

К.Г.Амиртаев, В.И.Корогодин, П.Н.Лобачевский

ОЦЕНКА ПАРАМЕТРОВ ВЕРОЯТНОСТНОЙ МОДЕЛИ РАДИАЦИОННОЙ ИНАКТИВАЦИИ КЛЕТОК ПО ЭКСПЕРИМЕНТАЛЬНЫМ КРИВЫМ ВЫЖИВАНИЯ

Направлено в журнал "Радиобиология"

1982

Кривые выживания одноклеточных организмов и клеток высших растений и животных при действии ионизирующих излучений можно изображать в полулогарифмическом масштабе /<u>рис.1</u>/, что позволяет легко находить значения коэффициентов эмпирического уравнения

$$S = 1 - (1 - e^{-D/D_0})^n , \qquad /1/$$

обычно используемого для описания таких кривых/S - выживаемость, D - доза облучения, n и D₀ - коэффициенты , иногда называемые "экстраполяционным числом" и "среднелетальной дозой"/ Известны, однако, трудности интерпретации физического смысла коэффициентов n и D₀^{/1/}; кроме того, использование уравнения /1/ не позволяет в единых терминах описывать, помимо кривых выживания, такие важные показатели реакций клеток на облучение, как разнообразие форм инактивации и наличие летальных спектров, проявляющееся макроскопически в виде "эффекта дорастания" /2/

Рис.1. Кривые выживания бактерий /а/, дрожжей /б/ и клеток млекопитающих в культуре /в/. Экспериментальные данные для кривых 1-6 заимствованы из источников, приведенных в табл.2; кривые построены согласно уравнению /2/. Ось абсцисс – доза облучения, Гр; ось ординат – выживаемость, проценты.

1

Трудности эти были в значительной мере преодолены в работе Капульцевича ^{/8/}, предложившего "вероятностную модель" лучевой инактивации клеток. Согласно этой модели выживаемость облученных клеток

$$S = \sum_{i=0}^{k} e^{-bD} \frac{(bD)^{i}}{i!} \left\{ 1 - \left[\frac{1 - (1 - a)^{i}}{(1 - a)^{i}} \right]^{2} \right\}, \qquad /2/$$

где D- доза облучения; b - вероятность формирования одного элементарного повреждения на единицу дозы; a - вероятность "отказа" /т.е. неосуществления очередного деления облученной клетки или ее потомков/ на одно элементарное повреждение; k - число повреждений на клетку, при котором $(1-a)^k > 0,5 \ge (1-a)^{k+1}$. Показатель степени "2" отражает тот факт, что "репродуктивная гибель" облученных клеток происходит, как правило, после осуществления хотя бы одного деления. Следствием вероятностной модели является, во-первых, наличие разных форм инактивации и летальных секторов, а, во-вторых, строгая связь между соотношением форм инактивации и величиной "эффекта дорастания", с одной стороны, и формой кривой выживания - с другой.

Очевидна большая информативная ценность интерпретации кривых выживания клеток в терминах вероятностной модели /2/ по сравнению с классической интерпретацией /1/: наряду с оценкой радиочувствительности клеток это позволяет оценивать разнообразие присущих им форм инактивации, выход летальных секторов и величину "эффекта дорастания" /9/ Однако нахождение значений параметров а и в вероятностной модели /2/ по экспериментальным данным сопряжено с рядом трудностей.

В случае дрожжевых клеток, для которых методически легко определять соотношение разных форм инактивации ^{/2/}, эти трудности преодолеваются следующим образом: по соотношению форм инактивации находят значение a, а затем, зная D_b , рассчитывают величину $b^{/3'}$. Однако для объектов, где учет разных форм инактивации затруднен или невозможен /бактерии, клетки млекопитающих в культуре/, этот метод непригоден.

В случае экспоненциальных кривых выживания $/n = 1/b = D_0^{-1}$, а $a \ge 0.5$. Здесь, следовательно, пользуясь только экспериментальными кривыми выживания, можно достаточно точно определять значения b и граничные значения a.

В тех случаях, когда n>1, трудности в оценке параметров aи b только по экспериментальным кривым выживания связаны со следующими обстоятельствами. Во-первых, для кривых выживания, описываемых формулой /2/, экстраполяционное число n не определено / n + ∞ при D + ∞ /. Во-вторых, конечный наклон D $_0^{-1}$ кривой выживания, описываемой этой формулой, становится равным b лишь при D + ∞ , т.е. может быть найден лишь при столь низких значениях выживаемости, которые невозможно определить в эксперименте. Эти затруднения, однако, можно преодолеть следующим образом.

Рис.2. Графическое изображение зависимостей a от n (a) и b_0 от n /б/.

Путем расчетов нами найдено, что в области выживаемостей, с которыми обычно имеют дело в эксперименте / S \geq 10⁻⁴ /, между параметром α и экстраполяционным числом п имеется соотношение, описываемое эмпирической формулой

графический вид которого приведен на <u>рис.2а.</u> Пользуясь этим рисунком или формулой /3/, по известному значению n можно довольно точно рассчитать значение α .

Для определения параметра b также можно воспользоваться эмпирической формулой

$$b = b_0(n)D_0^{-1}$$
, /4/

где b₀ (n) описывается уравнением

графический вид которого приведен на рис.2б.

Следует отметить, что соотношения /3/, /4/ и /5/ являются приближенными и представляют собой лишь рабочие формулы, по которым можно найти значения параметров a и b уравнения /2/, если значения n и D_0 известны из экспериментов.

Для облегчения построения кривых выживания в соответствии с /2/ по найденным значениям а и в можно воспользоваться табл.1, в которой приведены рассчитанные нами значения

$$S_{i}(a) = 1 - \left[\frac{1 - (1 - a)^{i}}{(1 - a)^{i}}\right]^{2}$$
 /6/

для а от 0,05 до 0,50, что соответствует значениям в примерно от 1000 до 1.

В табл.2 приведены полученные описанным способом оценочные значения a и b для нескольких биологических объектов. Кривые выживания, построенные по этим значениям a и b, изображены на рис.1; видно хорошее соответствие этих кривых экспериментальным данным. В случае дрожжевых клеток значения a и b, полученные нашим методом, близки к тем, которые были рассчитаны Капульцевичем ^{/3/} при использовании метода учета соотношения разных форм инактивации.

/3/

<u>Таблица 1</u>

Значения $S_i(\alpha) = 1 - [\frac{1-(1-\alpha)^i}{(1-\alpha)^i}]^2$ для некоторых величин параметра α .

,

17

·1/5	0,050	0,075	0,100	0,125	0,150	0,175	0,200	0,250	0,300	0,350	0,400	0,450	0,500	
0	н	н	н	н	н	н	н	н	н	н	н	н	н	
 н	0,997	0,993	0,988	0,980	0,970	0,955	0,938	0,889	0,812	0,710	0,556	0 , 33I	0	
2	0,988	0,979	0,945	906'0	0.853	0,780	0,634	0,395	0	0	ο	0	0	
e	0,972	0,931	0,862	0,757	0,605	0,390	0,092	0	0	0	0	0	0	
4	0,948	0,866	0,725	0,502	0,162	0	0	0	0	0	0	0	0	
5	0 , 915	0,773	0,5I [.])	0,093	0	0	0	0	0	0	ò	0	0	
9	0,870	0,644	0,222	0	0 ,	0	0	0	0	0	0	0	0	
2	0,813	0,473	0	ο	0	0	0	0	0	0	0	0	0	
8	0,742	0,250	0	0	0	0	0	0	0	0	0	0	0	
ი	0,656	0	0	0	0	0	0	0	0	0	0	0	0	
OI	0,551	0	0	0	0	0	0	0	0	0	ο	O	0	
П	0,425	0	0	0	0	0	0	0	0	0	0	0	0	
12	0,276	0	0	0	0	0	0	0	0	0	ο	0	0	
EI	0,I0I	0	. 0	0	0	0	0	0	0	0	0	0	0	

\$

٠

Оценочные значения параметров а и ^b вероятностной модели для разных биологи-ческих объектов /значения n и D₀ заимствованы из разных источников/

НИК			_	Ţ				HHNE		_	
Источ			[4	[4		ຍີ		E E	3	Γ,	Į5
ы вероят- модели	b , rp ⁻¹		0,068	0,038		0,0145		0,00397		0,833	0,518
Параметр ностной	ষ		0,20	0,25		0,10		0,25		0,275	0,10
оские ко- иенти	D_{\bullet} , $^{ m Tp}$		19 ° 6	75,0		I22,0		3I5,0		I,47	3,47
Эмпириче Эфицие	<i>u</i>		4,5	3,0		35,0		3,0		2,7	40,0
Излучения	,		рентгеновское	ramme		Tanna		ramma		ренттеновское	рентгеновское
Объект		актерии:	cherichia coli B	coli Bs-1	[рожжи :	aromyces ell'ipsoideus,	ри I39 - В	cerevisiae ,28-73-IB	Клетки млекопитающих:	ювек, Не La	анский хомяк, V79
		Ю	I Esc	с, Г П	я.	3 Sacch	Mer	4 S .		5 чел	6 кит

4

5

Можно надеяться, что предложенный метод оценки параметров а и в вероятностной модели, описывающей радиочувствительность клеток, окажется полезным для сопоставления по этим показателям реакций на облучение разных биологических объектов, от бактерий до клеток млекопитающих.

ЛИТЕРАТУРА

- 1. Alper T. Cellular radiobiology. Cambridge university press, Cambridge-London-New-York-Melbourne, 1979.
- 2. Корогодин В.И. Проблемы пострадиационного восстановления. Атомиздат, М., 1966.
- 3. Капульцевич Ю.Г. Количественные закономерности лучевого поражения клеток. Атомиздат, М., 1978.
- 4. Мясник М.Н. Генетический контроль радиочувствительности бактерий. Атомиздат, М., 1974.
- 5. Жизнеспособность клеток, облученных в малых дозах: теоретические и клинические аспекты /Труды VI Греевской конференции, Лондон, 1974/,под ред. Т.Альпер, "Медицина", 1980.

Рукопись поступила в издательский отдел 24 июня 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	ĸ.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	ĸ.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	ĸ.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	ĸ.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного нисьитута ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	С Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Амиртаев К.Г., Корогодин В.И., Лобачевский П.Н. P19-82-483 Оценка параметров вероятностной модели радиационной инактивации клеток по экспериментальным кривым выживания

Описан простой метод оценки параметров "a" и "b" вероятностной модели радиационной инактивации клеток по экспериментальным кривым выживания. Рассмотрены примеры такой оценки для бактерий, дрожжей и клеток млекопитающих.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Amirtaev K.G., Korogodin V.I., Lobachevcky P.N. P19-82-483 A Estimation of Probability Irradiated Cells Inactivation Model Parameters by Experimental Surrvival Curres

A simple method of estimation of probability irradiated cells inactivation model parameters "a" and "b" is described. The examples of this estimation are considered for bacteria, yeast and mammalian cells.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.

Þ