СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

P2 - 11413

Д.Ю.Бардин, О.М.Федоренко

C32415

ОБ ЭФФЕКТАХ ВЫСШИХ ПОРЯДКОВ ДЛЯ ПРОЦЕССОВ УПРУГОГО РАССЕЯНИЯ ФЕРМИОНОВ В ТЕОРИИ ВАЙНБЕРГА-САЛАМА

2841/2-78

1. Схема перенормировок

P2 - 11413

Д.Ю.Бардин, О.М.Федоренко*

ОБ ЭФФЕКТАХ ВЫСШИХ ПОРЯДКОВ ДЛЯ ПРОЦЕССОВ УПРУГОГО РАССЕЯНИЯ ФЕРМИОНОВ

В ТЕОРИИ ВАЙНБЕРГА-САЛАМА

1. Схема перенормировок

^{*} Московский государственный университет

Бардин Д.Ю., Федоренко О.М.

P2 - 11413

Об эффектах высших порядков для процессов упругого рассеяния фермионов в теории Вайнберга-Салама. І. Схема перенормировок

В рамках SU(2) _L ×U(1) калибровочной теории слабого и электромагнитного взаимолействий с произвольным числом левых фермионных дублетов вычисляется однолетлевое прибляжение для амплитуды упругого рассеяния фермионов со спином 1/2 в канале нейтрального тока. Получена свободная от ультрафиолетовых и инфракрасных расходимостей амплитуда процесса. Вычисления проведены в унитарной калибровке методом размерной регуляризалии.

Работа выполнена в Лаборатории теоретической физики ОНЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1978

Bardin D.Yu., Fedorenko O.M.

P2 - 11413

On High Order Effects for Fermion Elastic Scattering Processes in Weinberg-Salam Theory, I. Renormalization Scheme

In the framework of a $SU(2)_L \times U(1)$ gauge theory of weak and electromagnetic interactions with any number of left spin 1/2 fermion doublets the one-loop approximation for the amplitude of a neutral current elastic fermion scattering process is calculated. Ultraviolet- and infrared-free expression for the scattering amplitude is presented. The calculation are performed in the unitary gauge by dimensional regularization method.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nucleor Research. Dubna 1978

С 1978 Объединенный институт ядерных исследований Дубна

1. Введение

Последние годи характеризуются все возрастающим интересом к единым калибровочным моделям взаимодействий элементарных частиц¹¹. Уже первоначальная версия таких моделей – $SU(2) \times U(1)$ – теория Вайнберга – Салама²² позволила предсказать ряд новых явлений, которые были обнаружены экспериментально^{*}. Дальнейшее развитие калибровочных моделей связано, в основном, с поиском новых групп симметрии теории, включающах $SU(2) \times U(4)$ -симметрию в качестве подгруппы.

Отличительной чертой калибровочных теорий является их перенорыируемость. В связи с этим вичисление эффектов высших порядков, с цельв изучения возможности их экспериментального наблюдения и проверки теоретических предсказаний, представляет особий интерес. До сих пор вычисления эффектов высших порядков проводились наиболее подробно для $\beta^{\prime\prime}$ -распада^{'4'}, для распадов $W - u \not\equiv$ -бозонов^{5'}, для процесса $\gamma^{\prime\prime}$ -рассеяния ^{6'} и для реакции $\gamma_r(\bar{\gamma}_r)e \rightarrow \gamma_r(\gamma_r)e^{\prime\prime\prime\prime}$. В работах ^{8'} методом дисперсионных соотношений вычислялось однопетлевсе приближение для амплитуды упругого $\gamma^{\prime\prime}$ -рассеяния. Схема перенормировок и вычисление однопетлевого приближения в теории Вайнберга - Салама изложены наиболее полно и последовательно в работах ^{7'}, 9'.

В настоящей работе мы обращаем вызмание на то, что результаты работы для процесса $y \in -$ рассеяныя могут быть легко обобщены на случай упругого рассеяныя двух любых фермионов со спином I/2 q + q - q + q (1.1) с такими квантовыми числами, что процесс (1.1) происходит за

3

Современное обсуждение этого вопроса содержится в докладах, представленных на конференцию "Нейтрино-77", М., 1978 (см.также работн/3/).

счет обмена нейтральным током в t канале. Ради общности, достиженые которой не представляет труда, мы рассматриваем $SU(2)_L \times U(4)$ -теорию с произвольным числом N', левых фермионных дублетов

$$\begin{pmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{d} \end{pmatrix}_{L}$$
 (1.2)

Массь *m_i* и заряды Q_i фермионов также считаются произвольными, с единственным ограничением

$$Q(f_u) - Q(f_d) = +1,$$
 (1.3)

Гипотеза ^{че} -универсальности распространяется на взаимодействие всех фермионов. Схема перенормировки (выбор ренормализационных констант и исходных параметров теории) полностью аналогична использованной в работах^{77,97}, знание которых предполагается при дальнейшем изложении. В связи с этим существенные моменты схемы перенормировок, а также некоторые обозначения, заимствованные из этих работ, здесь не разъясняются. Все вычисления проведены в унитарной калибровке¹⁰/ методом размерной регуляризация¹¹/.

Работа состоит из двух частей, в первой части показывается сокращение ультрафиолетовых и инфракрасных расходимостей, найдена свободная от расходимостей конечная часть амплитуды в однопетлевом приближении. Отличительной чертой проведенных вычислений от имеющихся в литературе является то, что конечная часть получена не в обычно используемом приближении

S + M2 /1 M2

$$M_{y}^{2}, s, t, s-t \gg m_{i}^{-}, \qquad (1.4)$$

что позволяет применять результат в области очень больших S и t, т.е. там, где как раз и следует ожидать заметных эффектов высших порядков. Найденная амплитуда описывает широкий круг процессов упругого рассеяния ($\mathcal{Y}_{\mu} \mathcal{C}, \mathcal{Y}_{e} \overset{\mu}{}, \mathcal{YV}, \ell^{\pm} \ell^{\pm}$, рассеяние лептонов на кварках в приближения $\mathcal{Q}_{z} \mathcal{O}$ и т.п.). Она может быть использована для оценки радиационных поправок к этим процессам, а также к процессам глубоконеупругого рассеяния лептонов адронами в рамках партонной модели.

Во второй части^{12/} выписаны общие формулы для всех однопетлевых диаграмм, в которых присутствует фермионная линия (внешняя или внутренняя). Полосные вклады (коэффициенты при $\frac{1}{n-2}$ и $\frac{4}{n-4}$) вычислены точно, а конечные – в приближения (1.4). Расчеты проведены для произвольной q_vV+q_vA – формы взаимодействия

4

векторных бозонов с лептонами, поэтому приводимые в этой части формулы могут быть использованы для вычисления однопетлевого приближения амплитуды не только в $SU(2)_L \times U(4)$ - теориях, но и в более широких классах моделей, включающих большее число векторных и скалярных бозонов, а также взаямодействие с правыми токами.

2. Схема перенормировок

В низшем порядке в амплитуду процесса упругого рассеяния двух фермионов q. и $Q = q(m)+Q(\mu) \rightarrow q(m)+Q(\mu)$ (m, μ – массы фермионов; $\frac{1}{2}q$ и $\frac{1}{2}q$ – заряды) дают вклад три диаграммы:

Борновские амплитуды M_o^z , M_o^k и M_o^A , соответствующие этим диаграммам, запышем в виде:

$$\begin{split} M_{0}^{\vec{z}} &= C_{M_{0}^{\vec{z}}} \cdot \left[C_{\underline{i}} \otimes O_{\underline{d}} - 4 \cdot |f_{0}| \cdot (1-R) O_{\underline{d}} \otimes J_{\underline{d}} - 4 \cdot |f_{\underline{g}}| \cdot (1-R) J_{\underline{d}} \otimes O_{\underline{d}} + \right. \\ &+ 16 \cdot |f_{\underline{q}} \cdot f_{\underline{a}}| \cdot (1-R)^{2} \cdot J_{\underline{d}} \otimes J_{\underline{d}} + \frac{1}{M_{z}^{2}} \cdot \hat{q} J_{\underline{S}} \otimes \hat{q} J_{\underline{S}} \right] , \end{split}$$

$$\begin{split} M_{0}^{A} &= C_{M_{0}^{\vec{z}}} \cdot \frac{R \left(q^{2} + M_{z}^{2}\right)}{(1-R) \cdot q^{2}} \cdot \left[16 \cdot |f_{\underline{q}} \cdot f_{\underline{a}}| \cdot (1-R)^{2} J_{\underline{d}} \otimes J_{\underline{d}} \right] , \qquad (2.2) \end{split}$$

$$M_{0}^{b} = C_{M_{0}^{b}} \cdot] \otimes [\qquad (2.3)$$

В формулах (2.1)-(2.3) для сокращения записи опущены нормировочные множители и использован символ прямого произведения

$$\overline{u}(K_2) \mathcal{O}_1 u(K_1) \cdot \overline{u}(P_2) \mathcal{O}_2 u(P_4) \Rightarrow \mathcal{O}_2 \otimes \mathcal{O}_2 .$$

Здесь и далее:

$$C_{M_{e}^{2}} = \frac{-i g^{2} (2\pi)^{4} S_{q} S_{q}}{16 R (q^{2} + M_{z}^{2})} , C_{M_{e}^{2}} = \frac{i G_{q} G_{q} (2\pi)^{4}}{2 (q^{2} + M_{z}^{2})} , R = 1 - \frac{e^{2}}{q^{2}} .$$
 (2.4)

 $C_{d} = \chi_{d}(1+\chi_{5})$, I – единичная матрица, S₉ и S₉ – знаковые множители $Z\bar{q}q$ и $Z\bar{Q}Q$ взаимодействий, q^{2} – квадрат переданного 4-импульса.

В однопетлевом приближении процесс 9.42→9.40 содержит вклады диаграмм высшего порядка. Амплитуду процесса рассеяния с учетом членов высшего порядка удобно выразить в терминах формфакторов:

$$\begin{split} M &= M^{2} + M^{A} + M^{F} = M_{0}^{F} \cdot \mathcal{F}_{0} + C_{M_{s}^{2}} \cdot \left\{ \mathcal{Q}_{1} \otimes \mathcal{Q}_{1} \cdot \mathcal{F}_{1} - \mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{Q}_{a} \otimes \mathcal{G}_{1} \cdot \mathcal{F}_{2} - \mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{Q}_{a} \otimes \mathcal{G}_{1} \cdot \mathcal{F}_{a} + \mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{H}_{a} \left[\mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{H}_{a} \left[\mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{H}_{a} \left[\mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{H}_{a} \left[\mathcal{H}_{a} \right] \mathcal{H}_{a} \left[\mathcal{H}_{a} \left[$$

шесть из которых имеют вид:

$$\mathcal{F}_{i} = 1 + \frac{g^{2}}{16\pi^{2}} F_{i} \quad (i = 0, ..., 5) , \qquad (2.6)$$

а остальные, не выписанные в формуле (2.5), начинаются с g². Амплитуда процесса (1.1) с учетом выслих порядков описывает-

амплитуда процесса (1.1) с учетом высших порядков описывается следующими диаграммами, которые дают вклад в шесть формфакторов $\mathcal{F}_0, \dots, \mathcal{F}_n$:

а также всевозможными диаграммами с двухчастичным обменом (TPE). Последние диаграммы дают вклад во все формфакторы \mathcal{F}_i формулы (2.5) (включая и невыписанные явно), однако полюсные вклады этих диаграмм содержатся только в мести формфакторах $\mathcal{F}_0,...,\mathcal{F}_s$.

При выполнении программы перенормировок мы будем использовать метод лагранжиана контриденов. Не представляет труда обобцить $\mathcal{I}_{C.L.}^{c.n}$, приведенный в^{/7/}, на случай произвольного числа левых фермионных дублетов (1.2).

Получим, прежде всего, вклад Z -бозонных собственно-энергетических (SE) диаграмм (а). В однопетлевом приближении имеем:

$$M(SE Z) = M_{o}^{Z} \cdot \frac{-i \cdot B_{Z}(q^{2})}{q^{2} + M_{Z}^{2}} + C_{M_{o}^{Z}} \cdot \frac{\hat{q}_{\delta_{S}} \otimes \hat{q}_{\delta_{S}}}{M_{Z}^{2}} \cdot \left[\frac{-i \cdot B_{Z}(q^{2})}{M_{Z}^{2}} + \frac{-i \cdot C_{Z}(q^{2})}{M_{Z}^{2}} \cdot (\hat{q}^{2} + M_{Z}^{2})\right], (2.7)$$

где $B_{Z}(q^{2})$ и $C_{Z}(q^{2})$ приведени в работе^{/12}/ (см. формули (2.12) и

(2.13). Непосредственно из лагранживна контрчленов /// легко получить структуру 7 -массового контрчленного (СТ) иклада:

$$Z(MCT) = M_0^{Z} \cdot \frac{M_2^{Z} - M_w^{Z} \cdot R^{-1} - R^{-1} \cdot \tilde{C} M_w^{Z} + M_w^{Z} \cdot R^{-2} \cdot \tilde{C} R}{q^2 + M_Z^{Z}} +$$
(2.8)

$$+ C_{M_{z}^{z}} \cdot \frac{\widehat{9}_{l_{s}} \otimes \widehat{9}_{l_{s}}}{M_{z}^{z}} \cdot \left(\frac{M_{z}^{2} - M_{w}^{2} \cdot \overline{R} - \overline{R} \cdot \delta M_{w}^{2} + M_{w}^{2} \cdot \overline{R} \cdot \delta R}{M_{z}^{2}} \right),$$

rge $\delta M_{w}^{2} = M_{ow}^{2} - M_{w}^{2} = \left(\frac{Z_{\lambda} Z_{g}}{Z_{y\mu} Z_{\mu L} Z_{w}} - 1\right) \cdot M_{w}^{2}$, (2.9)

$$\delta R = R_{o} - R = -\left(\frac{Z_{VM} Z_{M} Z_{M}}{Z_{g}^{2} Z_{A}} - 1\right) \cdot (1 - R) . \qquad (2.10)$$

В выражениях (2.1), (2.7) и (2.8) явно присутствует масса Z бозона, которая не является исходным параметром в выбранной схеме перенормировок^{7,9}, и, следовательно, должна быть выражена через исходные параметры. Требуя,как обычно, чтобы сумма Z -бозонных SE и Z -массовых CT диаграмм исчезала при $q^2 + M_Z^2 = O$, получим соотношение, накладываемое ча квадрат массы Z бозона:

$$M_{z}^{2} = M_{w}^{2} \cdot \bar{R}^{1} + \bar{R}^{1} \cdot \delta M_{w}^{2} - M_{w}^{2} \cdot \bar{R}^{2} \cdot \delta \bar{R} + i \cdot B_{z}(q^{2}) \Big|_{q^{2} = -M_{z}^{2}}^{q}$$
(2.11)

Далее, подставляя (2.11) в (2.1), (2.7) и (2.8), и ограничиваясь членами $\sim 9^4$, найдем выражения для эффективной Јорновской амплитуды $\overline{M_c^2}$ и суммы Z-бозонных SE и Z-массовых CT диаграмм, не зависящие от массы Z бозона:

[•] Из (2.11) следует условие $M_Z^2 = \tilde{R} \cdot M_W^2 + O(g^2)$ для перенормированных величина, где $O(g^2)$ – конечная величина порядка g^2 /9/.

$$\begin{split} \widetilde{M}_{o}^{Z} &= \widetilde{C}_{M_{o}^{Z}} \cdot \left[O_{d} \otimes O_{d} - 4|f_{q}|(1-R)O_{d} \otimes f_{d} - 4|f_{q}|(1-R)f_{d} \otimes O_{d} + \right. \\ &+ 16 \cdot |f_{q} \cdot f_{q}| \cdot (1-R)^{2} \cdot f_{d} \otimes f_{d} + \frac{R}{M_{w}} \cdot \hat{q}_{fs} \otimes \hat{q}_{fs} \right] , \end{split}$$

$$\begin{aligned} & (2.12) \\ M(SEZ) + Z(MCT) = \widetilde{M}_{o}^{Z} \cdot \frac{-i \frac{R}{M_{w}} \cdot B_{Z}(q^{2}) - \frac{\delta M_{w}^{Z}}{M_{w}^{2}} + \frac{SR}{R}}{1 + R d_{w}} + \widetilde{C}_{M_{o}^{Z}} \cdot R \cdot \frac{\hat{q}_{ds} \otimes \hat{q}_{ds}}{M_{w}^{2}} \cdot \frac{(2.13)}{R_{w}^{2}} \cdot \left[-i \frac{R}{M_{w}^{2}} \cdot B_{Z}(q^{2}) - i C_{Z}(q^{2}) \cdot (1 + R d_{w}) - \frac{\delta M_{w}^{2}}{M_{w}^{2}} + \frac{\delta R}{R} \right] , \end{split}$$

где

$$\overline{C}_{M_0^{\#}} = \frac{-ig^2(2\pi)^4 \cdot S_q \cdot S_q}{16(Rq^2 + M_w^2)} , \quad d_w = \frac{q^2}{M_w^2} .$$

Вклад в амплитуду процесса диаграмм (f) (с учетом перенормировки волновой функции фотона) равен:

$$M(SEA) + M(CT) = M_0^A \cdot \left[\frac{-i \cdot B_A(q^2)}{q^2} - (Z_A - 1)\right].$$
(2.14)

Вклад диаграмм ZA -смешивания (d) н (e):

$$M(ZA) = \overline{C}_{M_{0}^{Z}} \cdot \frac{-i}{q^{2}} \cdot \left(\frac{R}{1-R}\right)^{\frac{1}{2}} B_{ZA}(q^{2}) \cdot \left[-4|f_{u}|(1-R)Q_{0}w_{d}^{2} + 16|f_{u}f_{0}|(1-R)\frac{1}{2}w_{d}^{2}\right]_{2}^{2}$$

$$M(AZ) = \overline{C}_{M_{0}^{Z}} \cdot \frac{-i}{q^{2}} \cdot \left(\frac{R}{1-R}\right)^{\frac{1}{2}} B_{ZA}(q^{2}) \cdot \left[-4|f_{u}|(1-R)\frac{1}{2}w_{d}^{2} + 16|f_{u}f_{0}|(1-R)\frac{1}{2}w_{d}^{2}\right]_{2}^{2}$$

$$(2.15)$$

Аналогично, вклад в амплитуду процесса (2,5) днаграмы (ċ):

$$M(SEK) + K(MCT) = M_{0}^{K} \frac{-i}{q^{2} + M_{f}^{2}} \left[B_{f}(q^{2}) - B_{f}(-M_{f}^{2}) \right]. \qquad (2.17)$$

Получим выражения для вершинных диаграмм (b), (c), (g), (h), (j)и (k). <u>Лиаграмми (b)</u>:

$$\begin{split} & M(\overline{z}_{q}_{q}) = \overline{C}_{M_{\sigma}^{2}} \cdot \left[O_{d} \otimes O_{d} \cdot \Gamma_{1}(\overline{z}_{q}_{q}) - 4|f_{q}|(1-R)O_{d} \otimes f_{d} \cdot \Gamma_{1}(\overline{z}_{q}) - 4|f_{q}|(1-R)O_{d} \otimes f_{d} \cdot \Gamma_{1}(\overline{z}) - 4|f_{q}|(1-R)O_{d} \otimes f_{d} \cdot \Gamma_{1}(\overline{z}) - 4|f$$

<u>Inarpamme (C)</u>,

$$\begin{split} \mathsf{M}(\overline{Z}QQ) &= \overline{C}_{\mathsf{M}_{\mathsf{F}}^{\mathsf{Z}}} \cdot \left[Q_{\mathsf{L}} \otimes Q_{\mathsf{L}} \cdot \Gamma_{\mathsf{I}}(\overline{Z}QQ) - 4 | \mathfrak{l}_{\mathsf{Q}} | (I-R) Q_{\mathsf{L}} \otimes \mathfrak{f}_{\mathsf{L}} \cdot \Gamma_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) - 4 | \mathfrak{l}_{\mathsf{Q}} | (I-R) Q_{\mathsf{L}} \otimes \mathfrak{f}_{\mathsf{L}} \cdot \Gamma_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) - 4 | \mathfrak{l}_{\mathsf{Q}} | (I-R) Q_{\mathsf{L}}^{\mathsf{Z}} \otimes \mathfrak{f}_{\mathsf{L}} \cdot \Gamma_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) + 4 | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | (I-R)^{\mathsf{Z}} \cdot \mathfrak{f}_{\mathsf{Q}} \otimes \mathfrak{f}_{\mathsf{L}} \cdot \Gamma_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) + 4 | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | (I-R)^{\mathsf{Z}} \cdot \mathfrak{f}_{\mathsf{Q}} \otimes \mathfrak{f}_{\mathsf{L}} \cdot \Gamma_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) + 4 | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} \cdot \mathfrak{l}_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) + 4 | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} \cdot \mathfrak{l}_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) + 4 | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} \cdot \mathfrak{l}_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) + 4 | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} \cdot \mathfrak{l}_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) + 4 | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf{Q}} \cdot \mathfrak{l}_{\mathsf{L}}^{\mathsf{Z}}(\overline{Z}QQ) + 4 | \mathfrak{l}_{\mathsf{Q}} | \mathfrak{l}_{\mathsf$$

Диаграммы (9) и (h):

$$M(Aqq) = \overline{C}_{M_{0}^{2}} \cdot \frac{f \cdot R d_{w}}{d_{w}} \left\{ -4 |f_{q}|(I - R) \mathcal{O}_{d} \otimes f_{d} \cdot \Gamma_{2}^{\prime}(Aqq) + (2.20) \right\}$$

$$+ 16 \cdot |f_{q}f_{q}| \cdot (I - R)^{2} f_{d} \otimes f_{d} \cdot \Gamma_{4}^{\prime}(Aqq) \right\}, \qquad (2.20)$$

$$M(AQQ) = \overline{C}_{M_{0}^{2}} \cdot \frac{f \cdot R d_{w}}{d_{w}} \left\{ -4 |f_{q}|(I - R) f_{d} \otimes \mathcal{O}_{d} \cdot \Gamma_{3}^{\prime}(AqQ) + (1 - R)^{2} f_{q} \otimes f_{d} \cdot \Gamma_{4}^{\prime}(AqQ) \right\}, \qquad (2.21)$$

<u>IMARPAMME (d) M (k)</u>:

$$M(\mathfrak{g}\mathfrak{g}) = M_0^{\mathfrak{X}} \cdot \overline{\mathcal{G}}(\mathfrak{g}\mathfrak{g}) , M(\mathfrak{g}\mathfrak{Q}) = M_0^{\mathfrak{X}} \cdot \overline{\mathcal{G}}(\mathfrak{g}\mathfrak{Q}) . \qquad (2.22)$$

Вершинные функции \int_0^r ,..., \int_3^r дают вклад в соответствующие формфакторн F_o ,..., F_5 процесса рассеяния фермионов. Для реакции с произвольно заряженными фермионами (1.1) вершинные функции приведены во второй части работы.

Используя лагранжнан контриленов 77, получим вклад в ампли-

туду процесса вершинных контряленов. $\left\{ \underbrace{-}_{\text{Вклад}} + \underbrace{-}_{\text{К}} \right\}:$ $V(\overline{Z}CT) = \overline{C}_{H_{0}^{\mathcal{X}}} \cdot \left\{ O_{d} \otimes O_{d} \cdot \left[(\overline{Z}_{qL} - 1) + (\overline{Z}_{qL} - 1) + 2 \frac{\delta g}{g} - \frac{\delta R}{R} - \frac{2 \cdot |f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) - 2 \cdot |f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) \right] - 4|f_{a}| \cdot (1-R) O_{d} \otimes \mathcal{Y}_{d} \cdot \left[(\overline{Z}_{qL} - 1) + 2 \cdot \frac{\delta g}{g} - \frac{\delta R}{R} - \frac{\delta R}{R} - 2 \cdot |f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) \right] - 4|f_{a}| \cdot (1-R) O_{d} \otimes \mathcal{Y}_{d} \cdot \left[(\overline{Z}_{qL} - 1) + (\overline{Z}_{qR} - 1) + 2 \cdot \frac{\delta g}{g} - \frac{\delta R}{R} - \frac{\delta R}{R} - 2 \cdot |f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) \right] - 4|f_{a}| \cdot (1-R) O_{d} \otimes \mathcal{Y}_{d} \cdot \left[(\overline{Z}_{qL} - 1) + (\overline{Z}_{qR} - 1) + 2 \cdot \frac{\delta g}{g} - \frac{\delta R}{R} - \frac{\delta R}{R} - 2 \cdot |f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) \right] - 4|f_{a}| \cdot (1-R) O_{d} \otimes \mathcal{Y}_{d} \cdot \left[(\overline{Z}_{qL} - 1) + (\overline{Z}_{qR} - 1) + 2 \cdot \frac{\delta g}{g} - \frac{\delta R}{R} - \frac{\delta R}{R} - 2 \cdot |f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) \right] - 4|f_{a}| \cdot (1-R) O_{d} \otimes \mathcal{Y}_{d} \cdot \left[(\overline{Z}_{qL} - 1) + (\overline{Z}_{qR} - 1) + 2 \cdot \frac{\delta g}{g} - \frac{\delta R}{R} - \frac{\delta R}{R} - 2 \cdot |f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) \right] - 4|f_{a}| \cdot (1-R) O_{d} \otimes \mathcal{Y}_{d} \cdot \left[(\overline{Z}_{qL} - 1) + (\overline{Z}_{qR} - 1) + 2 \cdot \frac{\delta g}{g} - \frac{\delta R}{R} - \frac{\delta R}{R} - 2 \cdot |f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) \right] - 4|f_{q}|(1-R) \cdot (\overline{Z}_{qL} - \overline{Z}_{qR}) \right]$

$$-4|f_{q}|\cdot(1-R)Y_{k}\otimes O_{d}\left[\left(Z_{qR}^{-1}\right)+\left(Z_{QL}^{-1}\right)+2\cdot\frac{\delta g}{g}-\frac{\delta R}{R}-\frac{\delta R}{1-R}\right] + (Z_{qL}^{-1})+2\cdot\frac{\delta g}{g}-\frac{\delta R}{R}-\frac{\delta R}{1-R} - (Z_{223})\right] + 16\cdot\left[f_{q}f_{q}|\cdot(1-R)\cdot\frac{\delta g}{M_{w}}\right] + \left[(Z_{qR}^{-1})+\frac{\delta g}{g}-\frac{\delta R}{R}-2\cdot\frac{\delta R}{1-R}\right] + R\cdot\frac{\hat{\eta}_{dS}\otimes\hat{\eta}_{dS}}{M_{w}^{2}}\cdot\left[\left(Z_{qL}^{-1}\right)+\left(Z_{qL}^{-1}\right)+\frac{(Z_{223})}{1+2\cdot\frac{\delta g}{g}-\frac{\delta R}{R}-2\cdot\frac{\delta R}{1-R}\right] + R\cdot\frac{\hat{\eta}_{dS}\otimes\hat{\eta}_{dS}}{M_{w}^{2}}\cdot\left[\left(Z_{qL}^{-1}\right)+\left(Z_{qL}^{-1}\right)+\frac{(Z_{223})}{1+2\cdot\frac{\delta g}{g}-\frac{\delta R}{R}-2\left[f_{q}|\cdot(1-R)\cdot\left(Z_{qL}^{-1}-\frac{Z_{qR}}{q}\right)\right]\right]\right].$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.23)$$

$$(2.24)$$

$$(2.24)$$

$$(1-R)\delta_{g}\otimes \delta_{d}\cdot\left[-2|f_{q}|\cdot\frac{1+Rd_{w}}{d_{w}}\cdot\left(Z_{qL}^{-1}-Z_{qR}\right)\right] + (2.24)$$

$$(2.24)$$

$$(2.24)$$

$$(2.24)$$

$$(2.24)$$

$$(2.24)$$

$$(3.24)$$

$$(3.24)$$

$$(3.24)$$

$$(3.25)$$

$$(3.25)$$

$$(3.25)$$

Данная структура выражений (2.23)-(2.25) получена с точностью до членов порядка \mathcal{J}^4 с учетом взаимного сокращения некоторых вкладов из лагранжиана контрчленов. В частности, для диаграмм с \mathcal{Z} -и А - обменом происходит взаимное сокращение на уровне амплитуды вкладов, содержащих контрчлены $\mathcal{Z}_{\mathcal{J}}$ -1 и $\mathcal{Z}_{\mathcal{M}}^{/7/}$.

Все голточне вклади диаграми исчерпиваются шестью формфакторами. Обозначим через В; вклади диаграми двухчастичного обмена в формфакторы \mathcal{F}_i . После некоторых преобразований, из общих формул работн^{12/} – (5.3);(5.16)+(5.18);(5.21);(5.31)+(5.33) нетрудно подучить интересующие нас выражения для B_i .

Общая структура формфакторов F; (i =0,...,5) такова:

$$\begin{aligned} \widetilde{T}_{o} &= 1 + \frac{-i}{q^{2} \cdot M_{f}^{2}} \cdot \left[B_{x}(q^{2}) - B_{x}(-M_{x}^{2}) \right] + \left[c(xqq) + c(xqq) + c(xqq) + (2.26) \right] \\ &+ B_{o} + 2 \frac{\delta g}{g} - \frac{\delta M_{w}^{2}}{M_{w}^{2}} + \left(Z_{dq}^{-1} \right) + \left(Z_{dq}^{-1} \right) \end{aligned}$$

$$\begin{split} & \overset{G}{\mathcal{T}_{1}} = \underbrace{1 + \frac{4}{i + Rd_{w}} \left[-i \frac{R}{M_{w}^{2}} B_{z}(q^{i}) - \frac{5M_{w}^{2}}{M_{w}^{2}} + \frac{\delta R}{R} \right] + \int_{1}^{1} \left(\overline{z}q_{g} \right) + \int_{1}^{r} \left(\overline{z}q_{w} \right) + \\ & + B_{1} + \left(\overline{z}q_{L} - 1 \right) + \left(\overline{z}q_{L} - 1 \right) + 2 \frac{\delta g}{g} - \frac{\delta R}{2} - 2 If_{q} I \cdot (I - R) \cdot \left(\overline{z}q_{L} - \overline{z}q_{w} \right) - \\ & - 2 If_{q} I \cdot (I - R) \cdot \left(\overline{z}q_{L} - \overline{z}q_{g} \right) \right) , \qquad (2.27) \end{split}$$

Далее будет показано, что 'f; свободны от ультрафиолетовых и инфракрасных расходимостей.

3. Сокращение ультрафиолетовых и инфракрасных расходимостей

Изучение формионных собственно-энергетических (SE) амплитуд $\sum_{ql}^{(2)}$ дает возможность получить следующие константы перенормировки: Z_{ql} , Z_{ql} , Z_{ql} , Z_{ql} , Z_{ql} , Z_{dq} и Z_{dq} . Постулируется, что сумма SE -вставок и вклада контрчленов

во внешние линии равна нуло. Это требование приводит к условиям: $Z_{qL}^{-1} = -A - B$, $Z_{qR}^{-1} = A - B$, $Z_{dq}^{-1} = -\frac{4}{im} \cdot \sum_{l=1}^{\binom{2}{2}} -B$. (3.2) Коэффициенты A, B и $\sum_{l=1}^{\binom{2}{2}}$ получены во второй части работы /12/ (см.формулы (1.5)+(1,7),(1.13)+(1,18)). Для процесса (1.1) имеем:

$$\begin{split} \vec{Z}_{qL} &= \frac{q^2}{16\pi^2} \cdot \left\{ \left[2(l-R) f_q^2 + \frac{m^2}{M_w^2} \left(1 + |f_q|(l-R)) - \frac{3}{2} \sum_{q_1} \frac{m_1^2}{M_w^2} \right] \cdot P + 4f_q^2(l-R) f_{1R} + f_q^4 \right\}, \\ \vec{Z}_{qR} - 1 &= \frac{q^2}{16\pi^2} \cdot \left\{ \left[2(l-R) f_q^2 + \frac{m^2}{M_w^2} \left(1 - |f_q|(l-R)) \right] \cdot P + 4f_q^2(l-R) \cdot P_{1R} + q_q^R \right\}, \quad (3.4) \end{split}$$

$$Z_{q_L} - Z_{q_R} = \frac{\theta^2}{16\pi^2} \cdot \left\{ \left[2(1-R) | \frac{1}{q_l} | \cdot \frac{m^2}{M_w^2} - \frac{3}{2} \sum_{\substack{q \\ q_I}} \frac{m_I^2}{M_w^2} \right] \cdot P + q^L - q^R \right\}, \qquad (3.5)$$

$$Z_{clq}^{-1} = \frac{g^{2}}{16\pi^{2}} \left\{ \left[\frac{1}{4} \cdot \frac{m^{2}}{M_{w}^{2}} - 3\frac{1-R}{R} \cdot |f_{q}| + f_{q}^{2} \cdot \left(\frac{6}{R} - 4-2R\right) \right] P + 4f_{q}^{2}(1-R) P_{IR} + q^{6} \right\} (3.6)$$

Здесь Р -ультрафиолетовый, а P_{1R} - инфракрасный полоса при размерности пространства n = 4. Конечные части в выражениях (3.3)--(3.6) получены в пренебрежении массами фермионов по сравнению с M_v .

$$Q_{p}^{R} = (1-R)f_{q}^{2} \cdot \left(\frac{3}{2R} - \frac{H}{2} + 3\ln\frac{m^{2}}{M_{W}^{2}}\right) , \qquad (3.7)$$

$$Q_{p}^{L} = Q_{p}^{R} + \frac{3}{8R} + \frac{3}{4} - \frac{3}{2} \cdot \frac{1-R}{R} \cdot |f_{q}| ,$$

$$q_{b}^{G} = \frac{1}{2} \cdot \frac{1 \cdot \ell}{R} \cdot \left| \{q\} + \int_{q}^{2} \cdot \left[-\frac{1}{R} - 6 + 7R + 6(1 \cdot R) \cdot \ell_{M} \frac{m^{2}}{M_{w}^{2}} \right] \ . \label{eq:q_b_star}$$

В частности:

$$Z_{j'L} - 1 = \frac{q^2}{16\pi^2} \left\{ \left[2(1-R) + \frac{m_{\mu}^2}{M_w^2} (2-R) \right] \cdot P + 4(1-R) \cdot P_{IR} + 3(1-R) \int_{M} \frac{m_{\mu}^2}{M_w^2} \frac{3}{8R} - \frac{19}{4} + \frac{41}{2}R \right\}, (3.8)$$

$$Z_{\nu_{\ell}} - 1 = \frac{q^2}{16\pi^2} \cdot \left[\left(-\frac{3}{2} \cdot \frac{m_{\ell}^2}{M_w^2} \right) \cdot P + \frac{3}{8R} + \frac{3}{4} \right] , \qquad (3.9)$$

Суммирование по Q_{II} распространяется на все возможные промежуточные фермизнные состояния.

Из анализа W -двухточечных функций найдем массовый сдвиг SM²_w/M²_w и выражение для контрчлена Z_w-1:

$$\frac{\delta M_{w}^{2}}{M_{w}^{2}} = -i \cdot B_{w} \left(q^{2}\right) \Big|_{q^{2}_{z} - M_{w}^{2}} = \frac{g^{2}}{16\pi^{2}} \cdot \left\{ \left[-\frac{3}{2R} + \frac{34}{3} - \frac{2}{3} \cdot N_{f} + M_{f} \right] \cdot P + W(d_{w}) \Big|_{d_{w}^{2} - 1} \right\}, \qquad (3.10)$$

$$Z_{w} - 1 = -i \frac{\partial B_{w}(q^{2})}{\partial q^{2}} \Big|_{q^{2}_{z} - M_{w}^{2}} = \frac{g^{2}}{16\pi^{2}} \cdot \left\{ \left[-\frac{20}{3} + \frac{2}{3} N_{f} - 2R \right] \cdot P + 4(l \cdot R) P_{IR} + W_{F} \right\}, \qquad (3.11)$$

В выражениях (3.10)-(3.11) введены обозначения: М₁ -число всех левых фермионных дублетов в модели, M_4 – отношение суммы квадра-тов всех масс фермионов к квадрату массы W бозона. (В стандарт-ной моделя Вайнберга – Салама $N_4 = 2$, а $M_4 = (m_e^2 + m_P^2)/M_w^2$). Результат для W(d_w) получен в работе 12/ (см.формулу

(2.9)), a W_c passo:

$$W_{F} = \frac{1}{6R^{2}} - \frac{34}{9} - \frac{2}{9} N_{f} + \frac{2}{R} + R - \frac{1}{2} J + \frac{1}{6} J + \frac{1}{2} J + \frac{1}{2} J + \frac{3}{4} J + \frac{3}{3} J + \frac{3}{4} J + \frac{3}{4} J + \frac{1}{2} J +$$

где

$$\Psi(\mathbf{r}) = \begin{cases} -\sqrt{4\chi - \chi^2} \cdot \arccos \frac{\chi - 2}{2} & \text{при } 0 \le \chi < 4 \\ \sqrt{\chi^2 - 4\chi} \cdot \ln \frac{\chi + \sqrt{\chi^2 - 4\chi^2}}{\chi - \sqrt{\chi^2 - 4\chi^2}} & \text{при } \chi \ge 4 \end{cases},$$

$$\Psi(\mathbf{r}) = \begin{cases} \sqrt{1 - 4R} \cdot \ln \frac{4 + \sqrt{1 - 4R^2}}{\chi - \sqrt{4R - 1}} & \text{при } 0 < R \le \frac{1}{4} \\ -\sqrt{4R - 1} \cdot \operatorname{oriecos} \frac{1 - 2R}{2R} & \text{при } R > \frac{1}{4} \end{cases}.$$

В выражении (3.12) мы пренебрегли членами $\sim m^2/M_W^2$, но оставили члены у $-M_X^2/M_W^2$.

Вклад в контрален $Z_A - 1$ найдем из выражения для $B_A(q^2)^{(2/2)}$:

$$Z_{A} - 1 = -i \frac{dB_{A}(q^{2})}{dq^{2}} \Big|_{q^{2}O} = \frac{e^{2}}{16\pi^{2}} \left\{ \left[-14 + \frac{\delta}{3} \sum_{f} f^{2} \right] \cdot P + A_{F} \right\}, \quad (3.13)$$
$$A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + A_{F} = \frac{2}{3} + 8 \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3} \cdot \left[(0) \cdot \sum_{f} f^{2} \right] \cdot Q + \frac{2}{3}$$

Суммирование в (3.13) и (3.14) ведется по всем типам фермионов (в схеме Вайнберга – Салама $\sum_{r=2}^{r} f^{r} = 2$). Из анализа вершинных функций 1-го и 2-го рода 12/ получим $Z_{g} = 1$:

$$Z_{g} - I = \frac{9^{2}}{16\pi^{2}} \cdot \left\{ \left[\frac{29}{6} - 2R + \left(\frac{1}{4} - \frac{R}{2} \right) \cdot \frac{m_{f^{2}}^{2}}{M_{w}^{2}} \right] \cdot P + (I-R) \left[2 \cdot \frac{M_{w}^{2} + m_{f^{2}}^{2}}{H_{w}^{2} - m_{f^{2}}^{2}} \right] \cdot \left[3.15 \right] \right\}$$

$$\cdot \ln \frac{M_{w}^{2}}{m_{f}^{2}} \cdot P_{IR} - \frac{1}{2} \cdot \ln^{2} \frac{M_{w}^{2}}{m_{f}^{2}} - 2 \cdot \ln \frac{M_{w}^{2}}{m_{f}^{2}} - \frac{71}{18} (1-R) + \frac{1}{2} \cdot \left(1-\frac{1}{2R}\right) \cdot V_{I}(-R) - R \cdot V_{2}(-1) \bigg\},$$

где I (0), V₁, V₂ приведены в работе^{/12/}(см. формулы (2.2), (3.3) и (4.8)). Найдем $\delta g/g$ и $\delta R/R$:

$$\delta g = g - g = \left[\frac{Z_g}{(Z_W Z_{V,r} Z_{PL})^{\gamma_2}} - 1 \right] \cdot g \qquad (3.16),$$

Раскладывая (3.16) в ряд и ограничиваясь членами ~ 9, имеем:

$$\frac{\delta 9}{9} = \frac{g^2}{16\pi^2} \cdot \left\{ \left[\frac{43}{6} - \frac{1}{3} \cdot N_{\rm f} \right] \cdot \mathbf{P} + \mathbf{G} \right\} - \frac{e^2}{16\pi^2} \cdot \mathbf{G}_{\rm IR} \quad (3.17)$$

Здесь

$$G = -\frac{3}{8R} - \frac{41}{18} + \frac{55}{36} \cdot R + \frac{1}{2} \left(1 - \frac{1}{2R}\right) \cdot V_1(-R) - R \cdot V_2(-1) - \frac{1}{2} \cdot W_F , \quad (3.18)$$

$$G_{IR} = \left(2 \cdot \frac{M_{w}^{2} + m_{\mu}^{2}}{M_{w}^{2} - m_{\mu}^{2}} \cdot \left(l_{H} \frac{m_{\mu}^{2}}{M_{w}^{2}} + 4\right) \cdot \underline{P}_{IR} + \frac{1}{2} \cdot l_{H}^{2} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \underline{P}_{IR} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}} + \frac{1}{2} \cdot \left(l_{H} \frac{M_{w}^{2}}{m_{\mu}^{2}}\right) \cdot \frac{1}{2} \cdot \left(l_{H} \frac$$

Используя (2.10), (3.13) и (3.17), найдем, что

$$\frac{\delta R}{R} = \frac{q^2}{16\pi^2} \cdot \left\{ \left[\frac{1}{3R} + \frac{41}{3} - 14 \cdot R - \frac{2}{3} \cdot \frac{(1-R)}{R} \cdot N_{f} + \frac{8}{3} \cdot \frac{(1-R)^2}{R} \cdot \sum_{f} f^2 \right] \cdot P - \right. (3.20)$$

$$-2\cdot\frac{(1-R)^2}{R}\cdot G_{1R}+2\cdot\frac{4-R}{R}\cdot G + \frac{(4-R)^2}{R}A_F \} .$$

Анализируя вершинные функции^{/12/}, получим величины // , дающие вклад в формфакторы F_i :

$$\begin{split} & \left[\frac{1}{1} \left(\overline{I} q_{P} g \right) = \frac{q^{2}}{16\pi^{2}} \cdot \left\{ \left[-2(I-R) f_{q}^{2} + \frac{g}{3} Rd_{w} - \frac{Rd_{w}^{2}}{6} + \frac{m^{2}}{M_{w}^{2}} \cdot \left(-\frac{1}{2} - If_{q} \right) \cdot \left(I-R \right) + 4(I-R)^{2} \cdot f_{q}^{2} + \frac{Rd_{w}}{2} + \frac{Rd_{w}}{2} \right) + \left(1 - 3(I-R) \cdot \left| f_{q} \right| - \frac{Rd_{w}}{2} \right) \cdot \sum_{q_{I}} \frac{m_{I}^{2}}{M_{w}^{2}} \right] \cdot P + 4K_{I}K_{2} \cdot f_{q}^{2} \cdot \left(I-R \right) \cdot \int^{M} (q^{2}; m^{2}; m^{2}; m^{2}) \cdot p_{IR} - \int^{2}_{q_{I}} (I-R) \cdot \sqrt{A} \left(d_{w}; m^{2}; m^{2}; m^{2} \right) + \left(\frac{1}{2} - R - \left| f_{q} \right| \cdot (I-R) \right) \cdot \sqrt{I} \left(d_{w} \right) + \frac{1}{4R} \cdot \left(1 - 6(I-R) \cdot \left| f_{q} \right| + 12 \cdot \left\{ \frac{2}{q} \cdot (I-R)^{2} \right) \cdot \sqrt{I} \left(Rd_{w} \right) - 4R \cdot \overline{V_{2}} \left(d_{w} \right) \right\}, \end{split}$$

$$(3.21)$$

$$\begin{bmatrix} \int_{3}^{r} (Z_{q}^{2}q_{s}^{2}) = \frac{g^{2}}{16\pi^{2}} \cdot \left\{ \left[-2(I-R)\int_{q}^{2} + \frac{m^{2}}{M_{w}^{2}} \cdot \left(-1 + |f_{q}| \cdot (I-R)\right) + \frac{f+Rd_{w}}{4|f_{q}|(I-R)} \frac{m^{2}}{M_{w}^{2}} \right] \cdot P + 4K_{1}K_{2} \cdot f_{q}^{2} \cdot (I-R) \cdot \int_{4}^{r} (q^{2}; m^{2}; m^{2}) \cdot P_{1R} - f_{q}^{2} \cdot (I-R) \cdot V_{A}(d_{w}; m^{2}; m^{2}) + \frac{f}{R} \cdot f_{q}^{2} \cdot (I-R) \cdot V_{1}(Rd_{w}) \right\} ,$$

$$(3.22)$$

$$\int_{5}^{1} (\overline{I}qq) = \frac{q^{2}}{16\pi^{2}} \cdot \left[-2(1-R)f_{q}^{2} + \frac{8}{3}Rd_{w} - \frac{Rd^{2}}{6} + \frac{m^{2}}{M_{w}^{2}} \cdot \left(-\frac{1}{2} - |f_{q}| \cdot (1-R) + \frac{1}{2} + \frac{1}{2}f_{q}^{2} \cdot (1-R)^{2} + \frac{Rd^{2}}{2} \right) + \left(1 - 3|f_{q}| \cdot (1-R) - \frac{Rd_{w}}{2} \right) \cdot \sum_{q_{I}} \frac{m_{I}^{2}}{M_{w}^{2}} - \frac{1 + Rd_{w}}{2} \cdot \left(-\frac{1}{R} + \frac{1}{2} + \frac{1}{2}f_{q}^{2} + \frac{1$$

$$+\frac{16}{3} - \frac{d_{w}}{3} + \frac{m^{2}}{M_{w}^{2}} - \sum_{q} \frac{m_{x}}{M_{w}^{2}} \right] \cdot P, \qquad (3.23)$$

$$\int_{2} (A g g) = \frac{g^{2}}{16\pi^{2}} \cdot \left\{ \left[4f_{q_{y}}^{2}(1-R)\frac{m^{2}}{M_{w}^{2}} - \frac{d_{w}^{2}}{2} \cdot \frac{m^{2}}{M_{w}^{2}} - \frac{g}{3}d_{w} + \frac{d_{w}^{2}}{6} + \left(\frac{d_{w}}{2} - 3|f_{g}|\right) \sum_{q} \frac{m^{2}_{x}}{M_{w}^{2}} \right] p_{+} + (1 - |f_{q}|) \cdot V_{1}(d_{w}) + 4 \cdot \overline{V}(d_{w}) + \frac{1}{4}d_{w} + (1 + |f_{w}|^{2}) \cdot V_{1}(d_{w}) + \frac{1}{4}d_{w} + (1 + |f_{w}|^{2}) \cdot V_{1}(d_{w}) + \frac{1}{4}d_{w} + \frac{1}{4}d_{w} + (1 + |f_{w}|^{2}) \cdot V_{1}(d_{w}) + \frac{1}{4}d_{w} + \frac{1}{4}d_{w}$$

$$\left[\left(Aqq \right) = \frac{g^{2}}{16\pi^{2}} \cdot \left\{ \left[-\frac{m^{2}}{(-\pi)M_{w}^{2}} + \frac{m^{2}}{M_{w}^{2}} |f_{q}| - 2 \cdot f_{q}^{2} - \frac{dw}{4|f_{q}| \cdot (-R)} \cdot \frac{m^{2}}{M_{w}^{2}} \right] \cdot P + 4K_{1}K_{2} \cdot f_{q}^{2} \cdot \left[u(q_{1}^{2};m_{1}^{2}m_{2}^{2}) \cdot P_{1R} + \frac{f_{R}}{R} \cdot f_{q}^{2} \cdot V_{1}(Rd_{w}) - f_{q}^{2} \cdot V_{A}(d_{w};m_{1}^{2}m^{2}) \right] \right],$$

$$(3.24)$$

$$\begin{split} & \left[\int_{U} \left(y \frac{q}{b} \frac{q}{b} \right) = \frac{q^{2}}{46\pi^{2}} \cdot \left\{ \left[3 \cdot \frac{4-R}{R} \cdot |f_{g}| - \frac{1}{4} \cdot \frac{m^{2}}{M_{W}^{2}} + \left(-\frac{6}{R} + 4 + 2R \right) \cdot f_{g}^{2} + \frac{3}{4} d_{W} \right] \cdot P + 4K_{I}K_{2} \cdot (I-R) \cdot f_{g}^{2} \cdot f^{u} \left(q_{j}^{2} m_{j}^{2} m^{2} \right) \cdot P_{IR} \right\} . \end{split}$$

$$\end{split}$$

$$\begin{aligned} & \left\{ 3 \cdot 26 \right\} \\ & \left\{ -\frac{3}{4} d_{W} \right\} \cdot P + 4K_{I}K_{2} \cdot (I-R) \cdot f_{g}^{2} \cdot f^{u} \left(q_{j}^{2} m_{j}^{2} m^{2} \right) \cdot P_{IR} \right\} . \end{split}$$

В вершинных функциях $\int_{0}^{}$ в $\int_{5}^{}$ сохранены только полосные части.т.к. их конечные вклады в амплитуду рассеяния оказываются $\sim m^{2}/M_{W}^{2}$. Заменой $Q(m) \rightarrow Q(m)$ получим другие необходимые вершинные функции:

$$\begin{split} & \int_{1}(\overline{Z}qg) \rightarrow \int_{3}(\overline{Z}qQ) \ , \ \int_{3}(\overline{Z}qg) \rightarrow \overline{f_{2}}(\overline{Z}QQ) \ , \ \overline{f_{5}}(\overline{Z}qg) \rightarrow \overline{f_{5}}(\overline{Z}QQ) \ , \\ & (3.27) \\ & \int_{2}(\overline{A}gg) \rightarrow \overline{f_{3}}(\overline{A}QQ) \ , \ \overline{f_{4}}(\overline{A}gg) \rightarrow \overline{f_{4}}(\overline{A}QQ) \ , \ \overline{f_{5}}(\overline{Z}qg) \rightarrow \overline{f_{5}}(\overline{Z}QQ) \ . \end{split}$$

В методе размерной регуляризация 1^{n} полос при размерности пространства n = 4 соответствует логариймаческой ультрафиолетовой расходимости (в наших обозначениях – полос P). Соответствующие такому полосу вклады приведены в таблицах I-УI (d). В наших вычислениях произведено выделение полоса у функции $\int (1 - \frac{n}{2})$, что соответствует квадратичной ультрафиолетовой расходимости (в натих обозначениях – полос $P_2^w = \frac{i}{4\pi} M_{\odot}^w \frac{i}{n-2}$). В таблицах I-УI представлены полосные вклады в формфакторы F_i ($i = 0, \ldots, 5$) амплитуды процесса расселния фермионов. Суммы всех вкладов равны нуло для каждого формфактора, т.е. все шесть формфакторов свободны от ультрафиолетовых расходимостей.

Мы рассмотрелы инфракрасную проблему методом размерной регуляризации. При таком рассмотрении инфракрасная расходимость присутствует в амплитуде в виде полюсов P_{IR} в G_{IR} при N=4. Полюс P_{IR} соответствует истинным инфракрасным рас-одимостям, сокращаючимся на уровне вычисления наблюдаемых величие (сечения) при добавлении в рассмотрение процесса излучения мягкого фотона, а величина G_{IR} описывает расходимости, присутствующие в контрчленах. Последние инфракрасные расходимости устраняются посредством инфракрасной перенормировки в соответствии с рецептом, предложенным в работах.^{77,97}. Введем новую константу взадмодействия g_F , в которой отделена инфракрасная расходимость:

$$g = g_{\rm F} \cdot \left(1 + \frac{e^2}{16\pi^2} \cdot G_{\rm IR} \right) , \qquad (3.28)$$

где $9_{\rm F}$ – физическая константа взаимодействия, связанная с наблодаемой шириной распадов $\lceil (W \rightarrow \mu \gamma_{\mu}) + \lceil (W \rightarrow \mu \gamma_{\mu}) / 5,7,9 / . Цолос$ GIR содержится только в Z -массовых, Z – и к -вершинных контрчленных диаграммах. Переходя всюду в амилитуде (2.5) к физической константе связи g_F , нетрудно увидеть, что G_{IR} -содержащие вклады сокращаются в порядке g_F^4 на уровне вычисления амплитуды процесса.

В заключение выпишем свободные от расходимостей конечные вклады в формфакторы F_1 , F_2 , F_3 , F_4 . Конечные части в формфакторах F_0 и F_5 нас не интересуют, так как в амплитуду процесса (2.5) они входят с множителем $\sim m^2/M_w^2$.

$$\begin{split} & \int_{1}^{\infty} = \left[+ \frac{q_{F}^{2}}{16\pi^{2}} \cdot \left\{ \frac{1}{1+Rd_{W}} \cdot \left[\overline{Z}_{M}(d_{W}) - W(-1) + \frac{(1-R)^{2}}{R} \cdot A_{F} + 2 - \frac{1-R}{R} \cdot G \right] - \frac{(1-R)^{2}}{R} \cdot A_{F} + \right. \\ & + 2 \cdot \frac{(2R-1)}{R} \cdot G + q^{L} + q^{L} - 2 i f_{q} i \cdot (1+R) \cdot \left(q^{L} - q^{R}\right) - 2 i f_{q} i \cdot (1+R) \cdot \left(q^{L} - q^{R}\right) - \\ & - \int_{q_{V}^{2}}^{2} (1+R) \cdot \overline{V}_{A}(d_{W}; m_{1}^{2}m^{2}) - \int_{q}^{2} (1-R) \cdot \overline{V}_{A}(d_{W}; p^{U}; p^{U}) + \left[1-2R - (1-R) i \cdot (1+q) i + i f_{d} i) \right] \cdot \overline{V}_{2}(d_{W}) + \\ & + \left[\frac{1}{2R} - \frac{3}{2} \cdot \frac{(1+R)}{R} \cdot (1+q) i + i + 3 \cdot \frac{(1+R)^{2}}{R} \cdot (\frac{1}{2} + \frac{1}{q}) \right] \cdot \overline{V}_{1}(Rd_{W}) - 8R \cdot \overline{V}_{2}(d_{W}) + B_{1} \right], \quad (3.29) \\ & \int_{2}^{\infty} = 1 + \frac{q_{F}^{2}}{16\pi^{2}} \cdot \left\{ \frac{1}{1+Rd_{W}} \cdot \left[\overline{Z}_{M}(d_{W}) - W(-1) + \frac{(1-R)^{2}}{R} \cdot A_{F} + 2 - \frac{1-R}{R} \cdot G \right] + A_{ZA}(d_{W}) - \\ & - \frac{1-R}{R} \cdot A_{F} - 2 \cdot \frac{1-R}{R} \cdot G + q^{L} + Q^{R} - 2 i i q i \cdot (1+R) \cdot \left(q^{L} - q^{R}\right) - 2 \cdot \frac{1+Rd_{V}}{d_{W}} \cdot i i q i / \left(q^{L} - q^{R}\right) - \\ & - \int_{q_{V}^{2}}^{2} (1-R) \cdot \overline{V}_{A}(d_{W}; m_{1}^{2}m^{2}) - \int_{q_{U}^{2}}^{2} (1-R) \cdot \overline{V}_{A}(d_{W}; p^{U}; p^{U}) + \left[\frac{1}{2} - R - i i q i (1-R) \right] \cdot \overline{V}_{1}(d_{W}) + \\ & + \left[\frac{1}{4R} - \frac{3}{2} \cdot \frac{1-R}{R} \cdot i q i + 3 \cdot \frac{(1-R)^{2}}{R} \cdot \frac{1}{q_{V}^{2}} + \frac{(1-R)^{2}}{R} \cdot \frac{1}{q_{V}^{2}} \cdot \frac{1}{R} - \frac{1}{q_{V}^{2}} \cdot \frac{1}{R} \cdot \frac{1}{q_{V}^{2}} + \frac{(1+R)^{2}}{R} \cdot \frac{1}{q_{V}^{2}} + \frac{(1+R)^{2}}{R} \cdot \frac{1}{q_{V}^{2}} \cdot \frac{1}{Q} - \frac{1}{Q} \cdot \frac{1}{Q} \cdot \frac{1}{Q} + \frac{1}{Q} \cdot \frac{1}{Q} \cdot$$

$$-4R \cdot \overline{V_2}(d_w) + \frac{1+Rd_w}{d_w} \cdot \left[\left(1 - |I_w| \right) \cdot \overline{V_1}(d_w) - \frac{1}{2R} \left(|I_w| - 4\int_{Q}^{2} \cdot (1-R) \right) \cdot \overline{V_1}(Rd_w) + 4 \cdot \overline{V_2}(d_w) \right] + B_3 \right], \qquad (3.31)$$

$$\begin{split} \widetilde{J}_{4} &= 1 + \frac{g_{F}^{2}}{16\pi^{2}} \cdot \left\{ \frac{1}{1 + Rd_{W}} \cdot \left[Z_{M}(d_{W}) - W(-1) + \frac{(1-R)^{2}}{R} \cdot A_{F} + 2 \cdot \frac{1-R}{R} \cdot G \right] + \right. \\ &+ 2 \cdot A_{ZA}(d_{W}) + \frac{11Rd_{W}}{d_{W}} \cdot \left[A(d_{W}) - A_{F} \right] - \frac{1-R^{2}}{R} \cdot A_{F} - \frac{2}{R} \cdot G + g^{R} + Q^{R} + \\ &+ \frac{(1-R)^{2}}{R} \cdot \left(f_{Q}^{2} + f_{Q}^{2} \right) \cdot V_{1}(Rd_{W}) + B_{4} + \frac{1+Rd_{W}}{d_{W}} \cdot \left[\frac{1}{1-R} \cdot \left(Q^{R} + q^{R} \right) + \\ &+ \frac{1-R}{R} \cdot V_{1}(Rd_{W}) \cdot \left(f_{Q}^{2} + f_{Q}^{2} \right) - f_{Q}^{2} \cdot V_{A}(d_{W}; m^{2}; m^{2}) - f_{Q}^{2} \cdot V_{A}(d_{W}; m^{2}; m^{2}) - \\ &- \left. f_{Q}^{2} \cdot (1-R) \cdot V_{A}(d_{W}; m^{2}; m^{2}) - f_{Q}^{2} \cdot (1-R) \cdot V_{A}(d_{W}; m^{2}; m^{2}) \right\}. \end{split}$$

$$(3.32)$$

Выражения для $Z_{M}(d)$, $A_{ZA}(d)$, A(d), V_{A} , V_{1} и $\overline{V_{2}}$ даны в работе^{712/} (см.формулы (2.15), (2.21), (2.20), (3,7), (3.3) и (4.7)).

Выражаем благодарность Г.В.Ефимову, М.А.Иванову, С.Т.Петкову, П.Х.Христовой и Н.М.Шумейко за полезные обсуждения некоторых вопросов и особенно В.М.Дубовику за постоянный интерес к работе и многочисленные критические замечания.

∠-коэффициент при $\frac{9}{16\pi^2}$ · Р в формфакторе F ₆ ; β -коэффициент при 9^2 · P ₂ ^w в формфакторе F ₆ .				
NCTOYHUR	d	А		
M(sex)+X(mct)	$-\frac{3}{2R} + \frac{3}{4} \cdot Y - 3 - \frac{3}{4} d_w + M_f$	3 2		
M(¥&&)	$3\frac{4-R}{R} \cdot f_{g} - \frac{1}{4} \cdot \frac{m^{2}}{M_{w}^{2}} + \left(-\frac{6}{R} + 4 + 2R\right) \cdot f_{g}^{2} + \frac{3}{4} d_{w}$	$-\frac{3}{2}+if_{q}i(1-R)-2f_{q}^{2}(1-R)^{2}$		
M(XQQ)	$3 \frac{1-R}{R} \cdot f_{Q} - \frac{1}{4} \cdot \frac{\mu^{2}}{M_{w}^{2}} + \left(-\frac{6}{R} + 4 + 2R\right) \cdot f_{Q}^{2} + \frac{3}{4} d_{w}$	$-\frac{3}{2}+ f_{q} \cdot(i-R)-2f_{q}^{2}\cdot(i-R)^{2}$		
₩(ўст)	$-3 \frac{4-R}{R} f_{q} - 3 \cdot \frac{4-R}{R} f_{q} + \frac{1}{4} \cdot \frac{m^{2}}{M_{w}^{2}} + \frac{4}{4} \cdot \frac{\mu^{4}}{M_{w}^{2}} + \frac{3}{2R} + 3 - M_{4} + f_{q}^{2} \cdot \left(\frac{6}{R} - 4 - 2R\right) + f_{q}^{2} \cdot \left(\frac{6}{R} - 4 - 2R\right)$	$\frac{3}{2} - f_{Q} \cdot (I - R) - f_{Q} \cdot (I - R) + 2(I - R)^{2} \cdot f_{Q}^{2} + 2(I - R)^{2} \cdot f_{Q}^{2}$		
M(TPE)	$-\frac{3}{4}\chi-\frac{3}{4}d_{W}$	0		
сумма	0	0		

^2 Tao*m*ana I

Ň

٠

d -коэффициент при $\frac{g^2}{16\pi^2}$. Р в формфакторе F_1 ; β - коэффициент при $g^2 P_2^w$ в формфакторе F_1 .				
ECTOTHER	d	<i>/</i> 3		
M(se7)+7(mct)	$\frac{1}{3R} - \frac{2}{3} \cdot \frac{(1-2R)}{R} \cdot N_{f} + \frac{7}{3} - \frac{1}{4} \cdot R + \frac{8}{3} \cdot \frac{(1-R)}{R} \cdot \sum_{f}^{2} \int_{-\frac{1}{6}}^{2} \frac{dw}{6} - \frac{7}{3} R dw + \frac{R}{6} dw^{2}$	1-Rdw		
 (гст)	$ -\frac{1}{3R} + \frac{2}{3} \cdot \frac{(1-2R)}{R} N_{4} + \frac{2}{3} + \frac{14R}{R} - \frac{8}{3} \cdot \frac{(1-R)}{R}^{2} \cdot \sum_{f} \int_{f}^{2} + 2(1-R) \int_{q}^{2} \cdot \left(\frac{1-2(1-R)}{M_{w}^{2}}\right) + \frac{m^{2}}{M_{w}^{2}} + 2(1-R) \int_{q}^{2} \cdot \left(\frac{1-2(1-R)}{M_{w}^{2}}\right) + \frac{m^{2}}{M_{w}^{2}} \cdot \left(\frac{1+ f_{q} \cdot (1-R)}{M_{w}^{2}}\right) + \frac{(1-2(1-R))}{M_{w}^{2}} \cdot \left(\frac{1-2(1-R)}{M_{w}^{2}}\right) + (1-2$	$3 - 5(I-R)[f_{q}] - 5(I-R)[f_{q}] + 6f_{q}^{2} \cdot (I-R)^{2} + 6f_{q}^{2} \cdot (I-R)^{2}$		
M(Zqq)	$\frac{\frac{8}{3}}{Rd_{w}} - \frac{\frac{R}{6}}{M_{w}^{2}} - 2(+R)f_{q}^{2} + \frac{m^{2}}{M_{w}^{2}} \cdot \left(-\frac{1}{2} - f_{q} \cdot (l-R) + \frac{Rd}{2}w + 4f_{q}^{2} \cdot (l-R)^{2}\right) + \left(1 - 3 f_{q} \cdot (l-R) - \frac{Rd}{2}w\right) \cdot \sum_{g_{x}} \frac{m_{x}^{2}}{M_{w}^{2}}$	$\frac{-\frac{3}{2} + Rd_{w} + 5 \cdot (1 - R) \cdot fq - 6 \cdot (1 - R)^{2} \cdot f_{q}^{2}$		
M(ZQQ)	$\frac{\frac{8}{3}Rd_{w} - \frac{R}{6}d_{w}^{2} - 2(1-R) \cdot \frac{1}{6}^{2} + \frac{\mu^{2}}{M_{w}^{2}} \cdot \left(-\frac{1}{2} - \frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}(1-R) + \frac{R}{2}\frac{1}{6}w + 4\frac{1}{6}\frac{1}{6}^{2}(1-R)\right) + \left(1 - 3\frac{1}{6}\frac{1}$	$-\frac{3}{2} + Rd_{w} + 5(1-R) f_{q} - 6(1-R)^{2}f_{q}^{2}$		
M(TPE)	$\left((1+Rd_{w})\cdot\left(-3+\frac{d_{w}}{6}-\frac{1}{2}\cdot\frac{m^{2}}{M_{w}^{2}}-\frac{1}{2}\cdot\frac{M^{2}}{M_{w}^{2}}+\frac{1}{2}\cdot\sum_{q_{y}}\frac{m^{2}_{x}}{M_{w}^{2}}+\frac{1}{2}\sum_{Q_{y}}\frac{M^{2}_{y}}{M_{w}^{2}}\right)$	-1-Rdw		
сумма	0	0		

\mathcal{A} -коэффициент при $\frac{g^2}{4c_*}$ P в формфакторе F_{α} ; β -коэффициент при $g^2 P_{\alpha}$ в формфакторе $F_{\alpha\beta}$			
источник	167 - 2(3) d	ß	
M(SE7)+Z(MCT)	$\frac{1}{3R} - \frac{2}{3} \cdot \frac{(1-2R)}{R} \cdot N_{f} + \frac{7}{3} - 14 \cdot R + \frac{8}{3} \cdot \frac{(1-R)^{2}}{R} \cdot \sum_{f}^{2} f^{2} - \frac{d_{w}}{6} - \frac{7}{3} R d_{w} + \frac{R}{6} d_{w}^{2}$	1-Rdw	
M(ZA)+M(A?)	$-\frac{2}{3}N_{f} + \frac{8}{3}(1-R)\sum_{f} f^{2} + 14\cdot R + \frac{7}{3}Rd_{W} - \frac{Rd_{W}^{2}}{6}$	Rdw	
V(аст)	$-2 \cdot \left \mathbf{f}_{\mathbf{q}} \right \cdot \frac{1 + \mathbf{R} \mathbf{d}_{\mathbf{w}}}{\mathbf{d}_{\mathbf{w}}} \left[2 \left(\mathbf{I} - \mathbf{R} \right) \cdot \left \mathbf{f}_{\mathbf{q}} \right \cdot \frac{m^2}{M_{\mathbf{w}}^2} - \frac{3}{2} \sum_{\mathbf{q},\mathbf{x}} \frac{m_{\mathbf{x}}^2}{M_{\mathbf{w}}^2} \right]$	$\frac{1+Rdw}{dw} \left[-3 t_q + 4(1-R)t_q^2 \right]$	
Ų(≀Ст)	$\frac{1}{3R} + \frac{2}{3} \cdot \frac{1-R}{R} N_{f} + \frac{4}{3} - \frac{8}{3} (1-R) \sum_{j} f^{2} - \frac{8}{3} \cdot \frac{(1-R)^{2}}{R} \sum_{j} f^{2} + 2(1-R) f^{2}_{q} + \frac{1}{2} + 1$	$\frac{3}{2} - 5 I_{q} I (I-R) + 6 f_{q}^{2} (I-R)^{2} + 2 \cdot f_{q}^{2} \cdot (I-R)^{2}$	
M(Zqq)	$\frac{\frac{8}{3}Rd_{w} - \frac{Rd^{2}}{6} - 2f_{g}^{2}(1-R) + \frac{m^{2}}{M_{w}^{2}} \cdot \left(-\frac{1}{2}if_{g}I(1-R) + \frac{Rd}{2}w + 4(1-R)^{2}f_{g}^{2}\right) + \left(1-3 f_{g}I(1-R) - \frac{Rd}{2}w\right)\sum_{q} \frac{m_{1}^{2}}{M_{w}^{2}}$	$\frac{-\frac{3}{2} + Rd_{w} + 5(1-R) \frac{1}{2}q - }{-6f_{q}^{2} \cdot (1-R)^{2}}$	
M(zqq)	$-2f_{Q}^{2}(I-R) + \frac{\mu^{2}}{M_{w}^{2}} \left(-1 + f_{Q} (I-R)\right) + \frac{1 + Rd_{w}}{4l_{SQ}^{2}(I-R)} \cdot \frac{\mu^{2}}{M_{w}^{2}}$	$-2f_Q^2 \cdot (1-R)^2$	
M(Aqq)	$\frac{1+Rdw}{dw} \left[-\frac{8}{3}dw + \frac{d^2w}{6} - \frac{1}{2} \cdot \frac{m^2}{M_w^2}dw + 4f_q^2(1-R)\frac{m^2}{M_w^2} + \left(\frac{aw}{2} - 3f_q \right) \sum_{\substack{g_I}} \frac{m_I^2}{M_w^2} \right]$	$-1-R \alpha_{w} + \frac{1+Rd}{d_{w}} (s t_{q} -4t_{q}^{2}(t-R))$	
M(TPE)	$-\frac{1+Rdw}{4 t_0 (1-R)}\cdot\frac{M^2}{M^2_{w}}$	0	
сумма	0	0	

21

٠

Part and a second

Salar single and substantian states

٢.

d -коэффициент при $\frac{g^2}{16r^2}$ Р в формфакторе F_4 ; β -коэффициент при $g^2 P_2^{\forall}$ в формфакторе F_4 .				
ACTOVENK	d	ß		
M(se7)+7(nct)	$\frac{1}{3R} - \frac{2}{3} \cdot \frac{1-2R}{R} \cdot N_{f} + \frac{7}{3} - \frac{1}{4} \cdot R + \frac{8}{3} \cdot \frac{(1-R)^{2}}{R} \cdot \sum_{f} f^{2} - \frac{d}{6} w - \frac{7}{3} R d_{w} + \frac{R d^{2}}{6} w$	1- Rdw		
M(ZA)+M(AZ)	$-\frac{4}{3} \cdot N_{4} + \frac{16}{3} \cdot (1-R) \cdot \sum_{f} f^{2} + 28 \cdot R + \frac{14}{3} R d_{w} - \frac{R d^{2} w}{3}$	2Rdw		
M(SE,)•A(CT)	$-\frac{7}{3} + \frac{d_{w}}{6} - \frac{7}{3} k d_{w} + \frac{k d_{w}^{2}}{6}$	-1-Rdw		
√(АСТ)	$\frac{1+kd_{w}}{d_{w}}\left[2f_{q}^{2}+2f_{Q}^{2}+\frac{m^{2}}{(1-k)M_{w}^{2}}-\frac{m^{2}}{M_{w}^{2}} f_{q} +\frac{f^{u^{2}}}{(1-k)M_{w}^{2}}-\frac{f^{u^{2}}}{M_{w}^{2}} f_{Q} \right]$	$2(FR)\cdot\frac{l+Rd_w}{d_w}\cdot\left(f_q^2+f_q^2\right)$		
V(ZCT)	$\frac{-\frac{1}{3R} + \frac{2}{3R} \cdot M_{f} - \frac{16}{3} (l-R) \sum_{f} f^{2} - \frac{8}{3} \cdot \frac{(l-R)^{2}}{R} \cdot \sum_{f} f^{2} - 14 \cdot R + 2(l-R) f_{q}^{2} + 2(l-R) f_{q}^{2} + \frac{m^{2}}{M_{w}^{2}} \cdot \left(1 - f_{q} \cdot (l-R)\right) + \frac{ju^{2}}{M_{w}^{2}} \cdot \left(1 - f_{q} \cdot (l-R)\right)$	$2(1-R) \cdot \left(f_{q}^{2} + f_{q}^{2}\right)$		
M(Z98)	$-2(1-R)f_{q}^{2} + \frac{m^{2}}{M_{w}^{2}} \cdot \left(-1 + f_{q} \cdot (1-R)\right) + \frac{1+Rd_{w}}{4 f_{q} (1-R)} \cdot \frac{m^{2}}{M_{w}^{2}}$	$-2f_{g}^{2}\cdot(1-R)^{2}$		
M(ZQQ)	$-2(1-R)f_{q}^{2} + \frac{\mu^{2}}{M_{w}^{2}}\left(-1 + f_{q} \cdot (1-R)\right) + \frac{1+Rd_{w}}{4 f_{q} (-R)} \cdot \frac{f^{4}}{M_{w}^{2}}$	$-2f_{q}^{2}(1-R)^{2}$		
M(Aqq)	$\frac{1+Rd}{d_{w}} \cdot \left[-\frac{m^{2}}{(I-R)M_{w}^{2}} + \frac{m^{2}}{M_{w}^{2}} \cdot f_{q} - 2f_{q}^{2} - \frac{m^{2}}{M_{w}^{2}} \cdot \frac{d_{w}}{41f_{q}!(I-R)} \right]$	$-2f_{q}^{2}\cdot(1-R)\frac{1+Rdw}{dw}$		
M(AQQ)	$\frac{1+R_{w}}{d_{w}}\left[-\frac{M^{2}}{(1-R)M_{w}^{2}}+\frac{fu^{2}}{M_{w}^{2}}\left f_{Q}\right -2f_{Q}^{2}-\frac{fu^{2}}{M_{w}^{2}}\cdot\frac{d_{w}}{4 f_{Q} \cdot(1-R)}\right]$	$-2f_{Q'}^{2}(I-R)\cdot\frac{1+Rd_{w}}{d_{w}}$		
Cymma	0	0		

	о ² <u>Таблица УІ</u>			
d - коэффициент при $\frac{\partial}{16\pi^2}$ · Р в формфакторе F_5 ; β -коэффициент при $g^{\sharp} P_2^{"}$ в формфакторе F_5 .				
МС ТОЧНИК	d	<i>/</i> 3		
M(se7)+7(mct)	$\frac{14}{3} - \frac{2}{3} \cdot \frac{1-2R}{R} \cdot N_{f} = 14 \cdot R - \frac{2}{3} d_{w} + \frac{8}{3} \cdot \frac{(1-R)^{2}}{R} \cdot \sum_{f} f^{2}$	2		
V(zct)	$ \begin{array}{l} -\frac{1}{3R} + \frac{2}{3} \cdot \frac{1-2R}{R} \cdot N_{f} + \frac{2}{3} + 14R - \frac{8}{3} \cdot \frac{(1-R)^{2}}{R} \cdot \sum_{f} f^{2} + 2(1-R)f_{q}^{2} \cdot \left(1-2(1-R)\frac{m^{2}}{M_{w}^{2}}\right) + \\ + 2(1-R)f_{q}^{2} \cdot \left(1-2(1-R)\frac{\mu^{2}}{M_{w}^{2}}\right) + \frac{m^{2}}{M_{w}^{2}} \left(1+ f_{q} \cdot (1-R)\right) + \frac{\mu^{2}}{M_{w}^{2}} \left(1+ f_{q} \cdot (1-R)\right) + \\ + \left(-\frac{3}{2} + 3 f_{q} \cdot (1-R)\right) \sum_{q,\tau} \frac{m_{\tau}}{M_{w}^{2}} + \left(-\frac{3}{2} + 3 f_{q} (1-R)\right) \sum_{q,\tau} \frac{m^{2}}{M_{w}^{2}} \right) $	$3 - 5 f_{q_1} \cdot (I - R) = -5 (I - R) f_{q_1} + 6 (I - R)^2 \cdot (f_{q_2}^2 + f_{q_2}^2)$		
M(Zqq)	$\frac{8}{3} Rd_{w} - \frac{Rd^{2}}{6} - 2f_{q}^{2} \cdot (I-R) + \frac{m^{2}}{M_{w}^{2}} \cdot \left(-\frac{1}{2} - If_{q}I \cdot (I-R) + \frac{Rd}{2} + 4f_{q}^{2} \cdot (I-R)^{2}\right) + \left(I-3If_{q}I (I-R) - \frac{Rd}{2}\right) \cdot \sum_{q_{I}} \frac{m_{I}^{2}}{M_{w}^{2}} - \frac{1+Rd}{2} \cdot \left(-\frac{1}{R} + \frac{16}{3} - \frac{d}{3} + \frac{m^{2}}{M_{w}^{2}} - \sum_{q_{I}} \frac{m_{I}^{2}}{M_{w}^{2}}\right)$	$\frac{-\frac{5}{2}+5}{f_{q}!(1-R)} - \frac{-6}{f_{q}^{2}!(1-R)}$		
M(20Q)	$\frac{8}{3}Rd_{w} - \frac{Rd^{2}}{6} - 2f_{Q}^{2}(1-R) + \frac{M^{2}}{M^{2}_{w}}\left(-\frac{1}{2} - 1f_{Q}\left((1-R) + \frac{Rd}{2}w + 4f_{Q}^{2}(1-R)^{2}\right) + \left(1 - 31f_{Q}\left((1-R) - \frac{Rd}{2}w\right)\right) \sum_{O_{x}} \frac{M^{2}_{x}}{M^{2}_{w}} - \frac{1 + Rd}{2}w\left(-\frac{1}{R} + \frac{16}{3} - \frac{dw}{3} + \frac{M^{2}}{M^{2}_{w}} - \sum_{Q_{x}} \frac{M^{2}_{x}}{M^{2}_{w}}\right)$	$\frac{-\frac{5}{2}+5 f_{q} \cdot(1-R)}{-6f_{q}^{2}\cdot(1-R)^{2}}$		
M(TPE)	$-\frac{2}{3R}-\frac{2}{3}d_{w}$	0		
сумма	0	0		

23

1.1.1.1

Литература

- De Rujula A. Georgi H., Glashow S.L. Ann.of Phys., 1977, 109, 242, 258.
 Weinberg S. Rev.Mod. Phys., 1974, 46, 255.
 Abers E.S., Lee B.W. Phys.Reports, 1973, 9, 1.
- Weinberg S. Phys.Rev.Lett., 1967, 19, 1264.
 Salam A. Proc. of the Eight Nobel Symposium (J.Wiley, N.Y., 1968).
- Galshani M. Nuovo Cim., 1977, 39A, 120.
 Harari H. preprint WIS-77/56-Ph, 1977.
- Lee S.Y. Phys.Rev., 1972, 1701; D6, 1803.
 Ross D.A. Nucl.Phys., 1973, B51, 116; B59, 23.
 Ross D.A., Taylor J.C. Nucl.Phys., 1973, B51, 125.
 Fukuda F., Sasaki R. Lett. Nuovo Cim., 1974, 10, 765.
 Appelquist T.W., Primack J.R., Quinn H.R. Phys.Rev., 1972, D6, 2998.
- 5. Bollini C.G., Giambiagi J.J., Sirlin A. Nuovo Cim., 1973, 16A, 423. Marciano W.J., Sirlin A. Phys.Rev., 1973, D8, 3612.

```
Marciano W.J. Nucl. Phys., 1975, B84, 132.
```

- 6. Borohardt S., Mahanthappa K.T. Nuol. Phys., 1973, B63, 445.
- 7. Solomonson P., Ueda Y. Phys.Rev., 1975, Dll, 2606.
- Baran S.A. Nuol.Phys., 1973, B62, 333.
 Baran S.A., Ünal N. Nuol.Phys., 1977, B120, 173.
- Appelquist T.W., Primack J.R., Quinn H.R. Phys.Rev., 1973, D7, 2998.
- 10.Fujikawa K., Lee B.W., Sanda A.I. Phys.Rev., 1972, D6, 2923. Bernstein J. Rev. of Mod.Phys., 1974, 46, 7.

```
11.'t Hooft G., Veltmar M. Nucl. Phys., 1972, B44, 189.
Leibbrandt G. Rev. of Mod.Phys., 1975, 47, 849.
```

```
12. Л.С.Бардин, О.М.Федоренко. ОИЯИ, Р?-11414, Дубна, 1978.
```

Рукопись поступила в издательский отдел 24 марта 1978 года.