \int dM_f^2 (v_1 \frac{v_2}{1+v_2})^{t_f} \int \frac{dt}{t^2} \tilde{G}(t,M_f^2),$$
/28/

где G (t, M_f^2) дается выражением /ПЗ/ работы $^{/5/}$. В той части кинематической области ГНР, где применимо ПП, в качестве σ_R^a в /25/ следует использовать сечение /17/. В этом случае выражение /28/ примет вид

$$\sigma_{exp}(S,Q^{2},W^{2}) = \int \frac{dM^{2}}{v} (v \frac{v_{2}}{1+v_{2}})^{tr} [X_{1}t_{1}\tilde{\sigma_{0}}(S,Q^{2}_{1},M^{2}_{f}) + X_{2}t_{2}\tilde{\sigma_{0}}(S,Q^{2}_{2},M^{2}_{f})].$$
(29/

Интегралы в /28/, /29/ конечны в точке (W^2, Q^2) , поэтому нет необходимости в вычитании, подобном /П9/ $^{/5}$ и /9/, или разбиении области интегрирования с помощью параметра Δ /9/.

Чтобы выяснить, насколько существенно экспоненцирование, и сравнить между собой различные его варианты, мы провели численный расчет поправки

$$\delta_{exp} = \sigma_{exp}(S, Q^2, W^2) / \sigma_0(S, Q^2, W^2) - 1$$
 /30/

для µр - ГНР при Е= 50, 150, 250 ГэВ. В вычислениях использовались:

- 1/ приближенное /полученное в ПП/ сечение /22/,
- 2/ сечение /29/,
- 3/ сечение /4.1/ работы ^{/9/}.

Для величин t_{1,2} брались выражения /19/.

В качестве меры эффекта экспоненцирования примем разность D = δ_{exp} - δ поправок: δ_{exp} , вычислен-

12

ной по формулам 1, 2, 3, $\mu\delta$, рассчитанной в варнантах ПП "в", "в", "д". Как показывают расчеты, в большей части кинематической области ГНР при всех трех способах экспоненцирования величина D не превосходит 1%. Она медленно возрастает с энергией E, практически не зависит от Q² и становится заметной />1%/ в области наименьших и наибольших значений W². Например, при W² = 4 ГэВ²эта разность увеличивается от D₂ O,5% при E = 50 ГэВ до D₂1,5% при E = 250 ГэВ и быстро возрастает с уменьшением W². При больших W² величина D становится \geq 1% в основном в области /а для варианта 1 - только в области/, где поправка δ , вычисленная по точным формулам"а", превышает 30%.

Только в этой, запретной для эксперимента области /см. дискуссию в/4,5/ / появляется разница ≥ 1% в величинах D, рассчитанных с помощью вариантов 1 ÷ 3 . При малых W² все формы экспоненцирования приводят к значениям D, различающимся лишь на сотые доли процента. С увеличением W² эта разница монотонно растет, причем значения D в варианте 1 систематически несколько меньше значений, полученных в варианте 2 и особенно в варианте 3.

Отмеченное согласие /в большей части кинематической области ГНР/ простейшей формы экспоненцирования 1, с одной стороны, и улучшенных форм 2,3 с другой, - связано с тем, что преобладающие в ЭП в этой области вклады мягких радиационных хвостов от адронных состояний с , близкими к W², учитываются в обоих случаях практически одинаково.

Анализ численных результатов показал также, что множитель $F(t, M_{\ell}^2)$ в подынтегральных выражениях 2 и 3 можно заменить на $F(\mathbb{Q}^2, \mathbb{W}^2)$ и выиести из-под интеграла. Такая замена приводит к изменению δ_{exp} лишь на 0,1-0,3% при у $\rightarrow 1$.

Вычисляя δ_{exp} в варианте 3 при различных значениях Δ в пределах 5÷100 *МэВ*, мы нашли, что зависимость от Δ становится заметнее по сравнению с той, которая отмечена у δ . Обсуждавшееся выше совпадение или близость расчетов δ_{exp} в вариантах 1, 2 и 3 имеет место только при достаточно малых Δ .

Некоторые из сделанных здесь выводов иллюстрируются *таблицей 2*.

		HH H Ξ	сленные exp в сл 50 ГэВ,	значен тучаях Q ² = 1	ня вели 1,2,3 в 20 Гэ1	гчин 8 Зависи 92.	в случ Мости (іаях "а отупр	", "B",)H E =	"म"	
*	0,427	0,430	0,437	0,50	0,60	0,70	0,80	05*0	0,95	76,0	0,98
a)	-26pI	-1837	-15#2	-8,23	11.7	-I,27	I,47	5,58	11,03	17,29	24,68
B)	-26pI	-I838	1451-	-8,24	-4,I5	-I,34	I,34	5 , 4I	11,44	19 , 53	30,80
д = 5М3В	-2591	-I832	-1538	-8,2I	-4,I2	-I ,34	I,26	5,08	I0,72	I8,43	29,35
I)	-2305	-I683	-1429	-7,91	-4,07	-I,35	I,30	5,38	II,44	I9,58	30,91
2)	-2306	-1690	-I4,39	-8,02	-4,I8	-I,46	I,2I	5,38	II,62	20,00	31,65
(3)	-2295	-1684	-I435	- 8,00	-4 ,I6	-I ,45	1,I6	5 , I3	11 , 06	61 , 61	30,65
1€M001=^	••••	-1555	-1370	-7,89	111,4-	-I ,42	6I , I	5,17	11,13	19 , 30	30,82

2

Γαδλυψα

5. ЗАКЛЮЧЕНИЕ

В настоящей работе получены и исследованы приближенные формулы для ЭП низшего порядка к сплошному спектру в (N - ГНР и выражения для сечения ГНР с учетом мягкого многофотонного излучения. Полученные формулы, в отличие от имеющихся в литературе, не зависят от нефизического параметра Δ и имеют явно ковариантный вид. Кроме того, как показывает практика вычислений, их использование позволяет еще в несколько раз ускорить численные расчеты на ЭВМ.

Выражаю глубокую благодарность А.А.Ахундову, Д.Ю.Бардину, Г.В.Мицельмахеру в И.А.Савину за полезные обсуждения результатов работы. Я глубоко признателен В.П.Джелепову, Ф.И.Федорову и Д.В.Ширкову за внимание и поддержку.

ЛИТЕРАТУРА

- 1. Бардин Д.Ю., Шумейко Н.М. ОИЯИ, Р2-10872, Дубна, 1977.
- 2. Бардин Д.Ю., Шумейко Н.М. ОИЯИ, Р2-10873. Дубна, 1977.
- 3. Ахундов А.А., Бардин Д.Ю., Шумейко Н.М. ОИЯИ, Е2-10147, Дубна. 1976.
- 4. Ахундов А.А., Бардин Д.Ю., Шумейко Н.М. ОИЯИ. Е2-10205, Дубна, 1976.
- 5. Ахундов А.А., Бардин Д.Ю., Шумейко Н.М. ОИЯИ, E2-10471, Дубна, 1977; ЯФ, 1977, 26, с.1251.
- 6. Stein S. e.a. Phys. Rev., 1975, D12, p.1884.
- 7. Chang C. e.a. Phys. Rev. Lett., 1975, 35, p.901; Anderson H.L. e.a. Phys. Rev.Lett., 1976, 37, p.4.
- Mo L.W., Tsai Y.S. Rev.Mod.Phys., 1969, 41, p.205.
 Tsai Y.S. SLAC-PUB-848, 1971.

- Richard-Serre C. CERN, 1971, 71-18.
 Schwinger J. Phys.Rev., 1949, 76, p.790.
 Yennie D.R., Frautschi S.C., Suura H. Ann.Phys., 1961, 13, p.379.
- 13. Bardin D.Yu., Shumeiko N.M. Nucl. Phys., 1977, B127, p.242.
- 14. Биленькая С.И. и др. Письма в ЖЭТФ, 1974, 19,с.613.
- 15. Maximon L.C. Rev. Mod. Phys., 1969, 41, p.193.
- 16. Bartel W. e.a. Nucl. Phys., 1972, B37, p.86.

Рукопись поступила в издательский отдел 11 июля 1978 года.