СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

2756/2-77

C322.1

A-90

Р.А.Асанов, Г.В.Исаев

ПОЛЕ БОРНА-ИНФЕЛЬДА С ВНЕШНИМИ ИСТОЧНИКАМИ И ГРАВИТАЦИОННОЕ ОБОБЩЕНИЕ

25 /11-74 P2 - 10575

P2 - 10575

Р.А.Асанов, Г.В.Исаев*

ПОЛЕ БОРНА-ИНФЕЛЬДА С ВНЕШНИМИ ИСТОЧНИКАМИ И ГРАВИТАЦИОННОЕ ОБОБЩЕНИЕ

* Московский государственный университет им. М.В.Ломоносова.

> ооъсранистика шкласта церных встледоваща БИБЛИСТЕКА

Поле Борна-Инфельда с внешними источниками и гравитационное обобшение

Рассмотрен вариант теории Борна-Инфельда с внешними источниками (токами) в рамках общей теории относительности, в духе соответствия с электродинамикой Максвелла-Лоренца. Исследуется статическое сферически-симметричное решение с точечным источником. Показано, что оно имеет существенную особенность в месте нахождения источника. Построено решение без особенностей путем введения неточечного источника. Утверждается, что в согласованной теории существуют затравочные масса и заряд неполевого происхождения.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубиа 1977

Asanov R.A., Isaev G.V.

P2 - 10575

Born-Infeld Field Theory with External Sources and General Relativity

We state that the external sources of a field are to be introduced into the Born-Infeld nonlinear electrodynamics. A version of the Born-Infeld theory with external sources (currents) is considered in a flat space-time, in analogy with the Maxwell-Lorentz electrodynamics. We conclude that in a consistent theory the bare mass and charge of a nonfield origin should exist.

The theory with external sources is formulated in the framework of general relativity. An analog of the Birkhoff theorem is proved. The investigation of the spherically-symmetric static solution for a point source has revealed an essential singularity at the point of the source. Solutions are found of the type of a "black hole" with horizon and of the type of a naked singularity. A nonsingular self-consistent solution îs obtained by introducing the extended source of charge and mass. Communication of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 Объединенный инснинун ядерных исследований Дубна

Нелинейная теория М.Борна и Л.Инфельда^{/1/} была предложена как возможное обобщение электродинамики Максвелла на случай сильных полей. Гравитационные эффекты при этом не учитывались. С другой стороны, существует известное решение Нордстрёма-Рейсснера, в котором учтено влияние гравитации, но сколь угодно сильное электромагнитное поле описывается уравнениями Максвелла.

Здесь рассмотрена теория Борна-Инфельда с внешними источниками поля в рамках общей теории относительности. Вначале рассмотрена формулировка этой теории с внешними токами в плоском пространстве-времени. Отмечается, что уже при рассмотрении Борном и Инфельдом статического сферически-симметричного решения возникает необходимость^{/3/} введения внешнего источника поля. В противном случае имелось бы лишь тривиальное нулевое решение. Уравнения движения источника заряда приводят к необходимости ввести также массу внешнего источника. Поэтому вывод Борна и Инфельда /см. также $^{/2,3/}$ / о том, что в их теории отсутствуют внешние источники, то есть масса и заряд источников поля - чисто полевого происхождения - должен быть заменен следующим: в согласованной теории существуют затравочные масса и заряд неполевого происхождения, которые не могут быть приравнены нулю.

Теория с внешними источниками строится в духе соответствия электродинамике Максвелла-Лоренца. Вывод о конечности полевой энергии центрально-симметричного решения уравнений Борна-Инфельда остается справедливым. Отмечается, что при введении внешнего точечного источника напряженность поля в точке r = 0конечна, но разрывна /"ежик"/. Этот круг вопросов рассмотрен также потому, что в последнее время поля типа полей Борна-Инфельда в плоском пространствевремени стали применяться в связи с дуально-резонансными моделями /4/ и стохастическими пространствами /5/.

В разделе 2 дана формулировка теорни Борна-Инфельда с внешними источниками в рамках общей теории относительности. В разделе З доказан аналог теоремы Биркгофа. В разделе 4 исследовано точное сферическисимметричное решение системы уравнений Эйнштейна-Борна-Инфельда с точечным источником. Это решение является, с одной стороны, обобщением решения Борна-Инфельда на случай сильных гравитационных полей, с другой - возможным обобщением решения Нордстрема-Рейсснера на случай сильных электромагнитных полей. В этом решении к особенности поля Борна-Инфельда в точке r = 0 / "ежик" / добавляется существенная особенность метрики в точке г =0. Кроме того, в зависимости от соотношения параметров, в решении существует или не существует псевдоособенность типа "горизонт" /6/. Другими словами, в зависимости от соотношения массы и заряда объекта решение описывает "черную лыру" или голую снигулярность.

В разделе 5 показано, что устранить сингулярность в нуле, а также "горизонт" можно путем введения заряженного пылевидного /без давления/ облака вещества радиуса не меньше чем радиус "горизонта". При одном фиксированном соотношении параметров /соответствующем решению без "горизонта"/ радиус облака вещества может быть сделан как угодно малым. Построение решения без особенностей с источником как угодно малого размера вместе с аналогом теоремы Биркгофа ^{/7/} доказывает, что в рассматриваемом частном случае поле Борна-Инфельда предотвращает образование "черной дыры" *. В литературе имеются ука-

* Здесь не учитывается квантовый эффект рождения пар e^+e^- , $\mu^+\mu^-$ и др. в поле Борна-Инфельда, который может изменить картину.

зания на возможность подобной ситуации в случае скалярного ^{/8/} и векторного мезонного ^{/9/} полей, однако, как замечено М.А.Марковым ^{/10/}, доказательство для этих полей, ввиду отсутствия аналога теоремы Биркгофа, требует динамического рассмотрения.

Частное решение без особенностей используется при рассмотрении вопроса о массе центрально-симметричного решения системы уравнений Эйнштейна-Борна-Инфельда. Показано, что в рамках общей теории относительности и полная и полевая энергии конечны.

1. Теория Борна-Инфельда с внешними источниками

Борн и Инфельд обобщили электродинамику Максвелла, введя в теорию константу (b) с размерностью напряженности поля и лагранжиаи

$$\mathcal{L} = \frac{b^2}{4\pi} (\sqrt{1 + F - G^2} - 1),$$

здесь

$$\mathbf{F} = \frac{1}{2\mathbf{b}^2} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu}, \quad \mathbf{G} = \frac{1}{8\mathbf{b}^2} \epsilon^{\mu\nu\lambda\rho} \mathbf{F}_{\mu\nu} \mathbf{F}_{\lambda\rho}$$

и, по определению, $\mathbf{F}_{\mu\nu} = \partial_{\mu} \mathbf{A}_{\nu} - \partial_{\nu} \mathbf{A}_{\mu}$ /индексы перемещаются с помощью тензора $\eta_{\mu\nu}$ с диагональными компонентами +1, -1, -1, -1/. В пределе малых напряженностей этот лагранжиан переходит в максвеллов

 $\frac{1}{16\pi}$ F_{µν} F^{µν}. Далее Борн и Инфельд строят теорию,

опираясь только на свой чисто полевой лагранжиан, казалось бы, без введения /внешних/ источников поля, и на вариационный принцип. Однако уже при рассмотрении Борном и Инфельдом своего сферическисимметричного статического решения уравнений поля появляется необходимость^{/3/} введения внешнего источника заряда, приводящего к появлению правой части в уравнении поля $di \vec{v} \vec{D} = 4 \pi e \delta^3(\vec{x})$, здесь $\vec{D} = \frac{\vec{E}}{\sqrt{1+\vec{F}}}$,

в противном случае имелось бы только тривиальное нулевое решение /отсюда имеем $\frac{1}{4\pi}\int div \vec{D} d^3x = e$,

 $d^{3}x = dx \ dy \ dz$ /. Поэтому хотелось обратить внимание на возможность построения теории в духе полного соответствия с электродинамикой Максвелла-Лоренца. В самом деле, добавление к лагранжиану только члена, описывающего взаимодействие поля с внешним током вида $J_{\mu}A^{\mu}$, при варьировании действия по координатам тока привело бы опять к тривиальному выводу $F_{\mu\nu} \equiv 0$.

Итак, если исходить по-прежнему из вариационного принципа, можно записать действие в виде:

$$S = \int \mathcal{L} d^{4}x = \int \left[\mu - \rho u^{\alpha} A_{\alpha} + \frac{b^{2}}{4\pi} \left(\sqrt{1 + F - G^{2}} - 1 \right) \right] d^{4}x, (c=1), /1/2$$

здесь $u^{\alpha} = dx^{\alpha}/ds$ - четырехскорость, μ и ρ - плотности массы и заряда внешнего источника. При варьировании по A_{μ} получаются уравнения поля

$$\partial_{\mu} p^{\mu\nu} = 4\pi \mathbf{J}^{\nu}, \ p^{\mu\nu} = (\mathbf{F}^{\mu\nu} - \mathbf{G}\epsilon^{\mu\nu\lambda\rho}\mathbf{F}_{\lambda\rho})(\sqrt{1 + \mathbf{F} - \mathbf{G}^2})^{-1},$$

/где $J^{\mu} = \rho u^{\mu}$ /, отличающиеся от борновских правой частью. Сохранение внешнего тока $\partial_{\nu} J^{\nu} = 0$ очевидно. При варьировании по координатам тока получаются обычные уравнения движения Максвелла-Лоренца во внешнем поле

$M \frac{du^{\sigma}}{ds} = -eF \frac{\sigma}{\lambda} u^{\lambda},$	$u^{\lambda} = \frac{dx}{ds}^{\lambda}$,	ds $^2 = \eta_{\mu}$	$v^{\rm dx} dx^{\mu} dx^{\nu}$
--	---	----------------------	--------------------------------

В такой картине возможная интерпретация Борна и Инфельда заряда статического источника как имеющего чисто полевую природу остается справедливой. Именно,

уравнения поля дают div $\vec{E} = 4\pi\rho_0 + 4\pi J_0 \sqrt{1+F-G^2}$, здесь ρ_0 - введенная Борном и Инфельдом плотность "свободных" полевых зарядов. Для сферически-симметрич-

ного решения $J_0 = e\delta^3(\vec{x})$, $\sqrt{1 + F - G^2} = Z^2(1 + Z^4)^{-1/2}$, $Z = r\sqrt{b/e}$, поэтому член с J_0 исчезает, и остается, как у Борна, div $\vec{E} = 4\pi\rho_0$ и $\frac{1}{4\pi}\int div \vec{E} d^3x = \int \rho_0 d^3x = e$. В их решении имеется, казалось бы, несущественная особенность: разрывность электрического поля в месте нахождения внешнего источника. Как показано ниже, при введении в теорию гравитационного взаимодействия это проявляется в появлении существенной особенности в метрике, которая может быть ликвидирована введением неточечного "размазанного" внешнего источника.

В приведенной формулировке, естественно, нет возможности интерпретировать массу как чисто полевую, поскольку в тензоре энергии-импульса появляется добавка $\mu u^{\mu} u^{\nu}$ и к вычисленному Борном и Инфельдом значению полной энергии $1,24 e^{2/r} r_0, r_0 = \sqrt{e/b}$ прибавится

затравочная масса $m_{3at} = \int \mu d^3 x$. Вопрос о полевой и неполевой массе выглядит так же, как в электродинамике Максвелла-Лоренца, за исключением конечностн значения полевой энергии. Связанная с этим вопросом "проблема 4/3" тоже выглядит аналогично случаю электродинамики Максвелла-Лоренца /современное состояние проблемы дано в /11/ /. Естественно также, что уравнения движения /Лоренца/ получаются здесь отнюдь не как следствие уравнений поля, а в полной аналогии с электродинамикой. Паули /12/ справедливо заметил, что физический смысл уравнений движения Лоренца не совсем ясен, если они применяются к электрону. Более удовлетворительно вопрос о полной массе выглядит при введении гравитационного взаимодействия и неточечного источника, что рассматривается ниже.

2. Формулировка теории Борна-Инфельда с внешними источниками в рамках общей теории относительности

Обобщение лагранжиана /1/ на случай Римановой метрики производится обычным образом. Величины F и G приобретают вид:

$$\mathbf{F} = \frac{1}{2\mathbf{b}^2} \mathbf{g}^{\alpha \xi} \mathbf{g}^{\beta \lambda} \mathbf{F}_{\xi \lambda} \mathbf{F}_{\alpha \beta}, \quad \mathbf{G} = \frac{1}{8\mathbf{b}^2} \cdot \frac{1}{\sqrt{-\mathbf{g}}} \epsilon^{\alpha \beta \gamma \sigma} \mathbf{F}_{\alpha \beta} \mathbf{F}_{\gamma \sigma}.$$

6

С учетом гравитации полное действие имеет вид

$$S = \int \mathcal{L} \sqrt{-g} d^{4}x = \int [\mu^{*} - \rho^{*} u^{\alpha} A_{\alpha}^{+} + \frac{b^{2}}{4\pi} (\sqrt{1 + F - G^{2}} - 1) + \frac{1}{16\pi k} R] \sqrt{-g} d^{4}x,$$

здесь μ^* и ρ^* - инвариантные плотности массы и электрического заряда, $u^a = \frac{dx^a}{ds}$ - четырехскорость /подробности в /13/ §47/, R - скалярная кривизна, k ньютонова гравитационная постоянная. При варьирова-

нии по А_а получаются уравнения поля

$$D_{\mu} p^{\mu\nu} = 4 \pi J^{\nu}, p^{\mu\nu} = (F^{\mu\nu} - \frac{G}{\sqrt{-g}} e^{\alpha\beta\mu\nu} F_{\alpha\beta})(\sqrt{1+F-G^2})^{-1}, /2/2$$

где $J^{\nu} = \rho^{*} u^{\nu}$; сохранение внешнего тока $D_{\nu} J^{\nu} = 0$ очевидно /здесь D_{ν} - ковариантная производная по x^{ν} /. При варьировании по координатам тока получаем уравнения движения $M w^{\sigma} = -e F^{\sigma} u^{\lambda}$, $w^{\sigma} = g^{\sigma \delta} u^{\mu} D_{\mu} (u_{\delta})$ контравариантная компонента вектора ускорения. Наконец, при варьировании по $g_{\mu\nu}$ получаем уравнения Эйнштейна с тензором энергии-импульса

$$T^{\mu\nu} = \mu^{*} u^{\mu} u^{\nu} + \frac{1}{4\pi} \int \frac{F^{\mu\alpha} F_{\alpha}^{\nu}}{\sqrt{1 + F - G^{2}}} + b^{2} g^{\mu\nu} (\sqrt{1 + F - G^{2}} + \frac{G^{2}}{\sqrt{1 + F - G^{2}}} - D/3)$$

Существенное отличие по сравнению с плоским случаем состоит в том, что теперь уравнения движения в силу тождества Бьянки являются следствием уравнений Эйнштейна с тензором энергии-импульса /3/ и уравнений поля Борна-Инфельда /2/. Обсуждение вопроса о полной массе здесь, так же как и у Борна и Инфельда, основано на точном сферически-симметричном решении полевых уравнений.

2. Аналог теоремы Биркгофа

Рассмотрим сферически-симметричный случай. Тогда интервал и три независимых уравнения Эйнштейна принимают вид $(x^o, x^1, x^2, x^3 = t, r, \theta, \phi)$:

$$ds^{2} = e^{\nu(r,t)} dt^{2} - e^{\lambda(r,t)} dr^{2} - r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}), \qquad /4/$$

$$e^{-\lambda} (1/r^2 - \lambda'/r) - 1/r^2 = 8\pi k T_0^0$$
, /5/

$$e^{-\lambda}(1/r^{2}+\nu'/r)-1/r^{2}=8\pi kT_{l}^{l}$$
, /6/

$$e^{-\lambda}(\lambda/r) \equiv 0 \qquad (7/$$

/штрихом обозначена производная по г, точкой - производная по г /. Так как при сферической симметрии отлична от нуля только компонента $F^{10}(\equiv E_z)$ тензора поля $F^{\mu\nu}$, из /3/ видно, что вне вещества $T_0^0 = T_1^1$. Тогда, вычитая /5/ из /6/, получим $\lambda' + \nu' = 0$, то есть $\lambda + \nu = f(t)$. Сделаем далее преобразование времени $t = \int exp[f(t')/2] dt'$, которое, не меняя вида интервала /4/, приводит к обращению f(t) в нуль /см.^{6/} §100/. В результате с учетом уравнения /7/ имеем:

$$\lambda = \lambda(\mathbf{r}), \quad \nu = \nu(\mathbf{r}), \quad \lambda + \nu = 0.$$

Таким образом, метрика в сферически-симметричном случае вне вещества является статической /в подходящей системе координат/. Аналогичное утверждение в отсутствие поля Борна-Инфельда называется теоремой Биркгофа.

4. Решение системы уравнений Эйнштейна-Борна-Инфельда с точечным внешним источником

Решение уравнений поля Борна-Инфельда /2/ с точечным источником

$$\frac{\partial}{\partial r} (\sqrt{-g} p^{10}) = 4\pi e \delta^{3} (x), \ p^{10} = F^{10} / \sqrt{1 + F_{10}} F^{10} / b^{2}$$

имеет вид

$$E_{r} = F^{10} = \frac{e}{r_{0}^{2}} \{1 + (r/r_{0})^{4}\}^{-\frac{1}{2}} \cdot e^{\frac{\lambda + \nu}{r_{0}}}, \ r_{0} = \sqrt{e/b}$$
/9/

и вследствие условия /8/ совпадает с выражением для поля в плоском пространстве $^{1/}$. Здесь так же как и в плоском случае / раздел 1/, имеем

$$\operatorname{Div} \vec{E} = 4\pi\rho_0, \quad \frac{1}{4\pi}\int \operatorname{Div} \vec{E}\sqrt{\gamma} d^3x = e,$$

где

Div
$$\vec{\mathbf{E}} = \frac{1}{\sqrt{\gamma}} \frac{\partial}{\partial \mathbf{x}^{i}} (\sqrt{\gamma} \mathbf{F}^{i0}), \quad \gamma = \frac{1}{g_{00}} (-g), \quad i = 1, 2, 3.$$

Как видно из /9/ и /8/, поле Борна-Инфельда в рассматриваемом случае также является статическим. В статическом случае обсуждаемое решение было найдено в общем виде Фишером /14/ и имеет вид

$$e^{\nu} = e^{-\lambda} = 1 - \frac{2kM_{\Gamma P}}{r} + \frac{ke^2}{r}B(r), B(r) = \frac{2}{r_0}\int_{r/r_0}^{\infty} (\sqrt{1+\xi^4} - \xi^2)d\xi. /10/r$$

Здесь постоянная интегрирования $M_{\Gamma P}$ есть гравитационная масса системы /т.е. масса, входящая в закон Ньютона или в выражение для интервала/, получающаяся из условия, что на больших расстояниях должен выполняться закон Ньютона. Пределы интегрирования в /10/ выбраны так, чтобы при $r > r_0$ решение /10/ переходило в решение Нордстрема-Рейсснера. Действительно, имеем B(r) $\xrightarrow{r}_{r} f$. В отклонении B(r)

от 1/r на расстояниях $r \leq r_0$ как раз и заключается отличие /10/ от решения Нордстрема-Рейсснера / *рис. 1*/.

Puc. 1

Графики e^{ν} , e^{λ} ($e^{\nu} \equiv e^{-\lambda}$) в зависимости от соотношения параметров схематически изображены на *рис. 2-4*, где введены следующие обозначения:

$$r_{g_0} = \sqrt{k e^2 [1 - (2keb)^{-1}]},$$
 /11/

$$a = \frac{r_{g_0}}{2k} [1 + \frac{ke}{r_{g_0}} \int_{\sqrt{r_{g_0}^2 b/e}}^{\infty} [(1 + \xi^4)^{1/2} - \xi^2] d\xi], \Delta = 1 - 2keb,$$

$$\beta = 1,24\sqrt{be^3} / 1,24 - 3havenhe интеграла \int_{0}^{\infty} (\sqrt{1 + \xi^4} - \xi^2) d\xi /.$$

Кривые 1-5 соответствуют следующим соотношениям параметров:

1. $\mathbf{M}_{\Gamma p} < \alpha$ 2. $\mathbf{M}_{\Gamma p} = \alpha$ 3. $\beta > \mathbf{M}_{\Gamma p} > \alpha$ 4. $\mathbf{M}_{\Gamma p} \neq \beta$ 5. $\mathbf{M}_{\Gamma p} > \beta$.

Кривые 1-3 на *рис.* 3 не приведены, так как в дальнейшем этот случай не используется. На *рис.* 2 г_{go}точка, в которой е^{-λ} обращается в нуль вместе со своей первой производной. Аналогичная величина в решении Нордстрема-Рейсснера г_{go}= $\sqrt{ke^2}$. Из графиков видно, что во всех случаях имеется

Из графиков видно, что во всех случаях имеется существенная особенность в точке r = 0 /а именно, lim $e^{\lambda} \neq 1$ /. Кроме того, в соответствующих случаях $r \rightarrow 0$

/см. графики/ имеются псевдоособенности типа "горизонт". Таким образом, введения точечного внешнего источника в лагранжиан Борна-Инфельда-Эйнштейна недостаточно для построения самосогласованной теории, так как при наличии особенности в метрике неприменимы теоремы Гаусса и Стокса, что не позволяет определить сохраняющиеся интегральные величины типа энергии-импульса и углового момента. Статическое решение без особенностей, как показали в чисто гравитационном случае Оппенгеймер и Снайдер^{/15/}, может быть

построено путем введения пылевидного /без сторонних сил/ облака вещества раднуса R; причем должно быть выполнено условие ∞>e^λ > 1 при г≥R. Тогда можно подобрать плотность вещества введенного нелокализованного источника так, что и при 0<r < R будет ∞>e^λ > 1 и, кроме того, lim e^λ =1. Раднус облака вещества R огг→0 раничен снизу либо радиусом сферы горизонта /где

раничен снизу лисо радиусом сферы горизонта /где $e^{\lambda} \to \infty$ /, либо радиусом, начиная с которого, e^{λ} становится <1. Из графиков видно, что при $M_{rp} > 1,24\sqrt{be^3}$ /кривые 5/ решение похоже на Шварцшильдово и при $e \to 0$ переходит в него. При $M_{rp} < 1,24\sqrt{be^3}$ /кривые 1,2,3/

решение похоже на решение Нордстрема-Рейсснера. В случае же

 $M_{rp} = 1,24\sqrt{be^3}$ /12/

появляется качественно новое свойство - решение ограничено в нуле. Если кроме равенства /12/ выполняется соотношение

12

13

/кривая 4, рис. 4/, то условие $\infty > e^{\lambda} > 1$ имеет место при всех r > 0. Это позволяет надеяться, что и в присутствии поля Борна-Инфельда статическое решение без особенностей может быть построено путем введения пылевидного заряженного облака вещества, причем его размеры могут быть выбраны как угодно малыми, но конечными. Рассмотрим этот интересный случай подробнее.

5. Построение статического решения без особенностей

Введем облако заряженного вещества без сторонних сил размером $R = \epsilon r_0 (\epsilon << 1, r_0 = \sqrt{e/b})$, то есть в области, где поле Борна-Инфельда сильно отклоняется от максвелловского. Подставляя во внешнее /вне вещества/ решение /iO/ соотношение параметров /12/ и разлагая интеграл /1O/ в ряд Тейлора с точностью до членов порядка ϵ^2 , получим вблизи границы вещества

$$e^{\nu} = e^{-\lambda} |_{\mathbf{R} - \mathbf{r} \le \mathbf{r}_0} = 1 - 2 \operatorname{keb}(1 + (\mathbf{r}/\mathbf{r}_0)^2) \approx 1 - 2 \operatorname{keb}.$$

На границе с веществом необходимо сшить $^{/16/}e^{\lambda}$, e^{ν} н $\frac{\partial}{\partial r}$ (e^{ν}). Выберем внутреннее ($r < \epsilon r_0$) решение в виде $e^{\nu} = 1 - 2$ keb, $e^{-\lambda} = 1 - C_0 r^3$. /14/

Тогда е^{ν} и $\frac{\partial}{\partial r}$ (е^{ν}) оказываются сшитыми /в точке $r = \epsilon r_0$ / автоматически, а из условия сшивки е^{λ} находим параметр C₀, C₀ = 2kb^{5/2} e^{-1/2} ϵ^{-3} . Заметим, что при таком выборе е^{ν} и е^{λ} кроме эвклидовости в нуле (lim e^{λ} = 1) выполнены более сильные условия $\frac{\partial}{\partial r}$ (е^{λ}), $r \to 0$

$$\frac{\partial}{\partial \mathbf{r}} (\mathbf{e}^{\nu}) \Big|_{\mathbf{r} \to \mathbf{0}} \to \mathbf{0}.$$

Тензор энергии-импульса /3/ в пылевидиом заряженном веществе в центрально-симметричном статическом случае имеет диагональный вид

diag $T_{\mu}^{\nu} = (\mu^* + \frac{\Lambda_1}{4\pi}, \frac{\Lambda_1}{4\pi}, \frac{\Lambda_2}{4\pi}, \frac{\Lambda_2}{4\pi})$

и отличается от тензора энергии-импульса вне вещества только добавлением плотности вещества μ^* к компоненте T_0° /для случая электромагнитного поля ср. /22/ /. Вычитая одно уравнение Эйнштейна /5/ из другого /6/ с таким T_{μ}^{ν} , получим

 $\mu^* = (8\pi k)^{-1} r^{-1} (\lambda' + \nu') e^{-\lambda}.$ Отсюда, подставляя λ н ν из /14/, находим $\mu^* = \frac{3C_0}{8\pi k} r$. Из уравнения Эйнштейна для T_1^1 /6/ найдем плотность энергии поля Борна-Инфельда $\Lambda_1 = \frac{C_0}{2k} r$. Видно, что

плотность вещества μ^* и плотность энергии поля Борна-Инфельда Λ_1 положительно определены, не имеют особенностей и в точке г = 0 обращаются в нуль.

В случае четочечного источника член с плотностью затравочного заряда J_0 в выражении Div $\vec{E} = 4\pi\rho_0 + 4\pi J_0 \sqrt{1 + F - G^2}$ уже не исчезает, хотя условие $\frac{1}{4\pi} \int \text{Div} \vec{E} \sqrt{\gamma} d^3 x$ = е по-прежнему выполняется. Остается возможность определения плотности заряда в полной аналогии с максвелловской электродинамикой

$$J_0 = \frac{1}{4\pi} Div\vec{D}$$
, /15/

где $\vec{D} = p^{i0}$, i = 1, 2, 3; как видно из уравнений поля /2/, $\frac{1}{4\pi} \int \text{Div} \vec{D} \sqrt{\gamma} d^3 x = \int J_0 \sqrt{\gamma} d^3 x = e.$

Чтобы найти плотность заряда, выразим с помощью /2/, /3/ p¹⁰ через Λ_1 , а затем, согласно /15/, получим $r^2 |J^{\circ}| = r^{2}|\rho^{*}| = C_1 r^{3/2} (1+C_2 r) (1+C_3 r)^{-1/2}$, где C_1 , C_2 , C_3 - по-ложительные константы. Видно, что плотность заряда знакоопределена и интегрируема; условие $\int \rho^* \sqrt{\gamma} d^3 x = e$ выполняется. Напряженность поля в веществе $E_r =$

= b[(1+C₄r)²-1]^{1/2}(1+C₄r)⁻¹ индукция D_r =
$$\frac{E_r}{\sqrt{1-E_r^2/b^2}}$$
 = b[(1+C₁r)²-1]^{1/2}

также не имеют особенностей и при $r \to 0$ стремятся к нулю. /Обращение в нуль производных $\frac{\partial}{\partial r} D_r$,

 $\frac{\partial}{\partial r}$ Е, при г $\rightarrow 0$ не требуется/. Так как в построенном решении особенности отсутствуют, гравитационную массу системы можно вычислить по формуле /см.⁶/

/\$100/ $M_{pp} = 4\pi \int_{0}^{\infty} T_{0}^{\circ} r^{2} dr$. C учетом того, что затра-

вочная плотность массы μ^* отлична от нуля лишь в области $r \leq R$, имеем

$$M_{\Gamma p} = 4\pi \int_{0}^{R} \mu * r^{2} dr + \int_{0}^{\infty} \Lambda_{1} r^{2} dr.$$
 (16/

Первый интеграл в /16/ есть полная затравочная масса, второй - полная полевая масса /т.е. с учетом гравитационного дефекта масс/. Подставляя найденные выражения для $\mu^* (\mu^* - r)$ и $\Lambda_1(\Lambda_1 - r)$ при $0 \le r \le R^-$, $r^2 \Lambda_1 \sim \sqrt{1 + (r/r_0)^4} - (r/r_0)^2$ при $R < r < \infty$), получаем $M_{\Gamma P} =$ =1,24 $\sqrt{be^3}(1+O(\epsilon^2))$, то есть с точностью порядка ϵ соотношение /12/. Это находится в рамках той точности, которой мы ограничились при сшивке решения на гра-

Puc. 5

Таким образом, в построенном решении без особенностей видна природа полной гравитационной массыэто полная затравочная масса плюс полная энергия поля Борна-Инфельда. Принцип эквивалентности, то есть равенство инертной $M_{NH} \equiv P^{\circ} \pm \int (-g)(T^{\infty} + t^{\circ \circ}) dV/c$ псевдотензором $t^{\circ \circ}$ из $^{/6/}$ §105/ и гравитационной $M_{\Gamma p} =$

 $=4\pi\int_{0}^{\infty}T_{0}^{\circ}r^{2}dr$ масс, конечно выполняется.

Выводы

Показано, что для корректной формулировки теории Борна-Инфельда необходимо ввести внешние /неполевые/ источники. Более того, введения точечных внешних источников недостаточно, так как при этом напряженность поля Борна -Инфельда разрывна в месте нахождения источника. Учет гравитационных эффектов добавляет к этой сингулярности существенную особенность метрики в месте нахождения источника. Получение сферически-симметричных решений без сингулярностей возможно лишь в присутствии нелокализованного внешнего источника. При одном фиксирован-

ном соотношении параметров - $M = 1,24 \sqrt{be^3}$, е < $(2 \text{ keb})^{-1}$ размеры и масса внешнего источника могут все же быть выбраны сколь угодно малыми / R<<r g, m_{3aTp}<< M /, и сингулярности в сферически-симметричном решении при этом не появляются.

Таким образом, в вопросе об источниках поля и уравнениях движения теория Борна-Инфельда аналогична электродинамике Максвелла-Лоренца. Это относится и к другим нелинейным обобщениям электродинамики в духе Борна-Инфельда, например, к теории с лагранжианом Шредингера, сферически-симметричное решение для которой с учетом гравитационных эффектов было найдено в /17/. Метрика, найденная в /17/ сингулярна в точке г = 0, значит, и в этом случае необходимо вводить нелокализованный внешиий источник.

Вывод о конечности полевой энергии в теории Борна-Инфельда остается без изменений и сохраняется в рамках общей теории относительности.

нице облака вещества.

Астрофизический аспект задачи выглядит следующим образом. Найденное решение описывает гравитационный коллапс центрально-симметричного тела в присутствии поля Борна-Инфельда и при пренебрежимой малости других сил /например, давления/. Доказанный выше аналог теоремы Биркгофа сводит динамический случай к статическому. В качестве параметров решения М и с выбираем массу и заряд звезды. Ве-

личина $r_0 \approx \sqrt{e/b}$ характеризует расстояние, на котором решение начинает отклоняться от решения Нордстрема-Рейсснера. В зависимости от соотношения массы и заряда звезды, картина коллапса выглядит аналогично картине Шварцшильда или Нордстрема-Рейсснера соответственно. Если же параметры М и е удовлетворяют соотношениям

$$M = 1,24 \frac{1}{c^2} \sqrt{be^3}, \qquad /12/$$

$$M < 0,44 \frac{c^4}{b k^{3/2}}, \qquad /13/$$

то картина сжатия качественно меняется и "черная дыра" не образуется. Подставляя численные значения констант / "b" выбираем как у Борна и Инфельда b = 9,18.10¹⁵ c.g.s. /, имеем

$$M < 0,23 \cdot 10^{37}$$
 rp ,
 $M = 4,2 \cdot 10^{-14} (c.g.s.)e^{3/2}$

Под эти соотношения подпадают реальные астрономические объекты, в частности, звезды с массами порядка солнечной массы. Это соответствует довольно большой плотности электрического заряда ~10⁸ электронов на 1 г вещества. Следовательно, при плотности заряда такого порядка звезда с массой M~1 ÷ 10 M_☉ /и зарядом, связанным с массой соотношением /12//, может быть как угодно малого размера и оставаться видимой. Радиус же шварцшильдовского "горизонта" /в отсутствие поля Борна-Инфельда/ для звезды с такой массой $r_g = 2 \text{ kM/c}^2 \text{--10}$ км. Плотность вещества для звезды с массой М-М_е достигает так называемой критической плотности ~10⁹³ г/см³ /см., например, ^{/10/} / лишь при радиусе звезды R ~ 10⁻²⁰ см. Считается, что до таких плотностей и соответственно расстояний применимо классическое /неквантовое/ описание гравитационного поля.

Заметим, однако, что учет квантового эффекта рождения пар заряженных частиц в сильном поле Борна-Инфельда /в духе работы /18//, по-видимому, приведет к эффективному уменьшению полного заряда звезды, то есть переходу с кривой $\beta = M$ на кривую $\beta < M$ /puc. 4/, которая описывает коллапс объекта и образование "черной дыры". Эта сторона задачи требует отдельного рассмотрения.

Один из авторов /Г.И./ благодарит руководство ОИЯИ и ЛТФ за предоставленные для работы возможности.

Литература

- 1. Born M., Infeld L. Proc.Roy.Soc. 1934, A144, 425.
- 2. Зоммерфельд А. Электродинамика, ИЛ., М., 1958, §37.

Тоннела М.А. Основы электромагнетизма и теории относительности. ИЛ, М., 1962, гл.9, §10.

- 3. Иваненко Д.Д., Соколов А.А. Классическая теория поля. Гостехиздат, М.-Л., 1951, §32.
- 4. Барбашов Б.М., Нестеренко В.В. Материалы IV Международного совещания по нелокальным теориям поля. ОИЯИ, Д2-9788, Дубна, 1976. J.Scherk. там же.
- 5. Blokhintsev D.I. Preprint JINR E2-6566, Dubna (1972); Барбашов Б.М., Черников Н.А. ЖЭТФ, 1965, 50, вып. 5.
- 6. Ландау Л.Д., Лифшиц Е.М. Теория поля, "Наука", М., 1973.
- 7. Исаев Г.В. ОИЯИ, Р2-10347, Дубна, 1977.
- 8. Асанов Р.А. ОИЯИ, Р2-6564, Дубна, 1972, ТМФ, 1974, 20, с.66.

19

- 9. Исаев Г.В. В кн.: Проблемы теории гравитации и элементарных частиц. Атомиздат, М., 1976, c.138: Kuchowich B. Phys.Lett., 1975, 51A, 47. Солодов А.А. ТМФ, 1975, 24, №1, с.136.
- 10. Марков М.А. УФН, 1973, т.111, с.1.
- 11. Полубаринов И.В. ОИЯИ, Р2-7532, Дубна, 1973.
- 12. Паули В. Теория относительности. ГИТТЛ, М.-Л., 1947. c.127.
- 13. Фок В.А. Теория пространства, времени и тяготения, Гостехиздат, М., 1955.
- 14. Фишер И.З. ЖЭТФ, 1948, т.18, вып. 7, с.668.
- 15. Oppenheimer J.R., Snyder H. Phys.Rev., 1939, 56, 455.
- 16. O'Brien S., Synge J.L. Comm. of the Dublin Inst. for Adv. Studies, No.9, Ser.A (1952).
- 17. Шикин Г.Н. В кн.: Теория относительности и гравитация. "Наука", М., 1976, с.129. 18. Марков М.А., Фролов В.П. ТМФ, 1970, 3, с.3.

Рукопись поступила в издательский отдел 7 апреля 1977 года.