	ОбЪЕДИНЕННЫЙ Институт ядерных исследований лубна
3882/82	/ <i>6/8-82</i> P19-82-379

ПОВРЕЖДЕНИЕ **?** -ЛУЧАМИ И ТЯЖЕЛЫМИ ИОНАМИ СУПЕРСПИРАЛЬНЫХ СТРУКТУР ЯДЕРНОЙ ДНК

Направлено в журнал "Радиобиология"

1982

Бауер и Виноград^{/1/},Кук и Бразель^{/2,3/}, Кампелл^{/4/},Гартвиг^{/5/} в своих работах обосновали гипотезу о суперспирализации ядерной ДНК как об общем явлении для всех высших организмов.

i

Компактные структурные единицы, содержащие суперспиральную ДНК, освобождались с помощью лизиса клеток и исследовались путем центрифугирования в нейтральном градиенте сахарозы. Исследовалось также действие на суперспиральные структуры ДНК интеркалирующих красителей и ионизирующего излучения, так как индуцированные облучением однонитевые разрывы ДНК нарушают суперспирализацию. Предполагается, что суперспиральные структурные единицы ДНК связаны с мембраной.

Регель, Гюнтер и Кампф ^{/6/} определили, что средний диаметр этих единиц равен 0,3 мкм, и назвали их MASSU (membrane attached superstructure unit).

Анализ изменения скорости седиментации MASSU с увеличением числа индуцированных облучением однонитевых разрывов ДНК показал, что в MASSU содержится около 10⁹ дальтонов ДНК ²²⁷ Кампф и Регель ⁷⁷ изучали зависимость доли индуцированных двунитевых разрывов ДНК от дозы облучения и нашли, что максимальная величина участков ДНК в клеточном ядре, не содержащих разрывов, также равна примерно 10⁹ дальтонов.

С целью дальнейшего изучения принципа организации ДНК в компактные структурные единицы в данной работе было проведено исследование этих структур в клетках млекопитающих разных линий при использовании у-лучей и тяжелых ионов.

МАТЕРИАЛ И МЕТОДИКА

Клетки. В экспериментах использовались лимфоциты крови человека, фибробласты легких китайского хомяка V79-4 и клетки асцитного рака Эрлиха линии ELD.

Лимфоциты. К свежевзятой донорской крови добавляли 0,9% раствор NaCl в отношении 1:1 и суспензию наслаивали в центрифужных пробирках на поверхность смеси 5,6% раствора Ficoll и Visotrast /17:3/ с плотностью 1,077+ +0,001 г/мл. После центрифугирования в течение 30 мин. при 20 °C и 4000 м/с² лимфоциты отделялись от других компонентов крови в виде белого кольца. Их отмывали в холодном растворе

> Оп-селина ВИБЛИОТЕКА

PBS -глюкозы путем двукратного центрифугирования /10 мин., 1000 м/с²,20 °C/. После этого клетки ресуспендировали в среде Eagle MEM с 20% сыворотки крови человека и выдерживали в плотно закрытых пробирках в 5% CO₂.

Такие короткоживущие культуры лимфоцитов, содержащие 10⁶ лимфоцитов/мл с примесью менее 3% эритроцитов, в течение 7 дней обладают высокой жизнеспособностью.

Клетки V79-4. Клетки культивировали в монослое в среде Eagle MEM с добавлением 15% сыворотки и антибиотиков. Перед облучением из клеток, находящихся в экспоненциальной фазе роста, готовили суспензию концентрацией 10^{6} кл/мл. Чтобы ослабить возможное повреждение клеток вследствие трипсинизации, клеточную суспензию инкубировали в течение 45 мин. при 37°C, а затем до облучения выдерживали при 0° -4 °C.

Асцитные клетки. Клетки асцитного рака Эрлиха извлекали из брюшной полости мышей F_1 (CBA × C 57 Bl), которым за 3 дня до эксперимента вводили интраперитонеально 10⁷ опухолевых клеток. В среде Eagle-199 готовили суспензию, содержащую 10⁶ кл/мл.

Облучение. у -облучение осуществлялось с помощью цезиевого источника мощностью дозы 4,66 Гр/мин. /установка "Свет"/; облучение тяжелыми ионами ⁴Не и ¹²С /ЛПЭ 22 кэВ/мкм и 360 кэВ/мкм соответственно/ проводили на ускорителе У-200 в ЛЯР ОИЯИ. Клетки облучали при 0-4℃ и выдерживали при этой температуре до проведения лизиса.

Лизис клеток, градиент сахарозы, центрифугирование. Для лизиса клеток использовался следующий раствор: 1% SDS, 0,2% Na – деоксихолат, цитрат натрия 0,05 M, 0,05M EDTA, pH 7-7,5.

Градиент сахарозы: 4,6 мл 5-20% сахарозы в 1М хлорида натрия, 0,01М Трис-HCL, 0,01М EDTA, бромистый этидий 6 мкг/мл, рН 7-7,5.

Поверх градиентов сахарозы наслаивали 0,2 мл раствора для лизиса клеток, затем 0,1 мл суспензии, содержащей 10⁵ клеток. Время лизиса – 1 час. Время центрифугирования – 1 час при 30000 об./мин. в роторе "swing-out" ультрацентрифуги AC 602.

Измерение положения MASSU. Бромистый этидий, содержащийся в градиенте сахарозы, помещают между щелочами ДНК. MASSU седиментируют в виде сетчатого агрегата. ДНК MASSU обогащается бромистым этидием. Вследствие этого положение MASSU можно определить флюоресцентным методом /возбуждающий свет 360 нм, эмиссионный свет 590 нм/.

На рис.1 показан полученный таким образом профиль флюоресценции ДНК после центрифугирования пробирки.

Рис.1. Профиль флюоресценции ДНК в градиенте сахарозы. 1 – отражение положения мениска, 2 – положение ДНК-комплекса MASSU после центрифугирования в течение 1 часа при 30000 об./мин.

РЕЗУЛЬТАТЫ

На <u>рис.2</u> представлены профили седиментации для MASSU лимфоцитов человека, клеток китайского хомяка и асцитных клеток мышей, полученные в идентичных условиях. Различные положения профилей седиментации для MASSU трех видов клеток свидетельствуют об их различиях по содержанию, либо по степени суперспирализации ДНК.

На <u>рис.3</u> показана зависимость относительной скорости седиментации (rS) /0СС/MASSU лимфоцитов человека, клеток китайского хомяка и асцитных клеток от дозы облучения у лучами и тяжелыми ионами. ОСС определяется как отношение скоростей седиментации MASSU облученных и необлученных клеток.

После у-облучения ОСС быстро уменьшается до предельного значения, не меняющегося при увеличении дозы. После облучения

лимфоцитов ионами 12 С и опухолевых клеток 4 Не ОСС изменяется мало. Если же лимфоциты после воздействия ионами 12 С в дозе 7 Гр дополнительно облучить у-лучами в дозе 2 Гр,

Рис.2. Расстояния седиментации MASSU агрегатов. 1 - асцитные клетки, 2 - клетки китайского хомяка V79-4, 3 лимфоциты человека.

Рис. 3. Зависимость относительной скорости седиментации MASSU от дозы облучения. 1 - асцитные клетки после облучения ⁴He. 2 - лимфоциты после облучения у-лучами, З' - лимфоциты после облучения ¹²С. 3* - лимфоциты, облученные у -лучами в дозе 2 Гр после облучения ¹²С. По оси абсцисс: доза, Гр; по оси орди-6 8 10 12 14 16 18 100 Б нат: относительная скорость седиментации (rS).

то ОСС имеет примерно такое же значение, как после облучения только у -лучами в дозе 2 Гр. Этот факт подтверждает представление о существовании дискретных MASSU с суперспиральной ДНК, схематически изображенных на рис.4.

Можно предположить, что суперспирализованная ДНК в MASSU вследствие однонитевых разрывов раскручивается, в результате чего скорость седиментации агрегатов MASSU уменьшается тем быстрее, чем больше возникает таких разрывов. После у -облучения распределение однонитевых разрывов в хорошем приближении соответствует распределению Пуассона, т.е. в каждой MASSU однонитевые разрывы ДНК возникают с одинаковой вероятностью. При прохождении тяжелой заряженной частины, обладающей высокой ЛПЭ, однонитевые разрывы возникают только в тех MASSU, в которых произошло "событие попадания". Таким образом, при одинаковых /небольших/ дозах количество MASSU. в которых произошло попадание, а следовательно, и раскручивание ДНК, после облучения тяжелыми ионами должно быть меньше, чем после у-облучения.

На рис.5 представлена полученная экспериментально зависимость между ОСС MASSU и дозой у -лучей для лимфоцитов. клеток китайского хомяка и асцитных клеток. Кривые различаются по начальному наклону при малых дозах облучения и предельпри больших дозах в соответствии с ному значению (rS), представлениями Кука и Бразеля /2/.

Из полученных кривых можно сделать некоторые заключения о внутренней структуре MASSU. Очевидно, что достижение предельного значения (rS), MASSU можно интерпретировать как полное раскручивание суперспиральной ДНК MASSU. Пусть вероятность раскручивания равна

$$(1 - (rS))/(1 - (rS)_{o}) = (rS)^{*},$$
 /1/

Рис.4. Схематическое представление расположения MASSU в клеточном ядре. а -MASSU, которые состоят из суперспиральных единиц, находящихся после лизиса в свободной форме, б - после облучения у -лучами / * / и лизиса многие MASSU раскрываются как парашюты, в - после облучения тяжелыми ионами раскручивающиеся MASSU возникают редко.

где 1 – (rS)* - вероятность "выживаемости" MASSU / ДОЛЯ MASSU с нераскрученной ДНК/. Тогда по кривым рис.5 можно оценить для каждой линии клеток и определить соответствующие кривые доза-эффект для MASSU.

На рис.6 представлены рассчитанные таким образом кривые. Эти данные позволяют предположить, что ДНК в MASSU организована в виде кластеров, которые могут "раскручиваться" независимо друг от друга вследствие отдельных однонитевых разрывов. В таком случае начальный наклон кривых доза-эффект должен коррелировать с содержанием ДНК в одном суперспиральном участке М.

Рассчитать М " и М можно следующим образом: В диапазоне начального наклона вероятность "выживания" MASSU равна:

$$1 - (rS)^* = e^{-M}g^{\cdot D \cdot \lambda}$$
, /2/

а в диапазоне конечного наклона -

$$1 - (rS)^* = e^{-M_e \cdot D \cdot \lambda}$$
, /3/

где D - доза, λ - среднее число однонитевых разрывов на единицу молекулярного веса ДНК и на единицу дозы / $\lambda = 2,7.10^{-10}$ дальтонов ⁻¹ Гр⁻¹ /8/ /.

5

Рис.5. Зависимость скорости седиментации (rS) MASSU от дозы облучения у -лучами. По оси абсцисс: доза облучения, Гр. По оси ординат: (rS) /отношение между скоростью седиментации облученных и необлученных клеток/. 1 – асцитные клетки, 2 – клетки китайского хомяка V 79-4, 3 – лимфоциты человека.

Если выбрать такие значения D, которые уменьшают (1 – (rS)* до e⁻¹ в соответствующем диапазоне наклона, то можно рассчитать M_g и M_e- Так как 1/ λ – величина энергии, необходимая для одного однонитевого разрыва, то отношение D₈₇: 1/ λ можно интерпретировать как элемент, в котором возникает в среднем один однонитевый разрыв. Это позволяет оценить нижнюю границу для объема MASSU.

Из-за относительно больших ошибок экспериментальных данных можно лишь грубо оценить значения Mg /см. рис.5/. Видно, что содержание ДНК в MASSU наибольшее у лимфоцитов и наименьшее у асцитных клеток, что согласуется с различием в седиментации эгрегатов MASSU обоих объектов /см. рис.2/ и может рассматриваться как одна из возможных причин высокой радиочувствительности лимфоцитов. Полученное для лимфоцитов значение M = 1,1.10⁸ дальтонов в какой-то мере может быть связано с размером расстояния между соседними репликонами, равного 15-120 мкм $^{/9/}$. Это расстояние соответствует молекулярному весу 3,3.10⁷ -2,4.10⁸ дальтонов. Можно предположить, что такой суперспирализованный независимо раскручивающийся участок ДНК представляет собой отдельную функциональную единицу. Из кривых рис.6 можно также сделать вывод о том, что число независимо раскручивающихся участков ДНК в MASSU, т.е. функционально самостоятельных единиц, различно для разных объектов. На основании результатов, приведенных на рис.5, можно высказать предположение о том, что в лимфоцитах человека содержится больше MASSU. чем в асцитных клетках мышей.

Авторы выражают благодарность академику Г.Н.Флерову за предоставление возможности проведения экспериментов на ускорителе У-200 в ЛЯР ОИЯИ. За техническую помощь благодарим А.Круг, М.Лаукнер и Б.Рихтер.

Рис.6. Зависимость "выживания" для MASSU от дозы облучения. По оси абсцисс: доза у -облучения, Гр; по оси ординат: вероятность выживания.

ЛИТЕРАТУРА

- 1. Bauer W., Vinograd J.J. Mol.Biol., 1970, 47, p. 419.
- 2. Cook P.R., Brazell J.A. Cell Biol., 1975, 19, p. 261.
- 3. Cook P.R., Brazell J.A. Nature, 1976, 263, p. 679.
- 4. Campbell A.M. TJBS, 1978.
- 5. Hartwig M. Acta Biol.Med.Germ., 1978, 37, p. 421.
- Regel K., Günther K., Kampf G. Studia Biophysica, 1979, 76, p. 11.
- 7. Kampf G., Regel K. Studia Biophysica, 1978, 71, p. 207.
- 8. Kamf G., Regel K. Studia Biophysica, 1977, 61, p.53.
- 9. Huberman J.A. et al. Molec.Biol., 1968, 32, p. 327.

Рукопись поступила в издательский отдел 26 мая 1982 года.

6

7

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д13-11182	труды 1X международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
ДЗ-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	0 0	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких знергий. Приморско, НРБ, 1978.	3	р.	0 0	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	0 0	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
<u>RH: 80-271</u>	Труды Маждународной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80 - 385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
410,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	K .
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81 - 758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p .	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p .	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

P19-82-379 Абель Х., Эрцгребер Г., Лангрок К. Повреждение у -лучами и тяжелыми ионами суперспиральных структур ядерной ДНК Клетки китайского хомяка V79-4, лимфоциты человека и асцитные клетки мышей облучались у -лучами и тяжелыми ионами $(^{4}\text{He}, ^{12}\text{C}).$ После лизиса клеток путем центрифугирования в нейтральном градиенте сахарозы исследовался характер седиментации комплексов, содержащих ДНК. Полученные после облучения различия подтверждают представление о суперспиральной организации ДНК в дискретные и связанные с мембраной компактные единицы. Согласно сделанным оценкам, диаметр этих комплексов примерно равен 0,2 мкм, а содержание в них ДНК близко к 2·10⁹ дальтонам. Работа выполнена в Лаборатории ядерных проблем ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна 1982 Abel H., Ertsgraber G., Langrock K. P19-82-379 Lesions in Superstructure Units DNA Induced by y-Irradiated and Heavy Ions Chinese hamster cells V79-4, human lymphocytes and ascites cells were irradiated with Cs-y -rays and heavy ions (⁴He, ¹²C). After cell lysis the sedimentation behaviour of DNA-complexes was studied. In the case of y-irradiation the sedimentation velocity of the DNA subunits was slower than in the case of heavy ion irradiation. This result reflects the existence of discrete and membrane-attached compact DNA-units. By applying target theor the DNA content and the diameter of the DNA subunits can be approximatelly determined. The values are different, depending on the cell type (average values: $2,4\cdot10^9$ Dalton, respectively 0,2 μ m). The investigation has been performed at the Laboratory of Nuclear Problems, JINR. Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.

Þ