

объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

P17-99-14

В.В.Нитц*

ФАЗОВАЯ ДИАГРАММА ГЕМАТИТА В МАГНИТНОМ ПОЛЕ НИЖЕ ТОЧКИ МОРИНА

Направлено в «Journal of Magnetism and Magnetic Materials»

*E-mail: nietz@nf.jinr.ru

P17-99-14

Нитц В.В.

Фазовая диаграмма гематита в магнитном поле ниже точки Морина

Приведена фазовая диаграмма гематита (α-Fe₂O₃) во внешнем магнитном поле ниже точки Морина, полученная на основании известных значений констант взаимодействия.

Работа выполнена в Лаборатории нейтронной физики им. И.М.Франка ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 1999

Перевод автора

P17-99-14

Nietz V.V. Phase Diagram of Hematite in Magnetic Field below the Morin Temperature

The phase diagram of hematite $(\alpha - Fe_2O_3)$ in an external magnetic field below the Morin point, obtained from the known magnitudes of interaction constants, is given.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR.

1. Введение

Двадцать пять - тридцать лет назад публиковалось множество теоретических и экспериментальных работ по изучению поведения антиферромагнетика α -Fe₂O₃ в (кристаллическая структура гематита относится к магнитном поле ромбоэдрической сингонии с пространственной группой $D_{3d}^6 - R\overline{3}c$). Тогда же, исходя из общих соображений, следующих из симметрии кристалла, была построена фазовая диаграмма гематита [1,2]. Эта работа имела в основном качественный характер, и полученная диаграмма не противоречила известным экспериментальным данным. Однако значительно позднее численные расчеты [3] с конкретными значениями констант взаимодействия позволили обнаружить на диаграмме новые и нетривиальные особенности, причем в температурной области, в которой все казалось значительно более простым.

Настоящая работа представляет собой уточнение и развитие расчетов, представленных в [3]. Основные константы взаимодействия гематита достаточно хорошо известны для того, чтобы попытаться построить полную и более точную фазовую диаграмму во внешнем магнитном поле ниже точки Морина ($T_M = 260 \ K$). Представлены результаты расчета такой диаграммы в координатах ($H_{\mu}H_{\nu}T$), ($H_{x}H_{\nu}T$) и ($H_{x}H_{\nu}T$) (как обычно, выбрана прямоугольная система координат с осью x, направленной по одной из осей второго порядка, и осью z, параллельной ромбоэдрической оси кристалла). Существенной особенностью этой работы является значительно более строгий учет симметрии фазовых состояний, чем в [1] и в большинстве других исследований гематита, в которых так или иначе затрагивались вопросы о магнитных фазовых состояниях и фазовых переходах между ними.

2. Термодинамический потенциал и константы взаимодействия

Термодинамический потенциал с инвариантами, которые могут определять характер переходов ниже точки Морина и будут рассматриваться в данной работе, имеет вид [4]

$$\Phi = \frac{A}{2}l^{2} + \frac{C}{4}l^{4} + \frac{B}{2}m^{2} + \frac{D}{2}(\mathbf{Im})^{2} - \frac{a}{2}l_{z}^{2} - \frac{g}{4}l_{z}^{4} + \frac{b}{2}m_{z}^{2} + \beta(l_{x}m_{y} - l_{y}m_{x}) - (\mathbf{mH}) + \frac{d}{2i}\left[\left(l_{x} + il_{y}\right)^{3} - \left(l_{x} - il_{y}\right)^{3}\right]l_{z} + \frac{f}{2}\left[\left(l_{x} + il_{y}\right)^{3} + \left(l_{x} - il_{y}\right)^{3}\right]m_{z} + \frac{e}{2}\left[\left(l_{x} + il_{y}\right)^{6} + \left(l_{x} - il_{y}\right)^{6}\right]$$
(1)

(здесь $\mathbf{m} = (\mathbf{M}_1 + \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_4)(4M_0)^{-1}$, $\mathbf{l} = (\mathbf{M}_1 - \mathbf{M}_2 - \mathbf{M}_3 + \mathbf{M}_4)(4M_0)^{-1}$, где M_0 - намагниченность каждой из четырех подрешеток железа при отсутствии поля).

Минимизируя выражение (1) относительно m, получаем

$$m_{x} = K(l_{z}^{2}) \times \left[h_{x}(B+Dl^{2}) - D(hl)l_{x} - \frac{Db}{B+b}l_{z}(h_{x}l_{z} - h_{z}l_{x})\right],$$
 (2a)

$$m_{y} = K(l_{z}^{2}) \times \left[h_{y}(B + Dl^{2}) - D(hl)l_{y} - \frac{Db}{B + b}l_{z}(h_{y}l_{z} - h_{z}l_{y}) \right],$$
(26)

$$m_{z} = K(l_{z}^{2}) \times \left[h_{z}(B+Dl^{2}) - D(hl)l_{z}\right] \frac{B}{B+b},$$
(2B)

где $K(l_z^2) = \left[B\left(B+Dl^2-\frac{Db}{B+b}l_z^2\right)\right]^{-1}$, **h** - эффективное поле с компонентами $h_x = H_x + \beta sin\theta sin\phi$, $h_y = H_y - \beta sin\theta cos\phi$, $h_z = H_z - f sin^3 \theta cos 3\phi$, θ - угол между

вектором I и осью z, ϕ - угол между проекцией I на плоскость xy и осью x. В основных расчетах фазовой диаграммы последние два инварианта в потенциале (1) не учитываются. Оценка их влияния сделана в конце статьи.

Полагая |1|=1 и подставляя выражения (2) в (1), получим (при f = e = 0) зависимость потенциала только от углов, определяющих направление вектора I:

$$\begin{split} \Phi(\theta,\phi) &= -\frac{a}{2}\cos^2\theta - \frac{g}{4}\cos^4\theta - \frac{B(B+D)}{2P^2(\theta)} \Big[(B+D) \big(Q(\phi) + R(\theta,\phi) + H_z^2 \big) - \\ &- D \big(S(\phi)\sin\theta + H_z\cos\theta \big)^2 \Big] - \frac{b}{2P^2(\theta)} \Big\{ B^2 \Big[2Q(\phi) + R(\theta,\phi) + H_z^2 \Big] + \\ &+ D^2 \sin^2\theta \Big[2R(\theta,\phi) + (S(\phi)\cos\theta - H_z\sin\theta)^2 \Big] + \\ &+ 2BD \Big[Q(\phi) + R(\theta,\phi) + H_z^2\sin^2\theta - S(\phi)H_z\sin\theta\cos\theta \Big] \Big\} - \\ &- \frac{b^2 (B+D\sin^2\theta)}{2BP^2(\theta)} \Big[BQ(\phi) + (B+D\sin^2\theta)R(\theta,\phi) \Big] + d\sin^3\theta\cos\theta\sin3\phi, \end{split}$$

 $P(\theta) = B(B+D) + b(B+D\sin^2\theta), Q(\phi) = H_x^2 \cos^2 \phi + H_y^2 \sin^2 \phi,$ $R(\theta,\phi) = (H_x \sin\phi - H_y \cos\phi + \beta \sin\theta)^2, S(\phi) = H_x \cos\phi + H_y \sin\phi.$

Из (2) следует, что значения магнитных восприимчивостей равны: $\chi_{xx}(\theta = 0) = \chi_{yy}(\theta = 0) = \chi_{xx}(\theta = \pi/2) = \chi_{yy}(\theta = \pi/2) = 1/B; \chi_{zz}(\theta = 0) = 1/(B+D+b), \chi_{zz}(\theta = \pi/2) = 1/(B+b).$

Используя значение $\chi_{xx}(\theta = \pi/2) = 20.3 \times 10^6 \text{ emu}/(g \cdot Oe)$ из работы [5], получаем В = 17.14×10⁶ Oe. Далее, исходя из значения $m_0 = 0.4 \text{ emu}/g$ из этой же работы, имеем $\beta = B/m_0 = 19.7 \times 10^3$ Oe. Различие между величинами $\chi_{zz}(\theta = \pi/2)$ и $\chi_{L}(\theta = \pi/2)$ и, следовательно, существенное значение константы b можно считать достаточно хорошо установленным. В работе [6] приводятся значения $\chi_{zz}(\theta = \pi/2) = 17.5 \times 10^6$ и $\chi_{L}(\theta = \pi/2) = 19.5 \times 10^6 \text{ erg}/(Gs \cdot S \cdot Oe)$. Различие между этими величинами восприимчивости подтверждается также работой [7]. Исходя из этого, в расчетах используется $b = 1.9 \times 10^6$ Oe (в [3] пренебрегалось инвариантом $\frac{b}{2}m_2^2$).

В данной работе использована температурная зависимость продольной восприимчивости $\chi_{zz}(\theta = 0)$ и, соответственно, константы взаимодействия *D*, исходя из теории молекулярного поля с двумя магнитными подрешетками при значении постоянной Кюри-Вейсса $\Theta = -2000 K$.

Для определения температурной зависимости констант анизотропии *a* и *g* могут служить измерения критических значений поля спин-флоп фазового перехода и фазового перехода в поле, перпендикулярном ромбоэдрической оси. Известно несколько таких измерений [8-15], выполненных с различной степенью точности, обусловленной качеством измерений и качеством образцов. Наиболее достоверными и полными представляются результаты работы [12]. Использование выбранных таким образом констант взаимодействия соответствует отсутствию

AMETONRENG

области при низких температурах, в которой фазовый переход в поле *H*, был бы переходом второго рода.

Следует отметить, что при варьировании сочетания констант *B*, *b* и β в пределах, допускаемых другими известными экспериментальными работами, можно получить фазовый переход второго рода при низких температурах. Тем не менее нам представляется более правильным использовать в расчетах фазовой диаграммы данные работ [5,12], в которой почти все необходимые константы получены на одном и том же образце, и тем самым полагать, что в поле H_y в диапазоне от 0 до T_M происходит переход первого рода.

Приравнивая значения потенциалов двух состояний, соответствующих фазовым переходам первого рода в поле $(0, H_z, 0)$ и $(0, 0, H_z)$ при d = 0, и исходя при этом из значений критических полей, приведенных в статьях [5,12], получаем температурные зависимости констант анизотропии *a* и *g*, показанные на **рис.1**.

Рис.1. Температурная зависимость констант анизотропии а и g. Точками нанесены значения, полученные исходя из значений критических полей фазовых переходов первого рода в поле Н, и Н. [5,12], при пренебрежении анизотропией в базисной плоскости. значения, Крестиками показаны полученные при учете инварианта $d \sin^3 \theta \cos \theta \sin 3\phi$. B анизотропии расчетах использованы значения, полученные фитированием по точкам (сплошная линия)

Рис.2. Зависимость от поля амплитудных значений тригонального момента вращения при различных температурах: 1 - 254.5 K, 2 - 250.5 K, 3 -248 K, 4 - 245 K, 5 - 241 K, 6 - 229 K, 7 -205 K, 8 - 77 K [16]. Магнитное поле перпендикулярно ромбоэдрической оси

Для определения температурной зависимости константы *d* использованы измерения тригональной анизотропии в плоскости (111) ниже точки Морина, произведенные методом вращающего момента [16] (смотри рис.2). При действии в

базисной плоскости магнитного поля, существенно большего, чем эффективное поле анизотропии в этой плоскости (H >>/d/), как это имело место в данной работе, вектор антиферромагнетизма можно считать перпендикулярным направлению поля, т.е. $\phi = \frac{\pi}{2} + \phi_H$, где ϕ_H - угол между H и осью x. В таком случае тригональный момент вращения

$$L = \frac{\partial \Phi}{\partial \phi} = 3d\sin^3 \theta_B \cos \theta_B \sin 3\phi_H = L_B \sin 3\phi_H , \qquad (4)$$

где θ_B - значения угла θ , соответствующие работе [16], L_B - амплитудные значения момента вращения, представленные на рис.2. Изменение угла θ при действии магнитного поля в плоскости (*xy*) вдали от точки фазового перехода пренебрежимо мало зависит от угла между направлением поля и осью x. Поэтому можно использовать для определения углов θ_B потенциал в поле $(0, H_x, 0)$ (в этом случае $\phi = \pi/2$);

$$\Phi(\theta_B) = -\frac{a}{2}\cos^2\theta_B - \frac{g}{4}\cos^4\theta_B - \frac{1}{2B}(H_x + \beta\sin^2\theta_B) + d\sin^3\theta_B\cos\theta_B.$$
(5)

Решая систему уравнений, состоящую из уравнения $\frac{d\Phi(\theta_B)}{d\theta_B} = 0$, соотношения

 $3d \sin^3 \theta_B \cos \theta_B = L_B$ и уравнений, используемых ранее для определения констант *a* и *g*, но уже с учетом инварианта $d \sin^3 \theta \cos \theta \sin 3\phi$, получаем при T = 77, 205, 229, 241 и 245K величины *d*, представленные на **рис.3**, и скорректированные значения *a* и *g*, которые также показаны на **рис.1**. Как видно, новые значения коэффициентов *a* и *g* практически не отличаются, в пределах точности их определения, от первоначальных, за исключением значений вблизи T = 250 K. В расчетах фазовых диаграмм использованы значения *a* и *g*, полученные фитированием по точкам на **рис.1**, без учета инварианта $d \sin^3 \theta \cos \theta \sin 3\phi$, и значения *d*, также полученные фитированием по точкам на **рис.1**. При этом значение d = 3.35 Oe при T = 0 K принято более-менее произвольно.

Рис.3. Значения константы d в инварианте $d \sin^3 \theta \cos \theta \sin 3\varphi$ при T =77, 205, 229, 241 и 245 K, полученные из измерений крутящего момента во внешнем магнитном поле [16], с учетом значений критических полей фазовых переходов первого рода в поле H_y и H_z [5] (значение d = 3.35 Oe при T = 0 K нанесено более - менее произвольно). Непрерывная линия проведена путем фитирования по этим значениям d

О численных значениях коэффициентов анизотропии f и е известно только, что

при комнатной температуре $f \cong 20$ Oe [17], а коэффициент е, если исходить из результатов измерений вращающего момента в магнитном поле, перпендикулярном ромбоэдрической оси [16,1], равен около 10^3 Oe при температуре, немного превышающей точку Морина, и довольно резко увеличивается с понижением температуры.

3. Фазовая диаграмма (H, H, T)

В отсутствие магнитного поля при $T < T_M = 260 K$ магнитные моменты ионов железа направлены по ромбоздрической оси кристалла. Это состояние коллинеарного антиферромагнетизма с симметрией $(3_z^+ 2_x^+ I^+) I_z$ (ось третьего порядка, ось второго порядка и центр инверсии, знаки (+) и (-) здесь и далее означают, соответственно, четность и нечетность относительно элемента симметрии; только $I_z \neq 0$).

В двухкомпонентном поле (H_{i}, H_{z}) могут реализоваться два состояния симметрии: состояние *I*, в котором все компоненты векторов *I* и **m** не равны нулю, при этом единственный элемент симметрии: *I*⁺, и состояние *II* с элементами симметрии $(2_{z}^{-}I^{+})l_{x}m_{v}m_{z}$ (указаны не равные нулю компоненты векторов **m** и *I*)

[1,18]. Для первого из этих состояний $0 < \theta < \frac{\pi}{2}$, $\pi < \phi < \frac{3\pi}{2}$ (рассматриваем поведение домена, у которого $\theta = 0$ при H = 0), для состояния *II*, реализуемого при достаточно большой величине поля: $\theta = \frac{\pi}{2}$, $\phi = \pi$. Исходя из симметрии состояний, видим, что между этими состояниями возможны переходы первого и второго рода.

Анализ функции $\Phi(\theta,\varphi)_{yz}$ (при f = e = 0) приводит к фазовой диаграмме, соответствующей переходам между этими состояниями в температурном диапазоне от 0 до 247 K, которая представлена на **рис.4**. Тонкими линиями обозначены изотермы фазовых переходов. Часть поверхности, ограниченная линиями CD и FK, является поверхностью фазового равновесия при переходе первого рода между состояниями I и II. Остальная часть поверхности, между FK и плоскостью (H₂T) (при H_y = 0), является поверхностью фазового перехода второго рода. Узкая полоска BAEK, прилегающая к плоскости (H₂T), расположена под поверхностью перехода второго рода и только при повышении температуры и приближении к точке K пересекается с поверхностью перехода второго рода. Эта полоска является поверхностью перехода первого рода I \leftrightarrow III, где III - состояние,

совпадающее с I по симметрии и отличающееся от него значениями углов θ и ϕ . Отрезок ЕК ограничивает поверхность перехода первого рода и является, таким образом, критической линией перехода первого рода. Отрезок FK, разделяющий поверхности первого и второго рода, является трикритической линией.

На рис.5 участок фазовой диаграммы вблизи точки К показан более детально. По мере роста температуры каждая изотерма рq фазового перехода второго рода сближается с соответствующей изотермой ае перехода первого рода. Начиная с температуры, соответствующей точке L, они пересекаются, и далее каждый отрезок, заключенный между линиями LM и LK, является изотермой прямого фазового перехода первого рода *I* → *II* (без промежуточного состояния *III*).

Рис.4. Фазовая диаграмма (*H*,*H*,*T*). Здесь и на всех последующих рисунках компоненты магнитного поля обозначаются в *kOe*

В точке К на фазовой диаграмме (рис.4 и 5) сходятся трикритическая линия FK, критическая линия EK и линия тройных точек LK.

Параметры точки L равны:

 $T = 231.5 \text{ K}, H_y = 1.46 \text{ kOe}, H_z = 41.369 \text{ kOe}, \theta = \frac{\pi}{2}, \phi = \pi$.

Параметры "суперкритической" точки К:

 $T = 242.25 \text{ K}, H_y = 11.28 \text{ kOe}, H_z = 31.65 \text{ kOe}, \theta = \frac{\pi}{2}, \phi = \pi$.

Непосредственно в точке К остается только одно фазовое состояние с симметрией, совпадающей с симметрией состояния II.

При температуре, превышающей температуру точки К, при любом соотношении между H_v и H_z может происходить только переход первого рода.

На рис.6 и 7 представлено одно из сечений фазовой диаграммы, при T = 100 K, а на рис.8 - диаграммы изменения основных характеристик состояний при T = 235 K, $H_y < 8 kOe$. В последнем случае изотерма pq пересекает изотерму ае в точках m и k. В результате фазовый переход первого рода $I \rightarrow III$ происходит на отрезках аm и

ке, а на отрезке mk имеет место непосредственный переход $I \leftrightarrow II$ первого рода. Точки m и k, в каждой из которых сходятся две линии перехода первого рода и одна линия перехода второго рода, являются своеобразными тройными точками. Соответственно, на полной фазовой диаграмме рис.4 и 5 MLK это линия тройных точек.

Рис.5. Более детальное представление фазовой диаграммы (H_yH_zT) вблизи "суперкритической" точки K, при 224 K < T < 247 K. На рисунке: pq - одна из изотерм фазового перехода второго рода III \leftrightarrow II, ае - одна из изотерм перехода первого рода I \leftrightarrow III, еК - часть критической линии перехода первого рода, Kf - часть трикритической линии. При повышении температуры, начиная с точки L, поверхность перехода второго рода пересекается с поверхностью перехода первого рода I \leftrightarrow III и появляется поверхность перехода первого рода I \leftrightarrow II, ограниченная "тройной" линией MLK

Допустим, что при $T = 235 \ K$ компонента поля H_z увеличивается при постоянном значении компоненты H_y . Такая температура соответствует положению на фазовой диаграмме между точками L и K. На рис.9 и рис.10 представлены части двух фазовых траекторий, при $H_y = 2 \ kOe$ и $H_y = 4.5 \ kOe$. По вертикальной оси отложены значения энергии потенциальных минимумов относительно энергии конечного состояния II ($\theta = \frac{\pi}{2}, \phi = \pi$). (При возрастании поля H_z разность энергий рассматриваемого состояния и состояния II монотонно растет, как это видно на рис.11.) По мере роста поля H_z знергия минимума состояния I относительно энергии состояния II растет по линии AB, где B на рис.9 и рис.10 это конечная точка существования этого минимума. При некотором

Фазовая диаграмма Puc.6. $(H_{\mu}H_{z})$ при T = 100 \hat{K} . На коротком отрезке ае достигается фазовое равновесие при переходе первого рода $I \leftrightarrow III$. F_{ter} -4.0 трикритическая точка, слева от которой - линия фазового перехода I \leftrightarrow II второго рода, справа - линия фазового равновесия при переходе $I \leftrightarrow II$ первого рода. Показаны значения углов $(\theta_{I_e}, \phi_{I_e})$ для состояния I, соответствующие фазовому равновесию в высокополевой части диаграммы. Для состояния $II: \theta = \frac{\pi}{2}, \phi = \pi$

)

Рис.7. Диаграмма изменения характеристик фазовых состояний в поле (H_{ν}, H_{z}) при $T = 100 K, H_{\nu} <$ 8 kOe. Отрезок ае обозначает значения поля фазового равновесия при переходе первого рода $I \leftrightarrow III$, отрезок se это граница лабильности состояния III, а отрезок te - граница лабильности состояния І. На линии ра происходит переход второго рода III -> II. Состояния I и III тождественны по симметрии. е - критическая точка. На рис.7(б) показаны соответствующие изменения угловых параметров фазовых состояний: θ_{μ} , ϕ_{μ} , θ_{3} , ϕ_{3} значения углов в точках лабильности для состояний I и III соответственно. Остальные кривые на рис.7(б), с индексом е, соответствуют точкам фазового равновесия. Добавлена кривая gh, соответствующая фазовому переходу $III \leftrightarrow II$ второго рода при f =20 Oe, e = 0.01 Oe

Рис.8. Диаграмма изменения основных характеристик состояний в поле (H_y, H_z) при T = 235 K, $H_y < 8$ kOe. Обозначения подобны рис.7. Отрезок mk на рис.8(а) обозначает компоненты поля фазового равновесия при переходе $I \leftrightarrow II$ первого рода

02

0.0

-0.2

-0.4

-0.6

-0 B

-10

1.6

0 1.2

Ε

Рис.9. Фазовая траектория при росте компоненты поля H_z в случае T = 235 K, $H_y = 2 kOe$ **Рис.10.** Фазовая траектория при росте компоненты поля H_z в случае T = 235 K, $H_y = 4.5 kOe$

8

Рис.12. Температурная зависимость H_y и H_z - координат особых точек фазовой диаграммы (H_yH_zT) : H_{y0} - точки фазового равновесия при переходе первого рода в поле $(\partial H_y \partial)$, H_{z0} - точки фазового равновесия при переходе первого рода в поле $(\partial H_y \partial)$, (H_{yer}, H_{zer}) - линия критических точек перехода первого рода (отрезок ЕК на рис.4), (H_{yter}, H_{zter}) - трикритическая линия (отрезок FK на рис.4), (H_{yurb}, H_{zurl}) - первая линия тройных точек (отрезок LM на рис.5), (H_{yurb}, H_{zurl}) - вторая линия тройных точек (отрезок LK на рис.5). К -"суперкритическая" точка; H_{zurl} - критическое значение поля, соответствующее фазовому переходу второго рода III \leftrightarrow II в поле (0,0, H_z) при учете значений коэффициентов e = 0.01 Oe, f = 20 Oe. На рис.12(в) и 12(г) изменение H_y и H_z - координат показано в более крупном масштабе в высокотемпературной части фазовой диаграммы

определенном значении *H*₂ в точке C зарождается минимум состояния *III*, который перемещается по траектории CD, также увеличиваясь по энергии, в точке D этот

минимум принимает значения $\theta = \frac{\pi}{2}$, $\phi = \pi$, соответствующие состоянию *II*.

На рис.9 при $H_y = 2 \ kOe$ (сопоставьте с рис.8) осуществляется непосредственный переход $I \rightarrow II$ первого рода, показанный условно стрелкой FD. На рис.10, при $H_y = 4.5 \ kOe$, вначале происходит переход $I \rightarrow III$ первого рода (по стрелке FG), а затем -перемещение по траектории GD и переход $II \rightarrow II$ второго рода в точке D.

Температурная зависимость координат основных критических точек фазовой диаграммы (H_*H,T) представлена на рис.12.

4. Фазовая диаграмма (H,H,T)

В этом случае реализуется только одно состояние симметрии, (I^*) , в котором все компоненты векторов l и m не равны нулю. Следовательно, возможны только переходы первого рода. Фазовая диаграмма приведена на **рис.13**. Использовались те же значения констант анизотропии, что и в случае (H_vH_zT) .

Как следует из приведенных данных, поведение кристалла существенно зависит от угла между проекцией внешнего поля на плоскость (xy) и осью второго порядка. Очевидно, если к основным компонентам (H_{x}, H_{z}) добавлена относительно малая по величине компонента H_{x} , фазовая диаграмма в переменных (H_{xy}, H_{z}, T) , где H_{xy} - проекция поля на плоскость (xy), в количественном отношении мало отличается от рис.4, но линия FK превращается в критическую линию фазовых переходов первого рода, а область, ограничиваемая этой линией, становится областью изменения ориентации вектора антиферромагнетизма без фазового перехода. С ростом компоненты H_x относительно H_y эта область будет изменяться и в пределе, при $H_y = 0$, фазовая диаграмма примет вид **рис.13**.

Тонкими линиями на диаграмме показаны изотермы фазового перехода первого рода. Линия ЕКС, ограничивая поверхность перехода, является критической линией перехода первого рода. Как и в случае поля (H_y, H_z) , при относительно низких температурах область перехода первого рода охватывает узкую полосу, в данном случае при малых значениях H_x , а вместо перехода второго рода имеем область, в которой поворот осуществляется без фазового перехода. На **рис.14** представлены координаты критической линии ЕКС.

Координаты предельной точки К (на рис.13), ниже которой (по температуре) становится возможным поворот вектора антиферромагнетизма без фазового перехода, равны: T = 241.5 K, $H_x = 22.89$ kOe, $H_z = 27.06$ kOe. Отрезок CD на фазовой диаграмме представляет собой часть линии фазового равновесия при переходе первого рода в поле $(H_x, 0, 0)$. Координаты критической точки в поле $(H_x, 0, 0)$ (точка С при $H_z = 0$): T = 236.5 K, $H_z = 45$ kOe.

В качестве примера на рис.15 показан характер изменения характеристик состояний в поле (H_x, H_z) при T = 240 К. На двухмерной диаграмме при этой температуре имеем две критические точки перехода первого рода.

Рис.15. Диаграмма изменения основных характеристик состояний в поле (H, H) при T = 240 К. Отрезки ае и fg обозначают значения поля фазового равновесия при фазовом переходе первого рода, отрезки se и te это границы лабильности двух состояний. е и f - две критические точки. На рис.15(б) 2.4 показано соответствующее изменение угловых параметров состояний. $\theta_{l}, \phi_{l}, \theta_{z}$ *ф*₂ - значения углов в точках лабильности - 2.0 для двух состояний соответственно. Остальные кривые на рис.15(б) (с индексом е) соответствуют точкам фазового равновесия

5. Фазовая диаграмма (*H_xH_rT*)

В этом случае термодинамический потенциал является периодической функцией относительно вращения магнитного поля вокруг ромбоэдрической оси кристалла. Период равен $\frac{2\pi}{3}$. При этом, если константа d > 0, то при условии $-\frac{\pi}{6} < \alpha < \frac{\pi}{6}$, где $\alpha -$ угол между направлением поля H и осью x, термодинамически устойчивым является домен, у которого в начальном состоянии (при H = 0) $\theta_0 = 0$. В следующем интервале углов $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ устойчив домен с $\theta_0 = \pi$ и так далее. Причем термодинамический потенциал является четной функцией относительно значений $\alpha = 0, \frac{\pi}{3}, -\frac{\pi}{3}$... Поэтому удобно и достаточно рассмотреть фазовую днаграмму в переменных (H, α, T), ограничив значения α диапазоном $\left[0, \frac{\pi}{6}\right]$. Изотермические сечения такой диаграммы представлены на рис.16. Линия AB. ограничивающая поверхность фазового равновесия при переходе первого рода, является критической линией. Когда поле направлено точно по одной из осей второго порядка ($\alpha = 0$), фазовое равновесие при переходе первого рода достигается на отрезке BC, оканчивающемся критической точкой B. Если поле перпендикулярно

Рис.16. Фазовая диаграмма ($H\alpha T$). H - абсолютная величина магнитного поля, направленного перпендикулярно ромбоздрической оси кристалла, α - угол между направлением поля и осью второго порядка, совпадающей в данном случае с осью x. Значение $\alpha = \pi/6$ эквивалентно направлению поля вдоль оси, перпендикулярной оси второго порядка. Тонкими линиями показаны изотермы фазового перехода $I \leftrightarrow I$ первого

рода. Отрезок ВС является частью линии фазового перехода первого рода в поле $(H_x, 0, 0)$, а DE - соответствует линии перехода первого рода в поле $(0, H_y, 0)$. Линия AB, ограничивающая поверхность фазового перехода первого рода, является критической линией

одной из осей второго порядка ($\alpha = \frac{\pi}{6}$), фазовый переход первого рода осуществляется на линии DE. Координаты критической точки B, полученные в расчетах: $T \cong 237$ K, $H \cong 44.22$ kOe. На рис.17 приведена температурная зависимость координат критической линии AB, а также критических значений в случаях фазовых переходов первого рода в поле ($0, H_x, 0$) и ($0, H_y, 0$) (при $\alpha = 0$ и $\alpha = \frac{\pi}{6}$ соответственно). В высокотемпературной части фазовой диаграммы все три значения критических полей (H_{cr} H_{x0} и H_{y0}) практически неразличимы.

6. Замечания по результатам расчетов

Как видим, фазовая диаграмма гематита во внешнем магнитном поле богата многими особенностями, включая переходы первого и второго рода, линии критических, тройных и трикритических точек. Обусловлено это, прежде всего, симметрией кристаллической решетки и специфическим характером температурной зависимости энергии анизотропии. В математическом отношении полученные в расчетах особенности ниже точки Морина связаны с использованием анизотропии $d \sin^3 \theta \cos \theta \sin 3\phi$, учет которого инварианта является необходимым. При пренебрежении этим принципиально членом термодинамическом потенциале не только допускается искажение истинной симметрии кристалла, но и изменяется характер фазовой диаграммы (H_{y}, H_{z}, T) при относительно малых значениях компоненты поля Н., В статье [3], в которой пренебрегалось этим инвариантом, также проявились многие особенности, общие с настоящей работой, в том числе наличие состояния Ш при определенных значениях Н, и Н, обусловленный этим переход первого рода, линия критических точек и, так называемая, "суперкритическая" точка, эквивалентная точке К на рис.4. Однако только при учете инварианта $d \sin^3 \theta \cos \theta \sin 3\phi$ проявляется особенность гематита, которая состоит в том, что при сколь угодно малом (но не равном нулю) значении коэффициента d есть конечный диапазон значений компоненты H_{ν} , $0 < H_{\nu} < H_{\nu}^*$, в котором при росте компоненты поля H_z вначале происходит переход первого рода в промежуточное состояние III, и только затем, при больших значениях H_{2} , переход второго рода в конечное фазовое состояние, в котором $\theta = \frac{\pi}{2}, \phi = \pi$.

Однако стремление значения компоненты H_{z} для второго перехода к бесконечности при $H_{y} \rightarrow 0$ ("усы" на рис.4 и 5) является некорректным результатом расчетов. Так получилось вследствие пренебрежения инвариантами $fm_{z}\sin^{3}\theta\cos 3\phi$ и $e\sin^{6}\theta\cos 6\phi$ в термодинамическом потенциале. К сожалению, неизвестна температурная зависимость коэффициентов f и e. Поэтому остается только возможность оценить влияние этих инвариантов на вид фазовой диаграммы ($H_{y}H_{z}T$). На рис.7(а) показана линия gh перехода второго рода III \leftrightarrow II при T = 100 K, если f = 20 Oe; e = 0.01 Oe. Учет отмеченных дополнительных инвариантов практически не повлиял на ход линии фазового равновесия для перехода первого рода (отрезок ае), но несколько понизил кривую фазового перехода второго рода при малых значениях H_{y} . Появилась точка g перехода второго рода при $H_{z} \cong 88.44$ kOe. Таким образом, подтверждается 15 последовательность фазовых переходов в поле (0,0,H₂) ниже точки Морина, предсказанная еще в 1974 году [18]:

 $(3_z^+ I^+) l_z m_z \xrightarrow{1-st \text{ order}} (I^+) \xrightarrow{2-nd \text{ order}} (2_x^- I^+) l_x m_y m_z \xrightarrow{1-st \text{ order}} (3_z^+ 2_x^- I^+) m_z$

Как видно на рис.18, практически угол θ_3 в точке фазового перехода $I \leftrightarrow III$ в поле $(0,0,H_z)$ мало отличается от конечного значения $\pi/2$ в состоянии II.

Рис.18. Температурная зависимость угла θ_3 для состояния III и критического значения магнитного поля в точке фазового равновесия при переходе $I \leftrightarrow III$ в поле $(0,0,H_2)$, если учитывается инвариант анизотропии. $d \sin^3 \theta \cos \theta \sin 3\phi$. При всех значениях температуры в точке перехода $\phi_3 = 3.66519 \ rad = 210^{\circ}$ (если f = e = 0)

Основные различия между диаграммами (H_x, H_z, T) и (H_y, H_z, T) обусловлены именно членом $d\sin^3\theta\cos\theta\sin3\phi$ в термодинамическом потенциале. И тот факт, что положение критической точки на температурной шкале в случае поля, перпендикулярного ромбоэдрической оси кристалла, зависит от угла между направлением поля и осью второго порядка, также определяется, главным образом, этим инвариантом.

В большинстве работ, в которых анализировался характер фазовых переходов при $T < T_M$, инвариант $d \sin^3 \theta \cos \theta \sin 3\phi$ не принимался во внимание, и полагалось, что характер фазовых переходов во внешнем поле достаточно ниже точки Морина вообще не зависит от направления проекции поля на базисную плоскость относительно оси второго порядка. Этим самым допускалась принципиальная ошибка в интерпретации экспериментальных результатов. В частности, искалась трикритическая точка там, где вообще не может быть перехода второго рода.

Во всех представленных в настоящей работе расчетах принималось, что d > 0. Однако в действительности, как это было показано в дифракционных измерениях [19,20] с магнитным полем, d < 0. Для трансформации результатов расчета в поле (H_y, H_z) при переходе от $d > 0 \ \kappa \ d < 0$ достаточно просто изменить знак угла ϕ . В случае действия поля (H_x, H_z) два типа антиферромагнитных доменов не эквивалентны по энергии. Если $H_x > 0$, то при d > 0 энергия доменов, у которых $cos \theta > 0$, меньше, чем у доменов с начальным (при H = 0) значением $\theta = \pi$, и

наоборот при d < 0. Для перехода к рассмотрению термодинамически устойчивых доменов при d < 0 достаточно в представленных результатах произвести трансформацию $\theta \rightarrow (\pi - \theta)$. И наконец, в поле (H_x, H_y) трансформация к

значению d < 0 производится сдвигом $\alpha \rightarrow \alpha + \frac{\pi}{2}$

Рис.19. Зависимости угла θ и намагни-ченностей от величины поля Н. (непре-рывные линии) и Н, (пунктирные линии) при Н. = 0. Температуры: 1 - 205 K. 2 - 230 K. 3 - 236 K. 4 - 245 K. 5 - 247 K. В случае Н, при всех значениях температуры происходит фазовый переход первого рода. При этом угол в •скачком увеличивается до значения $\pi/2$. В поле Н. имеем фазовые переходы первого рода только при T > 236 K, при меньших значениях поля происходит поворот вектора антиферромагнетизма без фазового перехода, т.е. при непрерывном увеличении угла θ . Четырьмя точками на рис. 19(а) при T =245 и 247 К помечены значения угла Ө для двух состояний при фазовом равновесии в поле H_x. В случае H_y вектор I строго перпендикулярен оси x, т.е. угол $\phi = \pi/2$, а в поле H_r очень мало отклоняется от плоскости хг (например, при T = 247 K, когда это отклонение максимально для приведенных температур, в точке фазового перехода угол ф для первой, низкополевой фазы

отличается от π не более 0.2%)

Однако полученные в расчетах особенности фазовой диаграммы гематита не являются легко наблюдаемыми в эксперименте. Во всяком случае, можно утверждать, что полученные здесь результаты не противоречат известным экспериментальным данным по гематиту, так же как и трудно найти какие-либо экспериментальные данные, подтверждающие справедливость основных новых результатов этой работы.

Для определения магнитной структуры фазовых состояний, индуцированных полем, и, в частности, для нахождения зависимости этой структуры от угла между проекцией поля на базисную плоскость и осью симметрии второго порядка (ось x) может быть использована дифракция нейтронов. На рис.19 приведены зависимости угла θ и намагниченности (вдоль магнитного поля) от величины поля для случаев (H_x , 0, 0) и ($0, H_y$, 0). Видно, что практически безнадежно пытаться наблюдать различие в намагниченности между этими случаями. Относительные изменения угла θ в области фазового перехода значительно больше, чем намагниченности. Подбором кристаллографических плоскостей для дифракции и геометрии взаимной ориентации магнитного поля и кристалла можно попытаться наблюдать различие в характере изменения угла θ в поле H_x и H_y . Заметим, что, в отличие от намагниченности, величина скачка от θ_i до $\pi/2$ в точке перехода $I \to II$ в

поле $(0, H_{\mu}, 0)$ почти не зависит от температуры в широком температурном диапазоне и начинает увеличиваться только непосредствено вблизи точки Морина (см. рис.20).

Рис.20. Температурная зависимость угла θ_I для состояния *I* в точке фазового равновесия при переходе $I \leftrightarrow II$ первого рода в поле $(0, H_v, 0)$

> Рис.21. Зависимость направления вектора антиферромагнетизма и намагниченности OT величины компоненты поля H_{r} при T = 0 K в наличия постоянной случае компоненты поля, перпендикулярной оси z. Сплошные линии соответствуют величине $H_{v} = 1$ kOe, а пунктирные - $H_r = 1 \ kOe$. Индексами 1x и 2x обозначены угловые координаты двух состояний, фигурирующих в фазовом переходе первого рода в поле (H_y, H_z) , а индексами Iy и Зу - состояний I и III в поле (Н, Н.). В последнем случае происходит еще второй переход, второго рода, при $H_z = 87.376 \ kOe$. Изменения намагниченности на графике почти неразличимы

Возможно, что при более сложной геометрии измерений, когда используется двухкомпонентное магнитное поле, дифракция нейтронов окажется более эффективной за счет различного характера изменения угла ϕ в поле H_x и H_y . На

рис.21 приведен такой пример. В этом случае в точке перехода под действием поля H_z угол θ меняется резко и почти одинаково в случаях H_x и H_y , причем величина скачка мало зависит от величины константы d. Однако характер изменения угла ϕ в поле (H_y, H_z) существенно отличается от случая поля (H_x, H_z) (в первом случае имеем два фазовых перехода: второго и первого рода). Это позволяет рассчитывать на возможность определения дифракцией нейтронов величины константы d. На рис.22 приведены зависимости от величины d ориентации вектора антиферромагнетизма в фазе III в точке перехода первого рода, а также критических значений поля для первого и второго фазового переходов при T = 0 K.

Рис.22. Зависимость от величины константы d угловых координат фазы III в точке перехода первого рода, а также критических значений поля H_z для перехода первого рода (H_{IIII}) и перехода второго рода (H_{IIIII) и перехода второго рода (H_{IIIIII) при наличии постоянной составляющей $H_y = 1 \ kOe$ при $T = 0 \ K$. Видно, что при $d < 1 \ Oe$ происходит фазовый переход $I \rightarrow II$ первого рода, минуя состояние III

Однако наибольший интерес при исследовании фазовой диаграммы гематита представляют не точные значения угловых координат различных фазовых состояний, а положение особых линий и точек на фазовой диаграмме. Очевидно, в обнаружении и исследовании этих особенностей можно рассчитывать только на методы, чувствительные к флуктуациям тех компонент намагниченности подрешеток, которые характерны для конкретных фазовых переходов. В частности, можно предполагать, что полезным в этом отношении будет критическое магнитное рассеяние нейтронов. Гематит с его богатым набором фазовых переходов в магнитном поле и соответствующих линий и точек аномальных флуктуаций, включая и "суперкритическую" точку, представляет собой очень подходящий объект для нейтронных исследований. В связи с этим отметим, что в настоящее время немного найдется работ по критическому магнитному рассеянию нейтронов в точках ориентационных фазовых переходов второго рода, типа "порядок - порядок", при наличии магнитного поля. Тем более очень редки исследования в области особых точек, таких как критические, трикритические и бикритические точки. Представляют собой интерес эксперименты по малоугловому критическому рассеянию с монокристаллическими образцами, имея в виду рассеяние вблизи брэгговских дифракционных отражений.

Литература

- М.Баланда, В.В.Нитц, "Фазовая диаграмма гематита в магнитном поле" ОИЯИ, P14-7974, P14-7986, Дубна, 1974.
- 2. М.Баланда, В.В.Нитц, Proceedings of the International Conference of Magnetism, August, 1973, Moskow, "Nauka", vol.V, p.290, 1974.
- 3. В.В.Нитц, "Суперкритическая" точка на фазовой диаграмме гематита во внешнем магнитном поле", ОИЯИ, P17-94-428; Дубна, 1994; Journal of Magnetism and Magnetic Materials, vol.153, 127-131,1996.
- 4. И.Е.Дзялошинский, ЖЭТФ, т.32, 1547, 1957.
- I.S.Jacobs, R.A.Beyerlein, S.Foner, J.P.Remeika, Intern. Journal of Magnetism, vol.1, 193, 1971.
- 6. T.Koneko, S.Abe, J.Phys.Soc.Japan, vol.20, 2001, 1965.
- 7. L.Neel, R.Pauthenet, C.R.Acad.Sci., Paris, vol.234, 2172, 1952.
- 8. P.J.Besser, A.H.Morrish, Phys.Letter, vol.13, 289, 1964.
- 9. Р.А.Восканян, Р.З.Левитин, В.А.Щуров, ЖЭТФ, т.53, 459, 1967.
- 10. N.Blum, A.J.Freeman, J.W.Strauser, L.Grodzins, Journ. of Appl. Phys., vol.36, 1169, 1965.
- 11. S.Foner, Proc. Intern. Conf. Magnetism, England 1964, p.438.
- 12. S.Foner, Y.Shapira, Phys. Letter, vol.29A, 276, 1969.
- 13. P.J.Flanders, S.Strikman, Solid State Comm., vol.3, 285, 1965.
- 14. G.Cinader, S. Strikman, Solid State Comm., vol.4, 459, 1966.
- 15. P.J.Flanders, Journ. of Appl. Phys., vol.40, 1247, 1969.
- 16. А.А.Богданов, ФТТ, т.14, 3362, 1972.

and the second second

- 17. P.J.Flanders, Journ. Appl. Phys., vol.43, 2430, 1972.
- 18. В.В.Нитц, "Фазовые состояния гематита в магнитном поле", ФТТ, т.16, 213, 1974.
- 19. П.С.Анцупов, Р.А.Восканян, Р.З.Левитин, С.Низиол, В.В.Нитц, Р.П.Озеров, Пак Гван О, С.Шафран, "Нейтронографическое исследование гематита в магнитном поле до 120 кЭ на ИБРе", Сообщение ОИЯИ, Р14-4548, Дубна, 1969; ФТТ, т.13, 56, 1971.
- 20. R.Z.Levitin, V.V.Nietz, S.Niziol, R.P.Ozerov, Solid State Communications, vol.6, 1665, 1969.

Рукопись поступила в издательский отдел 28 января 1999 года.