

P19-87-470

1987.

П.Н.Лобачевский, Е.А.Красавин, А.П.Череватенко

ЗАВИСИМОСТЬ РАДИОЧУВСТВИТЕЛЬНОСТИ ДРОЖЖЕВЫХ КЛЕТОК ОТ ЛПЭ ИЗЛУЧЕНИЙ Эксперименты на гаплоидных клетках

Направлено в журнал "Радиобиология"

Известно, что закономерности летального действия на клетки ионизирующих издучений, различающихся по линейной передаче энергии (ЛПЭ), обусловлены как физическими характеристиками излучений, так и рядом факторов биологической природы /1,27. Одним из важнейших биологических факторов является репарация индуцированных радиацией повреждений. Ранее нами была предложена математическая модель, учитывающая влияние репарационных процессов на харақтер зависимости радиочувствительности гаплоидных дрожжей от ЛПЭ /3/. Поскольку молекулярные механизмы репарации радиационных повреждений у дрожжей в достаточной мере еще не изучены, эффективность неспецифической (общей для гаплоидных и диплоидных клеток) репарации оценивалась нами на основе сравнения кривых выживания гаплоидных клеток дикого типа и радиочувствительного мутанта. Предложенный математический подход допускает два альтернативных варианта интерпретации зависимости радиочувствительности гаплоидных дрожжей от ЛПЭ. Первый основывается на предположении о том, что эффективность неспецифической репарации с увеличением ЛПЭ излучений по тем или иним причинам уменьшается. Это означает, что репарация непосредственно влияет на характер указанной зависимости. Второй вариант предполагает. что неспецифическая репарация эффективна в равной степени при действии излучений с разной ЛПЭ. В таком случае процессы репарации не играют непосредственной роли в формировании характера зависимости радиочувствительности от ЛПЭ, который в данном случае определяется только физическим и геометрическим факторами.

Целью настоящей работы являлась экспериментальная проверка следствий развитых модельных представлений на основе анализа радиочувствительности гаплоидных дрожжей Saccharomyces cerevisiae дикого типа и радиочувствительного мутанта при действии излучений, различающихся по ЛПЭ.

материалы и методы исследования

В работе использовани следующие гаплоидные штаммы дрожжей Saccharomyces cerevisiae : S288 с - штамм дикого типа и xs1828-3с, несущий мутацию повышенной радиочувствительности rad 6 /4/.

Ч.

Клетки облучали следующими видами ионизирующих излучений: *Г*-лучами ¹³⁷св, *с*-частицами ²³⁹Ри, ускоренными ионами гелия и углерода. Облучение клеток ускоренными ионами гелия и углерода проводили на ускорителе У-200 ОИЯИ. Для этих целей была специально создана установка с комплексом электронно-физической аппаратуры /5/. Основные физические характеристики использованных излучений приведены. в табл. I.

Таблица I. Физические характеристики излучений

		· · · · · · · · · · · · · · · · · · ·	<u>.</u>
Вид излучения	Энергия МэВ/н	ЛПЭ кэВ/мкм	Мощность дозы Гр/с
γ -кванты*	0,667	0,3	0,58
• ⁴ He	8,5	2I ± I	3-20
4 _{He}	4	38 ± 3	3–20
$4_{\rm He}$	2	$64 \pm \frac{8}{6}$	3-20
∢- частицы ^{**}	5,495	IIO	0,35
¹² C	7,5	$205 \pm \frac{6}{3}$	3–20
¹² c	4.	$330 \pm \frac{60}{25}$	3-20
12 ₀	3	$410 \pm \frac{90}{30}$	3–20

*Для **Г**-квантов приведены энергия (МэВ) и усредненное по спектру вторичных частиц значение ЛПЭ.

*Для d -частиц приведены максимальная энергия спектра (МэВ) и усредненное по потоку d -частиц в точке расположения облучаемого образца значение ЛПЭ.

Клетки перед облучением выращивали на агаризованной среде YEPD (дрожжевой экстракт - 5 г/л, пептон - 10 г/л, глюкоза - 20 г/л, агар - 25 г/л) в течение 5-7 суток. Методом центрифугирования в градиенте плотности сахарозы получали суспензию одиночных клеток, находящихся в стационарной фазе. Для облучения с -частицами и ускоренными ионами готовили монослой клеток на поликароонатном фильтре, которой располагали на поверхности 6%-ного непитательного агара. После облучения клетки ресуспендировали в воде. Облучение клеток **°** -квантами проводили в водной суспензии. Для определения выживаемости суспензию облученных клеток подходящей концентрации высевали в чашки Петри с агаризованной средой YEPD. Подсчет макроколоний производили через 5-7 суток инкубации при 28°C.

Обработка полученных экспериментальных данных заключалась в расчете оптимальных значений параметров предложенной ранее математической модели /3/ и построении расчетных кривых ныживания и кривых зависимости радиочувствительности от ЛПЭ. Расчет оптимальных значений параметров производили путем минимизации нормированной суммы квадратов отклонений экспериментальных значений от расчетных.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

где

В результате теоретических исследований, проведенных ранее $^{/3/}$, показано, что кривую выживания $S_h(D,L)$ гаплоидных дрожжей при облучении их ионизирующей радиацией можно представить в следующем виде:

$$S_{h}(D, L) = \exp[-D/D_{oh}(L)], \qquad (I)$$

$$D_{oh}^{-1}(L) = G_{h}[I - P_{oh}(L)] P/L \qquad (2)$$

представляет собой наклон кривой выживания, или радиочувствительность клеток; L – ЛПЭ, D – доза облучения, б – геометрическое сечение чувствительной мишени клетки, p – удельная масса вещества мишени, $p_{oh}(L)$ – вероятность того, что при пересечении мишени ионизирующей частицей в клетке не образуется ни одного повреждения, летального для гаплоидной клетки. Зависимость $p_{oh}(L)$ рассчитывается исходя из геометрии чувствительной мишени и величины $q_{(L)}$ – вероятности того, что при пересечении чувствительного участка ионизирующей частицей в нем образуется повреждение $^{/3'}$.

$$P_{\sigma h}(L) = \int_{0}^{s_{m}h} \left[L - q(L) \right]^{k_{h}s} p(s) ds, \qquad (3)$$

где $\rho(s)$ - закон распределения длин треков частици в мишени, который определяется двумя параметрами: R_h - радиусом и t_h - толщиной оферического слоя мишени; k_h - количество чувствительных участков на единицу длины трека частици, $s_m h$ - максимальный пробег частици в мишени,

."

Рис.2. Кривые выживания гаплоидных дрожжей XS 1828-3с (rad 6) при действии издучений с разной ЛПЭ. I – γ -излучение; ионы ⁴не с энергиями: 8,5 МэВ/н – 2, 2,0 МэВ/н – 3; 4 – α -частицы; ионы ¹²с с энергиями: 7,5 МэВ/н – 5, 4,0 МэВ/н – 6, 3,0 МэВ/н – 7.

Характер зависимости q(L) определяется физическими характеристиками излучений и способностью клеток репарировать индуцированные радиацией повреждения.

В соответствии с двумя вышеупомянутыми альтернативными вариантами интерпретации зависимости $D_{ch}(L)$ в работе ^{/3} предложены выражения для описания зависимости Q(L). Для расчета параметров этой зависимости нами проведены эксперименты по определению чувствительности гаплоидных дрожжей дикого типа и мутанта rad 6 к действию излучений, различающихся по ЛПЭ. Как полагают многие авторы ^{/6 - 8/}, мутация rad 6 блокирует репарацию повреждений, индуцированных ионизирующим излучением. Показано, что клетки дрожжей, мутантные по гену RAD 6, в известной мере дефектны по репарации однонитевых разрывов (OP) ДНК, индуцированных метилметансульфонатом ^{/7/}. Как указывалось нами ранее ^{/3/}, способность репарировать OP ДНК может отражать эффективность неспецифической репарации у дрожжей.

На рис.I изображены кривые выживания клеток дикого типа, а на рис.2 – мутанта rad 6 при действии различных типов ионизирующих излучений.

В таблице 2 приведены значения ЛПЭ использованных излучений и рассчитанные по вышеприведенным кривым радиобиологические характеристики клеток: значения радиочувствительности и сечения инактивации.

Как видим, сечение инактивации у обоих штаммов достигает плато в области значений ЛПЭ ~ 200 квВ/мкм. Величины сечения инактивации в области илато для клеток дикого типа и мутанта rad 6 практически совпадают. Поэтому эту величину можно считать геометрическим сечение ядра гаплоидных клеток. Для дальнейших расчетов нами принято $\mathbf{6}_{h} = 1.02 \pm 0.06$ мкм². Указанное значение геометрического сечения использовано для определения одного из параметров в формуле (3) – радиуса мишени \mathbf{R}_{h} . Выбор значений других параметров, характеризующих мишень, продиктован следующими соображениями.

Предположим, что чувствительные участки расположены у поверхности сферической мишени в один слой, т.е. $k_h = 1/t_h$. Тогда в формуле (3) показатель k_h S можно заменить на $5/t_h$, то есть параметр k_h исключается. Необходимость же введения этого параметра в теоретической модели заключалась в том, чтобы установить соответствие между характеристиками мишеней гаплоидных и диплоидных клеток (формула (9) в работе $^{(3)}$). Толщина сферического слоя t_h , как показывают численные расчеты по формуле (3), практически не влияет на результат при $t_h < R_h$, т.е. если сферический слой считать тонким. Это обусловлено тем, что конкретные физические механизмы образования повреждений не рассматриваются и не вводится такой параметр, как

4

5

критическая энергия, необходимая для образования одного повреждения. Параметр L_h , так же как и k_h , необходим в теоретической модели для установления соотношения между размерами мишеней гаплоидных и диплоидных клеток.

Таблица 2. Значения радиочувствительности и сечения инактиващии гаплоидных клеток дикого типа и мутанта rad 6 при действии излучений с разной ЛПЭ

ЛПЭ кэВ/мкм ·		RAD			rad 6		
	Doh,	Ip ^{-I}	Doh L/p. MKM ²	Doh	,Ip ^{-I}	Doil p. MKM2	
0,3	0,0I6 ± (,002	0,0010	0,054 ±	0,006	0,0035	
2I	0,025 ± 0	,003	0,082	0,067 +	0,007	0,221	
3 8	0,033 ± 0	,003	0,198				
64	0,034 ± (,003	0,345	0,039 ±	0,004	0,396	
IIO	0,043 ± (,005	0,757	0,057 ±	0,007	I,O	
205	0,03I ± 0	,002	I,02	0,032 ±	0,002	I,05	
330	0,020 ± (,002	I,06	0,020 ±	0,002	I.06	
410	0,0I4 ± (,00I	0,92	0,016±	0,002	I,05	

С учетом вышеизложенного на основании приведенных в табл.2 экспериментальных данных были рассчитаны кривые эквисимости радиочувствительности клеток дикого типа и мутанта rad 6 от ЛПЭ излучений. Эти кривые изображены на рис.3. На этом рисунке приведены также экспериментальные данные из табл.2.

• Как указывалось выше, возможны два альтернативных варианта интерпретации зависимости радиочувствительности гаплоидных дрожжей от ЛПЭ издучений и влияния репарации на характер этой зависимости. Первый из них состоит в предположении о том, что эффективность неспецифической репарации с увеличением ЛПЭ издучений по тем или иным причинам уменьшается. Если инактивирующими повреждениями считать двунитевые разрывы (ДР) ДНК, то изменение характера зависимости $D_{oh}^{-1}(L)$ у чувствительного мутанта можно объяснить существованием двух типов ДР ДНК – прямых и энзиматических – и изменением с увеличением ЛПЭ соотношения выходов этих повреждений ⁹⁹. На основании такого предположения и рассчитаны изображенные на рис.3 зависимости $D_{oh}^{-1}(L)$ (кривне I и 2).

Как видим, это предположение позволяет удовлетворительно описать экспериментальные данные по чувствительности клеток дикого типа и мутанта rad 6 к действию излучений с разной ЛПЭ. В рамках этих

6

- ÷.

представлений у клеток дикого типа энзиматические ДР ДНК образуются из ОР ДНК с вероятностью 1 – $\mathbf{r}_{\mathbf{i}} = 0,032$, а у клеток мутанта rad 6 эта вероятность гораздо выше и составляет 1 – $\mathbf{r}'_{\mathbf{i}} = 0.118.$ Параметры $\mathbf{r}_{\mathbf{i}}$ и $\mathbf{r}'_{\mathbf{i}}$ в формулах (6) и (7) /3/ характеризуют вероятность успешной репарации ОР ДНК). Указанное обстоятельство обусловливает разницу в радиочувствительности рассмотренных штаммов при действии излучений с малой ЛПЭ. С увеличением ЛПЭ эта разница уменьшается, поскольку возрастает роль нерепарируемых прямых ДР ДНК. Зависимость радиочувствительности гаплоидных клеток дикого типа от ЛПЭ описывается кривой с максимумом, а соответствующая зависимость для клеток мутанта rad 6 – ниспадающей кривой. Таким образом, дефекты в системе репарации радиационных повреждений приводят к трансформации кривой зависимости радиочувствительности от ЛПЭ второго рода в кривую первого рода.

На рис.З изображены также кривые зависимости $D_{oh}^{-1}(L)$, рассчитанные на основании альтернативного предположения (йривые 3 и 4). Это предположение заключалось в том, что неспецифическая репарация эффективна в равной степени при действии излучений с разной ЛПЭ /3/. В рамках модельных представлений это означает, что у клеток дикого типа инактивирующие повреждения образуются с меньшей вероятностью, чем у клеток мутанта, независимо от их происхождения. Как видим, это предположение не дает возможности удовлетворительно описать экспериментальные данные. В области малых ЛПЭ разница между экспериментальными значениями радиочувствительности клеток дикого типа и мутанта rad 6 гораздо выше, чем между расчетными кривными. В области больших ЛПЭ расчетные кривые не дают нивелировки радиочувствительностей клеток указанных штаммов, наблюдаемой в эксперименте.

Таким образом, полученные результаты позволяют сделать следующие выводы. Характер зависимости радиочувствительности гаплоидных дрожжей от ЛПЭ в известной мере определяется способностью клеток репарировать радиационные повреждения. У клеток дикого типа указанная зависимость описывается кривой с максимумом, а у клеток радиочувствительного мутанта, дефектного по репарации радиационных повреждений, ниспадающей кривой. Роль процессов репарации в радиорезистентности гаплоидных клеток дикого типа уменьшается с увеличением ЛПЭ. Механизмы этого явления у дрожжей пома окончательно не выяснены, однако можно предположить, что это обусловлено изменением Соотношения выходов энзиматических и прямых ДР ДНК с увеличением ЛПЭ.

JMTEPATY PA

- I. Корогодин В.И., Красавин Е.А. Радиобиология, 1982, т.22, вып.6, с. 727-738.
- 2. Корогодин В.И., Близник К.М., Капульцевич Ю.Г., Петин В.Г., Савченко Г.Б., Толсторуков И.И. Радиобиология, 1977, т.17, вып.5, с.700-710.
- 3. Лобачевский П.Н., Красавин Е.А. ОИЯИ, РІ9-87-469, Дубна, 1987.
- 4. Saeki T., Machida I., Nakai S. Mutation Res., 1980, v.73, p.251-265.
- 5. Череватенко А.П. Материалы У Всесовзного совещания по микродозиметрии. М., МИФИ, 1986, с.102-103.
- 6. McKee R.H., Lawrence C.W. Genetics, 1979, v.93, p.361-363.

54

- 7. Jachymczyk W.I., Chlebowicz E., Swietlinska Z., Zuk I. Mutation Res., 1977, v.43, p.1-10.
- 8. Зажаров И.А., Ковальцова С.В., Кожина Т.Н., Федорова И.В., Яровой Б.Ф. Мутационный процесс у грибов. Л., Наука, 1980.
- 9. Ковубек С., Красавин Е.А. Радиобиология, 1984, т.24, вып.4, 0.462-467.

Рукопись поступила в издательский отдел 24 июня 1987 года.

8

Лобачевский П.Н., Красавин Е.А., Череватенко А.П. Зависимость радиочувствительности дрожжевых клеток от ЛПЭ излучений. Эксперименты на гаплоидных клетках

Исследована зависимость радиочувствительности (D_0^{-1}) гаплоидных дрожжей Saccharomyces cerevisiae (дикого типа и радиочувствительного мутанта) от линейной передачи энергии (ЛПЭ, L) излучений и проведен анализ полученных экспериментальных данных с позиций разработанных ранее модельных представлений. Показано, что характер зависимости $D_0^{-1}(L)$ у гаплоидных дрожжей в известной мере определяется способностью клеток репарировать радиационные повреждения. У клеток дикого типа указанная зависимость описывается кривой с максимумом, а у клеток радиочувствительного мутанта, дефектного по репарации радиационных повреждений, - ниспадающей кривой. Влияние репарационных процессов на радиорезистентность клеток уменьшается с увеличением ЛПЭ излучений.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

Lobachevsky P.N., Krasavin E.A., Cherevatenko A.P. P19-87-470 The Radiosensitivity-LET Dependence in Yeast. Experiments on Haploid Cells

On the basis of the model reported earlier an analysis was made of the experimental dependence of radiosensitivity (D_0^{-1}) of haploid yeast Saccharomyces cerevisiae (wild type and radiosensitive mutant) upon linear energy transfer (LET, L). The dependence $D_0^{-1}(L)$ of haploid yeast was shown to be determined, to a certain extent, by ability of cells to repair radiation-induced damages. Whereas the radiosensitivity-LET dependence of wild type cells has a maximum, in the case of radiosensitive mutant defective in repair of radiation-induced damages, this dependence is described by a falling-down curve.

The investigation has been performed at the Laboratory of Nuclear Problems, JiNR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

P19-87-470