СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

4185 2-77 А.Б.Говорков

C346,5a

T-577

18 55 11 EBBBBB

ФЕНОМЕНОЛОГИЧЕСКОЕ РАССМОТРЕНИЕ ИНКЛЮЗИВНОГО РОЖДЕНИЯ СТРАННЫХ ЧАСТИЦ В **π⁻ %-** СТОЛКНОВЕНИЯХ ПРИ СРЕДНИХ ЭНЕРГИЯХ (~ 5 ГЭВ)

P2 - 10751

P2 - 10751

А.Б.Говорков

ФЕНОМЕНОЛОГИЧЕСКОЕ РАССМОТРЕНИЕ ИНКЛЮЗИВНОГО РОЖДЕНИЯ СТРАННЫХ ЧАСТИЦ В **π⁻ П-** СТОЛКНОВЕНИЯХ ПРИ СРЕДНИХ ЭНЕРГИЯХ (~5 ГЭВ)

Говорков А.Б.

Феноменологическое рассмотрение инклюзивного рождения странных частиц в $\pi^{-} \mathcal{P}$ столкновениях при средних энергиях (~ 5 ГэВ)

На основе общего феноменологического рассмотрения периферического механизма инклюзивного рождения странных частиц дана оценка отношения $g_{N\Lambda K}/g_{N\Sigma K}$, согласующаяся с предсказанием SU(6) -симметрии.

Обнаружено также, что К°К°-пара образуется, преимущественно, в S-состоянии.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1977

Govorkov A.B.

P2 - 10751

Phenomenological Consideration of Inclusive Production of Strange Particles in $\pi^{-} \mathcal{P}$ Collisions at Mean Energies (~ 5 GeV)

On the basis of a general phenomenological approach to the peripherical mechanism of inclusive production of strange particles the ratio $g_{NAK}/g_{N\Sigma K}$ has been estimated which agrees with the prediction of SU(6) -symmetry. It has also turned out that K°K° pair is mainly produced in S-state.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 Объединенный инсяцятя ядерных исследований Дубна

1. ВВЕДЕНИЕ

В последние годы появилось несколько работ /1.2/ в которых описано систематическое исследование инклюзивного рождения странных частиц в пион-нуклонных столкновениях при относительно небольших начальных энергиях /~5 ГэВ/. Можно попытаться составить себе общую картину таких процессов, основанную на представлении об обменном механизме, без использования какого-либо конкретного предположения о динамике этих процессов. В настоящей работе такая попытка предпринята с целью получения информации о константах взаимодействия странных частиц. Рассмотрение основано на общих представлениях об обменном механизме периферического рождения странных частиц, а также на грубом предположении об образовании и распаде в мезонной или барионной вершинах некоторых "эффективных резонансов", заменяющих собою сложную картину возникновения реальных резонансов. Таким образом можно надеяться лишь качественно описать образование странных частиц в адронных столкновениях.

Ниже любой каон обозначается К, а гиперон - Υ. Гиперон Y° означает либо Λ, либо Σ°.

2. ИСХОДНЫЕ ПРЕДПОЛОЖЕНИЯ

Мы ограничиваемся рассмотрением образования в π^{-} \mathcal{P} - столкновении лишь двух странных частиц / КК

или КҮ /, поскольку образование большего числа странных частиц маловероятно. Возможные механизмы такого образования приведены на *рис. 1*: маловероятный распад нуклонных резонансов в s -канале /a/; обмен каонными резонансами в t -канале /б/; обмен гиперонными резонансами / θ / или нуклонными резонансами /z/ в u -канале; обмен пионом, ρ -мезоном и т.п. в t -канале и рождение пары каонов в пионной вершине / ∂ / или каона и гиперона в нуклонной вершине /e/.

Рис. 1. Различные механизмы образования двух странных частиц в π^{-g} - столкновении.

Отметим, что когда идет речь об образовании каона К или гиперона Y, то подразумевается не только рождение этих частиц в основном состоянии, но и возникновение всевозможных резонансов.

Ввиду того, что вклады от различных механизмов приходятся, в основном, на различные кинематические области, будем предполагать, что эти вклады некогерентны.

Согласно изображенным на *рис. 1* диаграммам, имеем девять вероятностей образования странных частиц:

 $W_1 (K^{\circ}Y^{\circ}), W_2(K^{+}\Sigma^{-}),$

1. ВВЕДЕНИЕ

В последние годы появилось несколько работ /1,2/ в которых описано систематическое исследование инклюзивного рождения странных частиц в пион-нуклонных столкновениях при относительно небольших начальных энергиях /~5 ГэВ/. Можно попытаться составить себе общую картину таких процессов, основанную на представлении об обменном механизме, без использования какого-либо конкретного предположения о динамике этих процессов. В настоящей работе такая попытка предпринята с целью получения информации оконстантах взаимодействия странных частиц. Рассмотрение основано на обших представлениях об обменном механизме периферического рождения странных частиц, а также на грубом предположении об образовании и распаде в мезонной или барионной вершинах некоторых "эффективных резонансов", заменяющих собою сложную картину возникновения реальных резонансов. Таким образом можно надеяться лишь качественно описать образование странных частиц в адронных столкновениях.

Ниже любой каон обозначается К, а гиперон - Υ. Гиперон Υ° означает либо Λ, либо Σ°.

2. ИСХОДНЫЕ ПРЕДПОЛОЖЕНИЯ

Мы ограничиваемся рассмотрением образования в π^{-} 9 - столкновении лишь двух странных частиц / КК

4

или КҮ /, поскольку образование большего числа странных частиц маловероятно. Возможные механизмы такого образования приведены на *рис.* 1: маловероятный распад нуклонных резонансов в s -канале /a/; обмен каонными резонансами в t -канале /б/; обмен гиперонными резонансами / θ / или нуклонными резонансами /z/ в u -канале; обмен пионом, ρ -мезоном и т.п. в t -канале и рождение пары каонов в пионной вершине / ∂ / или каона и гиперона в нуклонной вершине /e/.

Рис. 1. Различные механизмы образования двух странных частиц в π^{-g} - столкновении.

Отметим, что когда идет речь об образовании каона К или гиперона Y, то подразумевается не только рождение этих частиц в основном состоянии, но и возникновение всевозможных резонансов.

Ввиду того, что вклады от различных механизмов приходятся, в основном, на различные кинематические области, будем предполагать, что эти вклады некогерентны.

Согласно изображенным на *рис. 1* диаграммам, имеем девять вероятностей образования странных частиц:

$$W_1 (K^{\circ}Y^{\circ}), W_2(K^{+}\Sigma^{-}),$$

$$\begin{split} & \mathbb{W}_{3} (\mathbb{K}^{\circ} \overline{\mathbb{K}}^{\circ} \ \mathcal{H}), \ \mathbb{W}_{4} (\mathbb{K}^{\circ} \mathbb{K}^{-} \ \mathcal{P}), \ \mathbb{W}_{5} (\mathbb{K}^{+} \mathbb{K}^{-} \ \mathcal{H}), \\ & \mathbb{W}_{6} (\mathbb{K}^{\circ} \mathbb{Y}^{\circ} \pi^{\circ}), \ \mathbb{W}_{7} (\mathbb{K}^{+} \Sigma^{-} \pi^{\circ}), \\ & \mathbb{W}_{8} (\mathbb{K}^{\circ} \Sigma^{+} \pi^{-}), \ \mathbb{W}_{9} (\mathbb{K}^{+} \mathbb{Y}^{\circ} \pi^{-}), \end{split}$$

где, как указывалось выше, любая из странных частиц в конце реакции может быть либо основным состоянием, либо резонансом. Мы не собираемся вникать в детали процесса образования странных частиц, поэтому не отделяем вклады в величины /1/ от отдельных механизмов, изображенных на *рис. 1*.

Заменяем образование реальных странных резонансов образованием некоторых "эффективных резонансов" $K_{3\varphi\varphi\varphi}(\overline{K}_{3\varphi\varphi\varphi})$ и $Y_{3\varphi\varphi\varphi}$. Относительно свойств последних сделаем два упрощенных и весьма грубых предположения:

1. Вероятность образования эффективного резонанса, обозначаемую через р. будем считать одинаковой для каонов и гиперонов. В какой-то степени это предположение оправдывается сравнением величин сечений рождения реальных резонансов ^{/3/}. Величина р будет искомым параметром.

2. Относительные вероятности распадов эффективных резонансов распределим так:

$$\begin{split} & \mathsf{K}_{\Im \varphi \varphi} \rightarrow \frac{1}{2} \,\mathsf{K}^{\circ} \,, \frac{1}{2} \,\mathsf{K}^{+} \,; \quad \bar{\mathsf{K}}_{\Im \varphi \varphi} \rightarrow \frac{1}{2} \,\bar{\mathsf{K}}^{\circ} \,, \frac{1}{2} \,\mathsf{K}^{-} \,; \\ & \mathsf{Y}_{\Im \varphi \varphi} \rightarrow \frac{1}{4} \,\mathsf{Y}^{\circ} \,, \frac{1}{8} \,\Sigma^{+} \,, \quad \frac{1}{8} \,\Sigma^{-} \,, \frac{1}{4} \,\bar{\mathsf{K}}^{\circ} \,, \quad \frac{1}{4} \,\mathsf{K}^{-} \,. \end{split}$$

Особого рассмотрения требует состояние $K^{\circ}\bar{K}^{\circ}$ -пары. Вероятность зарегистрировать эту пару как $K^{\circ}\bar{K}^{\circ}$ -пару, которую мы обозначим через η и будем считать также искомым параметром, зависит от относительного момента и может изменяться в пределах /4/:

$$\frac{1}{4} \leq \eta \leq \frac{1}{2} \,. \tag{3}$$

4

Наименьшее значение $\eta = 1/4$ соответствует асимптотическому случаю, когда все относительные моменты входят с одинаковым весом, а наибольшее значение $\eta = 1/2$ околопороговому рождению К° \overline{K} ° - пары в состоянии с четным моментом /например, в S -состоянии/.

3. ВЫЧИСЛЕНИЕ ИНКЛЮЗИВНЫХ СЕЧЕНИЙ

В выражениях /1/ мы подразумеваем образование самих странных частиц с относительной вероятностью 1-р или образование соответствующих резонансов с вероятностью р и последующим их распадом в основные состояния согласно /2/. Можно составить выражения для сечений инклюзивного рождения странных частиц типа

$$K = \sum_{i=1}^{9} a_i W_i,$$
 (4/

где а_i определяют вероятность появления данной странной частицы в результате одного из перечисленных в /1/ процессов. Однако, поскольку в некоторых из этих процессов рождаются одни и те же странные частицы, в выражения /4/, на самом деле, всегда входят комбинации $W_1 + W_6$ и $W_2 + W_7$

Используя данные '/1/, приведенные в *табл. 1*, мы получим для величин W_i значения, представленные в *табл. 2* и вычисленные для разных значений параметра р.

Таблица 1

Исходные экспериментальные данные

Gnnka.	Y•	Σ*	Σ_	K,•	Y*K	K, K K, K, K
(мабн)	0,85	0,078	0,150	0,82	0,26	0,12 0,08
	<u>+</u> 0,03	±0,0 08	<u>+</u> 0,009	±0,025	±0,0I	±0,01 ±0,01

Таблица 2

Сечения различных процессов образования странных

частиц в $\pi - \mathcal{P}$ - столкновении

Сечения	Значение параметра р-вероятности образования			
процессов	эффективного резонанса			
млон)	p = 0,I	p = 0,2	P = 0,3	p = 0,4
W4+W6	0,57I	0,637	0,718	0,831
	<u>+</u> 0,024	±0,030	±0,038	±0,050
W2+Wk	0,151	0,150	0,146	0,138
	<u>+</u> 0,010	<u>+</u> 0,011	<u>+</u> 0,012	<u>+</u> 0,014
w,	0,323	0,323	0,322	0,317
	<u>+</u> 0,036	±0,042	<u>+</u> 0,052	<u>+</u> 0,067
w4	0,085	0,090	0,095	0,098
	<u>+</u> 0,016	10,0 <u>+</u> 0	<u>+</u> 0,020	±0,024
w _s	2,78	I.16	0,60	0,30
	<u>+</u> 0,44	±0,24	<u>+</u> 0,18	<u>+</u> 0,16
w,	0, 07 I	0,060	0,044	0,018
	<u>+</u> 0, 00 9	<u>+</u> 0,010	<u>+</u> 0,0II	<u>+</u> 0,013
w,	0,342	0,350	0,360	0.361
	±0,042	<u>+</u> 0,049	<u>+</u> 0,060	<u>+</u> 0,075

Отметим слабую зависимость всех приведенных в *табл.* 2 величин от параметра р за исключением величин W_5 и W_8 .

Теперь можно вычислить другие инклюзивные сечения образования странных частиц и из сравнения полученных для них значений с экспериментальными данными попытаться определить величину параметра р. Наилучшее согласие получается для величин р заключенных винтервале О,3-О,4. Результаты сравнения для таких значений параметра р приведены в *табл. 3*.

Таблица З

Сравнение вычисленных и экспериментальных инклюзивных сечений рождения странных частиц

Пара-	Инклюзивные сечения (млбн)							
P	Υ ° κ ⁺	Σ⁺k,°	Σ'κ*	Σ *κ*	Σ ⁻ K,	ĸ⁺	к-	K [*] K ⁻ η(κ, [*] κ, [*])
0,3	0,331 <u>+</u> 0,040	0,0265 ±0,0035	0,108 ±0,008	0,025 ±0,002	0,0213 ±0,0009	1.11 ±0,16	0.73 ±0,16	0,49 0,078 ±0,13 ±0,009
0,4	0,330 ±0,043	0 ,0237 <u>+</u> 0,0035	0,095 <u>+</u> 0,008	0,03I ±0,004	0,0278 ±0,0014	0,89 <u>+</u> 0,14	0,52 ±0,13	0,28 0,077 ±0,10 ±0,011
Экспе- римент. значе- ние:	0,32 ±0,02	0,03I ±0,0035	0,073 <u>+</u> 0,007	0,023 <u>+</u> 0,004	0,042 ±0,003	I,98 ±0,18	I,76 ±0,16	I, 3 ±0,15

В табл. 4 приведены также сечения эксклюзивных реакций, вычисленных по формулам:

$$\sigma (\pi^{-} \mathcal{P} \to K_{1}^{\circ} K^{-} \mathcal{P}) = \frac{1}{2} W_{4} (1-p)^{2} ,$$

$$\sigma (\pi^{-} \mathcal{P} \to K^{+} K^{-} \mathcal{H}) = W_{5} (1-p)^{2} ,$$

$$\eta \sigma (\pi^{-} \mathcal{P} \to K_{1}^{\circ} K_{1}^{\circ} \mathcal{H}) = \frac{1}{4} W_{3} (1-p)^{2} .$$
(5/

Таблица 4

Сравнение вычисленных и экспериментальных эксклюзивных сечений рождения пар каонов

Параме р	тр Эксклюз	ивные сечения ,	/ млбн/
· · · · · · · · · · · · · · · · · · ·	К °К [−] <i>9</i>	к ⁺ к [−] л	$\eta(\mathbf{K_{1}^{o}K_{1}^{o}} \mathcal{K})$
О,3 О,4 Экспер:	0,023 <u>+</u> 0,005 0,018 <u>+</u> 0,004 им.	0,29 <u>+</u> 0,09 0,11 <u>+</u> 0,06	0,040 <u>+</u> 0,006 0,028 <u>+</u> 0,006
значе- ние	0,028 <u>+</u> 0,005	0,166 <u>+</u> 0,039	η/0,044 <u>+</u> 0,008/

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. СРАВНЕНИЕ С ПРЕДСКАЗАНИЯМИ SU(6) - СИММЕТРИИ

Значительных противоречий между вычисленными и экспериментальными значениями сечений образования страяных частиц не наблюдается. Наихудшее согласие имеет место для инклюзивного рождения заряженных каонов. Возможно, что выход последних был завышен при обработке экспериментальных данных /1/. Причина разногласия может заключаться также и в принятом нами упрощенном представлении о рождении и распаде "эффективных резонансов". Заметим, что предсказываемое соотношение между сечениями

$$σ_{\rm ИНКЛ.} (K^+) > σ_{\rm ИНКЛ.} (K^-) > σ_{\rm ИНКЛ.} (K^+ K^-) /6/$$

не противоречит экспериментальным данным.

Отметим также разумность вычисленного значения вероятности образования эффективного резонанса $p = 0,3 \div 0,4$. Отношение вероятности того, что обе странные частицы рождаются в основном состоянии, к вероятности рождения одной из них в виде резонанса, составляет:

$$(1-p)^2/p = 1.6 \div 0.9$$
, /7/

что качественно согласуется с экспериментальными данными $^{/3/}$.

Мы определили вероятности семи процессов образования странных частиц. В эти величины дают вклады всевозможные механизмы, изображенные на *рис.* 1. На основе имеющихся данных мы не можем разделить эти вклады. Это можно было бы сделать, привлекая дополнительные данные об асимметрии вылета странных частиц в с.ц.м., если считать, что в t - и u - каналах фрагменты пиона и фрагменты протона вылетают в противоположных направлениях. В настоящее время экспериментальные данные о такой асимметрии ненадежны и сделать на их основе какие-либо определенные заключения не представляется возможным.

Наиболее подходящими для сравнения с предсказаниями SU(6)-симметрии адронных взаимодействий оказываются величины W₈ и W₉, которым соответствуют процессы:

$$\pi^{-} \mathcal{P} \to \pi^{-} \Sigma^{+} K^{\circ} \quad \mathbf{H} \qquad \pi^{-} \mathcal{P} \to \pi^{-} Y^{\circ} K^{+}, \qquad /8/$$

где любая из странных частиц может быть и странным резонансом. В указанные процессы дают вклады пионный / ρ -мезонный и т.п./ обмен и обмен Δ^{++} -изобарой. Последним можно пренебречь, поскольку иначе был бы заметен вылет Σ^+ -гиперонов "вперед" /в направлении начального π^- -мезона в с.ц.м./, чего не наблюдалось на эксперименте ^{/1/}. Рождение странных частиц при пионном /и т.п./обмене может происходить либо за счет возникновения нуклонного резонанса / рис. 2a/, либо за счет обмена гипероном / рис. 2б/ в нуклонном блоке.

Рис. 2. Возникновение странных частиц в нуклонном блоке при пирнном /и т.п./ обмене; $Y = \Sigma^+$ или 'Y°(Λ, Σ°) и $K = K^\circ$ или K^{\dagger} , соответственно.

Примем гипотезу о том, что возникающие в этом блоке резонансы \mathcal{P}^* и Y^* принадлежат SU(3) -октету.

Далее предположим, что вклады процессов, изображенных на *рис. 2*, некогерентны. Тогда для процессов /8/ получим отношение вероятностей

$$\frac{W_{9}(Y^{\circ}K^{+})}{W_{8}(\Sigma^{+}K^{\circ})} = \frac{g_{N\Lambda K}^{2} + g_{N\Sigma K}^{2}}{2g_{N\Sigma K}^{2}} \times \frac{g_{NN\pi}^{2} (+)g_{\Sigma\Lambda \pi}^{2}}{g_{NN\pi}^{2} (+)g_{\Sigma\Sigma\pi}^{2}},$$
(9)

где объединение /интегральных/ вкладов от указанных процессов мы условно обозначили знаком /+/.

Согласно предсказаниям SU(6) -симметрии /см., напр., ^{/5/} /, постоянные $g_{\Sigma\Lambda\pi} = -2/\sqrt{3}$ и $g_{\Sigma\Sigma\pi} = 4/3$, так что отношение их квадратов (=4/3) близко к единице. Поэтому можно считать второй множитель в правой части /9/ близким к единице и ограничиться лишь первым множителем. Согласно предсказаниям SU(6) -симметрии, он очень велик и равен 14. Сравнение вычисленной на основании мабл. 2 левой части/9/ с предсказываемым значением приведено в мабл. 5. Для наиболее вероятных значений параметра р = 0,3÷0,4 согласие хорошее. Отметим, что в произведенном сравнении самым существенным было предположение об октетной доминантности образующихся резонансов. В противном случае предсказание SU(6) -симметрии для правой части может оказаться совсем иным. Так, если образуется Δ -резонанс, то вследствие сохранения изоспина постоянная $g_{\Lambda\Lambda K} = 0$.

Таблица 5 Сравнение отношения W₉/W₈ с предсказанием SU(6) симметрии

p =0,1	p=0,2	p = 0,3	р =0,4 SU(6)-пред-
-			сказание

 w_{g}/w_{g} 4,8±0,85 5,8±1,3 8,2±2,4 20±15

10

11

Наконец, можно определить состояние, в котором образуется $K^{\circ}\overline{K}^{\circ}$ -пара. Согласно результатам вычислений как для инклюзивного рождения $K_{1}^{\circ}K_{1}^{\circ}$ -пары / maбл. 3/, так и для эксклюзивной реакции

 $\pi^{-} \mathcal{P} \to \mathrm{K}_{1}^{\circ} \mathrm{K}_{1}^{\circ} \mathfrak{N}$

/ табл. 4/, значение параметра η -вероятности обнаружить К° \bar{K} ° -пару в состоянии К° К° -пары, близко к половине. Следовательно, К° \bar{K} ° -пара образуется, преимущественно, в состояниях с четными моментами, например, в S -состоянии. Отметим, что этот результат не зависит от выбора параметра р.

5. ЗАКЛЮЧЕНИЕ

Произведенное рассмотрение показывает согласованность изложенной схемы инклюзивного образования странных частиц на основе обменного механизма. Однако для определения роли того или иного механизма имеющихся данных недостаточно и необходимо более надежное определение асимметрии вылета странных частиц в с.ц.м.

Получено два результата: в предположении об SU(3) октетной доминантности образующихся барионных резонансов вычисленное согласно SU(6) -симметрии отношение $(g_{N\Lambda K}^2 + g_{N\Sigma K}^2)/2g_{N\Sigma K}^2$ хорошо согласуется с полученной для него оценкой; К° \bar{K} ° -пара образуется, преимущественно, в состояниях с четными моментами, скорее всего, в S -состоянии.

В заключение автор выражает признательность С.Б.Герасимову за обсуждение различных механизмов образования странных частиц и Г.Д.Пестовой за обсуждение экспериментальных данных об инклюзивном рождении странных частиц.

ЛИТЕРАТУРА

- 1. Глаголев В.В. и др. ОИЯИ, Р1-8147, Дубна, 1974; Глаголев В.В., Пестова Г.Д. ОИЯИ, Р1-9091, Дубна, 1975.
- 2. Алешин Ю.Д. и др. ЯФ, 1976, 24, с.1152.
- 3. Crennel D.J. et al., Phys. Rev., 1972, D6, 1220.
- 4. Огиевецкий В.И., Оконов Э.О., Подгорецкий М.И. ЖЭТФ, 1962, 43, с. 720.
- 5. Фелд Б. Модели элементарных частиц, под ред. А.И.Алиханян, "Мир", М., 1971, с.322.

Рукопись поступила в издательский отдел 13 июня 1977 года.