

СООБЩЕНИЯ ОБЪЕДИНЕННОГО Института Ядерных Исследований

Дубна

96-26

P17-96-26

Н.В.Выонг

ГИСТЕРЕЗИС ДИНАМИЧЕСКОЙ ВОСПРИИМЧИВОСТИ ПРИ ЦИКЛИРОВАНИИ ВНЕШНЕГО ПОСТОЯННОГО ПОЛЯ *H_{dc}* В ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКАХ

1. Введение

Высокотемпературные сверхпроводники (ВТСП) являются гранулярной системой, состоящей из гранульной области (ГО), встроенной в межгранульную область (МГО). Обе эти области взаимосвязаны и являются в отдельности сверхпроводником второго рода.

Особенностью, присущей ВТСП как системе в целом, является низкое значение плотности критического тока J_c и ее сильная зависимость от магнитного поля. Одним из наиболее четких следствий этой особенности является гистерезисный эффект, то есть сильная зависимость физических свойств ВТСП-образцов, например, транспортный критический ток [1, 2], магнитосопротивление [3], магнитная динамическая восприимчивость (ас-восприимчивость) [4] от предыстории внешнего магнитного поля.

Для исследования динамики магнитных потоков, проникающих в гранулярную систему ВТСП, мощным инструментом является измерение ас-восприимчивости. Она, по сути дела, возникает вследствие гистерезиса ВТСП-образца под воздействием измерительного переменного магнитного поля H_{ac} . Мы обозначим его как ас-гистерезис.

Для ВТСП-образцов ас-восприимчивость, измеряемая при циклировании постоянного внешнего магнитного поля H_{dc} , приобретает вторичный гистерезисный эффект, который обозначается через dc-гистерезис ас-восприимчивости (в дальнейшем будем называть его dc-гистерезис).

Ас-восприимчивость и ее температурные зависимости в ВТСП-образцах позволяет нам исследовать свойства центров пиннинга [5], стеклоподобное поведение образца [6], линию необратимости [7], различные режимы распространения магнитных потоков в МГО и ГО образца [8]. С ее помощью можно количественно оценить параметры центров пиннинга и некоторые характеристики образца, такие как объемные доли МГО и ГО, средний размер гранул [5].

CARGIER LICENCES, C. C. SHEJIHOTEKA

Dc-гистерезис дает нам дополнительную информацию о динамике магнитных потоков в присутствии H_{dc} и взаимодействии двух областей МГО и ГО, которое возникает под воздействием H_{dc} .

Ким и соавторы в работе [4] показали dc-гистерезис в керамике $YBa_2Cu_3O_{7-\delta}$ (YBCO), однако в своей теории авторы не дали объяснения этому эффекту. Тайлор и др. [9] представили экспериментальные данные dc-гистерезиса в керамике YBCO и качественно описали его в рамках модели критического состояния (МКС) с предположением о том, что плотность критического тока J_c остается постоянной под воздействием H_{ac} , но зависит от H_{dc} , как $J_c \sim 1/H_{dc}^{\beta}$. Этого теоретического подхода придерживались Ванг и др. [10] при исследовании исходной ветви dcгистерезиса (то есть зависимость ас-восприимчивости первоначально охлаждаемого в нулевом поле образца (ZFC-образец) при возрастании Н_{dc} от нуля до своего максимального значения) композита 50%Y₂BaCuO₅ - 50%YBCO. Такой же подход применили Шан и др. [11], представив детальные данные dc-гистерезиса в YBCO-керамиках с различным содержанием кислорода. Причины dc-гистерезиса авторы [9,10,11,12] приписали захвату магнитных потоков в гранулах и влиянию диамагнитного состояния ГО на профили локального поля внутри МГО.

Отмечено большое усиление dc-гистерезиса при изменении конфигурации полей $H_{dc} \parallel H_{ac}$ на $H_{dc} \perp H_{ac}$ и при легировании YBCO-образца серебром [12] и висмутом [13].

Теория, описывающая ас-восприимчивость и ее температурные зависимости, измеренные при различных амплитудах H_o переменного поля и различных значениях H_{dc} для гранулярной системы ВТСП, адекватно построена Мюллером [14] в рамках МКС с выражением $J_c \sim 1/(H_{dc} + H_{ac})$. Обобщение такой теории в рамках расширенной модели критического состояния (РМКС) проведено в [5] с более обобщенным выражением для J_c : $J_c = \alpha_o (1 - T/T_c)^q / (B_o + |B|)^{\beta}$, где функция $\alpha_o (1 - T/T_c)^q$ выражает температурную зависимость силы пиннинга пиннингующих центров, а полевая зависимость силы пиннинга выражается через функцию $(B_o + |B|)^{-\beta}$. В этой работе проведены также расчеты исходной ветви dc-гистерезиса.

Целью настоящей работы являются анализ собственных экспериментальных данных dc-гистерезиса в YBCO-керамиках, которые дополняют имеющиеся в литературе данные этого эффекта и описание dc-гистерезиса в ВТСП-образцах.

2. Эксперимент

Очевидно, что гранулярная структура должна сильно повлиять на гистерезисное поведение ас-восприимчивости. Поэтому для полного понимания dc-гистерезиса его измерения должны проводиться на образцах одного класса ВТСП-материала, в которых отличаются основные параметры гранулярной структуры, такие как объемные доли МГО, ГО и средний размер гранул.

Для этой цели керамические образцы YBCO были синтезированы из Y_2O_3 , *CuO* и *BaCO*₃ по стандартной порошковой технологии. Из этих исходных образцов (IS) были вырезаны куски, часть из которых (MS) подвергалась частичному плавлению при 1000°C в течение десятков минут, остальная часть (RS) подвергалась процедуре повторного спекания в эвтетическом расплаве $3BaCuO_2 + 2CuO$ также при 1000°C. Образцы MS и RS медленно охлаждались ($v \sim 0.5^{\circ}$ C/мин) от 1000 до 920°C и выдерживались при 920°C в течение 3 часов. Процесс диффузии атомов кислорода в них был обеспечен с помощью медленного охлаждения образцов с 920 до 400°C ($v \sim 0.5^{\circ}$ C/мин) с их последующим длительным отжигом (~ 20 ч) при 400°C в атмосфере $P_{o2} = 1$ атм. Такая технология разработана в [15] и применена для регулирования свойств МГО в YBCO.

Основные характеристики исследуемых образцов представлены в таблице 1. Они получены с помощью обработки в рамках РМКС [5] температурных зависимостей ас-восприимчивости

3

образцов, измеренных в диапазоне 77–95 К с различными амплитудами *H*_o измерительного переменного поля.

Измерения dc-гистерезиса проводились на стандартной установке ас-магнитометра [16]. H_{ac} имеет частоту 68 Гц, его амплитуды варьируются в интервале 0,066 – 70Э. Н_{dc} меняется в диапазоне 0 – 380 Э. Образец помещается во внешние коаксиальные, наложенные друг на друга H_{dc} и H_{ac} поля, направленные параллельно длинной оси цилиндра. Перед каждым измерением образец нагревали до ~ 100 К и охлаждали в нулевом поле до 77 К. При 77 К включалось H_{dc} и измерялись мнимая (χ') и реальная (χ') части фундаментальной ас-восприимчивости при возрастании H_{dc} с нуля до заданного максимального значения H_{dem} (исходная ветвь χ_{vir}) с последующим уменьшением H_{dc} с $+H_{dcm}$ до $-H_{dcm}$ (убывающая ветвь χ_{des}) и снова с возрастанием H_{dc} с $-H_{dcm}$ до $+H_{dcm}$ (возрастающая ветвь χ_{asc}). Минимальная скорость изменения $H_{dc}, v_{dc} \sim 0,43 \, \Im/0,5 \, \text{с,}$ была использована во всех измерениях. Некоторые измерения проводились при различных температурах, поддерживаемых постоянными при циклировании H_{dc} с точностью 0,1К.

3. Результаты и обсуждение

Типичные кривые χ' и χ'' исследуемых образцов, измеренные в зависимости от циклирования H_{dc} при 77 К и $H_o = 0.33$ Э с различными значениями H_{dcm} , представлены на рис. 1, 2 и 3. Отметим следующие общие признаки, которые наблюдались другими авторами [4, 11, 12]:

– при симметричном циклировании H_{dc} между $\pm H_{dcm}$ имеет место симметрия $\chi'_{des}, \chi''_{des}(H_{dc}) = \chi'_{asc}, \chi''_{asc}(-H_{dc});$

 существование пиков на трех ветвях гистерезиса при циклировании с достаточно большим полем H_{dcm};

– существование минимумов на кривых убывающей и возрастающей ветвей. Причем при 77 К и для достаточно большого значения H_{dcm} минимум находится при $H_{dc} > 0$ для кривой χ'_{des} и при $H_{dc} < 0$ для кривой χ'_{asc} .

4

Такие общие закономерности, наблюдаемые в многочисленных образцах, независимо от технологии их изготовления свидетельствуют о том, что они должны быть связаны с гранулярностью ВТСП-образцов, которая является их общим свойством. Однако кроме этих общих свойств существует и другая особенность, которая должна быть, как будет показано ниже, также общей закономерностью dc-гистерезиса ВТСП-образца.

Рис. З показывает эволюцию dc-гистерезиса χ'' (а) п χ' (б) RS-образца, измеренного при 77К с возрастанием H_{dcm} в диапазоне от 9,9 до 128,7Э. В RS-образце с помощью технологии повторного спекания в расплаве [15] объемная доля МГО снижена до 5% по сравнению с 50% у исходного образца IS. Вместе с этим средний размер гранул R_g в RS-образце вдвое больше, чем в IS-образце (см. табл. 1). Такая гранулярная структура RS-образца позволяет легче следить за воздействием H_{dc} на МГО и ГО в нем, чем в IS-образце. Из рис. За видно, что при $H_{dcm} < 85 \Im H_{dc}$ в основном воздействует только на МГО образца. В таком диапазоне постоянного поля исходная веть dc-гистерезиса χ''_{vir} проходит пик, соответствующий достижению фронта переменного поля амплитуды H_o середины образца. Такое достижение пика поддерживается постоянным полем H_{dcp} , которое удовлетворяет условию [5]:

$$(H_{dcp} + H_o)^{(\beta+1)} - (H_{dcp} - H_o)^{\beta+1)} = 2H_p^{(\beta+1)},$$
(1)

где *H_p* есть поле полного проникновения МГО.

При убывании H_{dc} ветвь χ''_{des} смещается в сторону более низкого поля H_{dc} по сравнению с ветвью χ''_{vir} (обозначим это смещение как отрицательное). Ананогичным образом ветвь χ''_{asc} смещается в сторону более высокого поля H_{dc} по сравнению с ветвью χ''_{des} . При маленьком H_{dcm} ($H_{dcm} = 9,9$ Э), когда внешнее магнитное поле $H_{ext} = H_{dc} + H_{ac}$ слабо проникает в МГО образца, такое смещение оказывается маленьким. С увеличением H_{dcm} (напри-

мер, при $H_{dcm} = 42,9 \Theta$) смещение становится больше. Однако с дальнейшим увеличением H_{dcm} оно уменьшается и при $H_{dcm} \sim 85 \Theta$ для данного RS-образца терпит качественное изменение, то есть веть χ''_{des} смещается в сторону более высокого H_{dc} по отношению к χ''_{vir} , а χ''_{asc} – в сторону более низкого H_{dc} по отношению к χ''_{des} (обозначим такое смещение как положительное). Такое качественное изменение относительного смещения ветвей dc-гистерезиса должно быть связано с проникновением H_{ext} в ГО, которое в данном образце начинается при $H_{dc} \sim 80\Theta$ (см. на рис. За второй умеренный подъем кривой χ''_{vir} , измеренной при $H_{dcm} = 128, 7\Theta$).

Из всего сказанного следует, что dc-гистерезис гранулярных ВТСП-образцов может иметь поведение отрицательного и положительного смещений. Такое свойство является общим для dcгистерезиса в ВТСП-образцах. Это утверждение поддерживается тем фактом, что подобная картина наблюдалась для трех исследуемых образцов. На рис. 4а видны отрицательные смещения ветвей их dc-гистерезиса при маленьких значениях H_{dcm} , причем такое смещение оказалось в образце IS меньше, чем в образцах MS и RS.

Поведение отрицательного смещения наблюдается также для гранульной области. Рис. 5а представляет результаты измерения dc-гистерезиса в образце RS с большой амплитудой $H_o = 4,62$ Э в диапазоне температур T= 77 – 89,2 К. При заданной H_o и с повышением температуры МГО в образце RS быстро переходит в нормальное состояние, в смещанном состоянии сверхпроводимости остается только ГО образца. Поэтому наблюдаемые при этом отрицательные смещения ветвей dc-гистерезиса должны принадлежать гранульной области образца.

Аналогичные обсуждения можно проводить для реальной части. Dc-гистерезис реальной части имеет отрицательное смещение для образцов при их измерении при 77 K с $H_o = 0.33$ Э и $H_{dcm} < 85$ Э (рис. 36, 46), а при 89,2 K с $H_o = 4,62$ Э даже для $H_{dcm} = 377,5 \$ (рис. 56). Положительное смещение наблюдалось при 77 К с $H_o = 0.33 \$ Э и для $H_{dcm} \ge 85 \$ Э. Позиции минимумов на кривых χ'_{des} и χ'_{asc} находятся в тесной связи с относительным смещением ветвей dc-гистерезиса. То поведение позиции минимумов, которое упоминалось в начале этой части и считалось другими авторами [4, 11, 12] общим признаком dc-гистерезиса ВТСП-образца, наблюдается только в случае положительного смещения. В противоположность, если смещение отрицательное, то минимум находится при $H_{dc} < 0$ для ветви χ'_{des} и при $H_{dc} > 0$ для ветви χ'_{asc} .

Итак, из анализа экспериментальных данных dc-гистерезиса в исследуемых керамиках YBCO вытекает следующий основной вывод, который будет использован при оппсании эффекта dcгистерезиса в гранулярных ВТСП-образцах.

Для dc-гистерезиса ВТСП-образцов характерно существование двух типов относительного смещения ветвей гистерезиса положительного и отрицательного. Наличие того или иного смещения должно быть тесно связано с наличием гранулярной ВТСП-образцов. структуры При циклировании H_{dc} ВТСП-образцы в зависимости от их гранулярной структуры и от величины H_{ext} переходят, причем необратимым образом, из гранулярной системы двух встроенных друг в друга сверхпроводников второго рода в систему одного сверхпроводника второго рода и обратно. Dc-гистерезис ВТСП-образцов должен иметь участки, где ас-воспринмчивость образца соответствует либо асвосприимчивости МГО (или ГО) в отдельности, либо сложному сложению ас-восприничивостей двух подсистем МГО и ГО.

Для иллюстрации сказанного рис. 5а показывает dc-гистерезис мнимой части ас-восприимчивости образца RS, измеренный при различных температурах с $H_o = 4.62$ Э и $H_{dcm} = 377,5$ Э. При 77 К χ''_{vir} в диапазоне $H_{dc} = 0-40$ Э соответствует χ'' МГО ZFCобразца. Пик на кривой χ''_{vir} в данном случае не наблюдается, поскольку при 77 К под воздействием переменного поля с ампли-

6

47

тудой $H_o = 4.62 \$ МГО RS-образца уже полностью находится в критическом состоянии. В диапазоне $H_{dc} = 40 - 378 \$ \mathcal{X}''_{vir} соответствует χ'' ГО образца. При 77 К поле полного проникновения ГО оказывается достаточно большим, что даже с помощью $H_{dc} \sim 378 \$ \mathcal{H}_{ac} не может проникать до середины гранул. С повышением температуры H_p ГО уменьшается и на кривой χ''_{vir} возникает пик, например, при $T \ge 86,7 \$ К. Ветвь χ''_{des} при 77 К и при убывании H_{dc} с 378 \mathcal{H} является сложением ас-восприничивостей ГО и МГО с учетом взаимодействия между ними. Слабый подъем χ''_{des} при $H_{dc} \sim 0$ связан с усилением относительного вклада МГО в общий сигнал ас-восприничивости. Для остальных значений H_{dc} картина повторяется аналогичным образом. С повышением температуры ход ветвей dc-гистерезиса постепенно меняется из-за уменьшения вклада МГО в связи с ее переходом в нормальное состояние.

Для описания гистерезисного поведения ас-восприимчивости под воздействием используемых в вышесказанных экспериментах магнитных полей мы правомерно [14] можем применить расширенную модель критического состояния. В рамках такой модели можно истолковать процесс намагничивания в гранулярных ВТСП-образцах следующим образом:

1). Под воздействием переменного поля H_{ac} магнитные потоки входят в образец и выходят из него. Наличие в образце центров пиннинга, противостоящих входу и выходу магнитных потоков, делает такие входные и выходные процессы необратимыми, в результате чего возникает петля намагниченности и, следовательно, ас-восприимчивость образца.

2). Зависимость способности пиннинга пиннингующих центров от магнитного поля (то есть зависимость критического тока от магнитного поля приводит к зависимостям ас-восприимчивости от амплитуды переменного поля H_o и от величины внешнего постоянного поля H_{dc} , наложенного на измеряемое поле H_{ac} . H_{dc} усиливает вход переменного поля в образец и ослабляет его выход из образца.

8

3). В однородных сверхпроводниках второго рода H_{dc} меняет только граничное условие [5] поля на поверхности образца, что приводит к зависимости ас-восприимчивости от H_{dc} , но не приводит к гистерезису ас-восприимчивости при циклировании H_{dc} , то есть к dc-гистерезису, если при таком циклировании параметры центров пиннинга (факторы q и β) не меняются.

4). В гранулярных ВТСП-образцах возникает эффект dсгистерезиса. Причиной такого эффекта является гранулярная структура образца, то есть мозаичная структура двух областей МГО п ГО. Как выше показано экспериментально, ас-восприимчивость образца складывается из ас-восприимчивостей этих двух областей. С учетом их эффективных проницаемостей $\mu_{\rm MFO}$ п $\mu_{\rm ro}$ ($\mu_{\rm MFO} + \mu_{\rm ro} = 1$) можем написать

$$\chi' = \chi'_{\rm Mro} \mu_{\rm Mro} + \chi'_{\rm ro} \mu_{\rm ro}, \qquad (2)$$

$$\chi'' = \chi''_{\rm MTO} \mu_{\rm MTO} + \chi''_{\rm TO} \mu_{\rm TO}.$$
 (3)

РМКС показывает, что при фиксированных температуре T и амплитуде H_o , если факторы q и β остаются постоянными, на ас-восприимчивость образца при циклировании H_{dc} могут повлиять только два параметра: а) эффективные проницаемости $\mu_{\text{мго}}$ и $\mu_{\text{го}}$ и б) эффективное постоянное поле $H_{dc}^{\circ\phi\phi}$, которое присутствует на границе между МГО и ГО. $H_{dc}^{\circ\phi\phi}$ поддерживает процесс намагничивания в МГО и ГО образца, происходящий под воздействием переменного поля. Из-за гранулярной структуры ВТСП-образца $H_{dc}^{\circ\phi\phi}$ может отличаться от H_{dc} , но зависит от предыстории H_{dc} при его циклировании между $\pm H_{dcm}$ (то есть гистерезис $H_{dc}^{\circ\phi\phi}(H_{dc})$).

В случае пренебрежения фактора размагничивания гранул _{имго} выглядит следующим образом [14]:

$$\mu_{\rm MFO} = f_n + (1 - f_n) \frac{2I_1}{(R_g/\lambda_g)I_o},\tag{4}$$

где λ_g -лондоновская глубина проникновения гранул, а I_o и I_1 модифицированные функции Беселя с переменной (R_g/λ_g) . $\mu_{\rm MFO}$ зависит от T и внешнего поля H_{ex} через температурную и полевую зависимости величины λ_g [14,17]:

$$\lambda_g(T, H_{ex}) = \lambda_g(0, 0)(1 - (T/T_{cg})^4)^{-1/2}(1 - H_{ex}/H_{c2g})^{-1/2}, \quad (5)$$

где T_{cg} есть температура перехода гранулы, а H_{c2g} – ее второе критическое поле. В слабом внешнем поле, $H_{ext} \ll H_{c2g}$, можно предположить, что λ_g и, следовательно, $\mu_{\rm MFO}$ очень слабо зависят от H_{ext} . Такое предположение можно сделать и для реальных керамических образцов, у которых фактор размагничивания гранул $D_g < 1$. Это означает, что главной причиной, вызывающей эффект dc-гистерезиса, является гистерезис эффективного поля $H_{dc}^{\phi\Phi}$ при циклировании H_{dc} .

При заданной геометрии образца, как у исследуемых образцов IS, MS и RS, можно рассмотреть межгранульную область образца как сверхпроводник второго рода с объемной долей f_n , имеющий параметры: поле польного проникновения H_{pj} , факторы β_j и q_j центров пиннинга, температура перехода T_{cj} , критические поля H_{c1j} и H_{c2j} и фактор размагничивания $D_j = 0$. Гранульная область образца состоит из множества гранул, захватывающих в сумме объемную долю $(1 - f_n)$. Для нее характеризуются усредненные параметры: H_{pg} , β_g , q_g , T_{cg} , H_{c1g} , H_{c2g} и отличный от нуля фактор размагничивания D_g .

Пусть образец помещен в измерительное переменное поле H_{ac} , на которое наложено постоянное поле H_{dc} . Поскольку амплитуда переменного поля H_o оказывается намного меньше, чем H_{c1g} , то можно считать, что влияние гранулярной структуры образца на искажение текущих значений внешнего магнитного поля касается только постоянного поля H_{dc} .

Для гранульной структуры, при которой гранулы имеют форму длинных цилиндров, направленных по внешнему полю, фактор $D_g = 0$. В данном случае $H_{dc}^{\circ\phi\phi} = H_{dc}$ и dc-гистеревис отсутствует. В гранулярной структуре обычных керамических образцов, изготовленных по порошковой технологии, в которой параметр $f_n \sim 50 - 80\%$, $D_g > 0$, связь между гранулами слабая, соотношение между $H_{dc}^{3\Phi\Phi}$ и H_{dc} выглядит следующим образом:

$$H_{dc}^{\circ \Phi \Phi} = H_{dc} - D_g \times M_g (H_{dc} + M_{\epsilon qg}).$$
(6)

Член $M_g(H_{dc} + M_{eqg})$ есть намагниченность гранулы под воздействием H_{dc} с учетом ее равновесной намагниченности M_{eqg} , которая приблизительно равна:

$$M_{eqg} = -H_{dc}, \qquad \text{если} \quad |H_{dc}| \le H_{c1g},$$

$$M_{eqg} = -H_{c1g}, \qquad \text{если} \quad H_{dc} > H_{c1g},$$

$$M_{eqg} = +H_{c1g}, \qquad \text{если} \quad -H_{dc} > H_{c1g}.$$
(7)

На рис.6 представлены результаты вычисления гистерезиса эффективного поля $H_{dc}^{\circ\phi\phi}(H_{dc})$ по формуле (6) (в силу симметрии убывающей и возрастающей ветвей dc-гистерезиса мы рассмотрим только исходную и убывающую ветви). При этом использованы безразмерные поля (в единице поля H_{pj}), значения $\beta_j = 2$, $\beta_g = 0.5$ были взяты в соответствии тому, что критический ток J_{cj} у МГО зависит от поля намного сильнее, чем J_{cg} у ГО, а $n_g = 0.3$ для гранул сферической формы.

При циклировании H_{dc} из-за намагниченности гранул получается усиление $H_{dc}^{\circ\phi\phi}$ для исходной и ослабление $H_{dc}^{\circ\phi\phi}$ для убывающей ветви (см. рис. 6).

Рис.7 представляет результаты вычисления ас-восприимчивости образца по формулам (2) и (3), где составляющие ас-восприимчивости $\chi'_{MFO}, \chi'_{FO}, \chi'_{FO}$ определяются в рамках РМКС с заменой поля H_{dc} на $H_{dc}^{эф\Phi}$, вычисленное по формуле (6) с учетом равновесных намагниченностей для МГО и ГО по формуле (7). Очевидно, dc-гистерезис в данном случае обладает положительным смещением, которое увеличивается с повышением поля H_{dcm} . Рассмотрим другую гранулярную структуру, которая реализуется у массивных керамических образцов. Для нее характерна гранульная область с большой объемной долей ($f_n \simeq 0$) и с сильной связью между гранулами. В такой структуре может реализоваться конфигурация обеих областей МГО и ГО, ири которой гранулы плотно прилегают друг к другу, создавая кольцо гранул, окружающее МГО. При этом диамагнитные сверхпроводящие токи, текущие на поверхностях гранул, компенсируют друг друга в радиальном направлении, в результате чего остаются токи, протекающие по внешнему и внутреннему перифериям. В таком случае поле $H_{dc}^{3\Phi\Phi}$ будет меньше, чем H_{dc} , на величину усредненной намагниченности M_q гранулы [18]. Оно имеет вид

$$H_{dc}^{\circ \Phi \Phi} = H_{dc} + D_g \times M_g (H_{dc} + M_{eqg}).$$
(8)

Очевидно, в данном случае при циклировании H_{dc} поле $H_{dc}^{\circ \phi \Phi}$ для исходной ветви будет меньше, чем для убывающей ветви (см. рис. 6). Такое поведение $H_{dc}^{\circ \phi \Phi}(H_{dc})$ приводит к dc-гистерезису с отрицательным смещением (см. рис. 8).

Такое сложное поведение $H_{dc}^{\phi\phi\phi}$ в зависимости от гранулярной структуры ВТСП-образца было теоретически предсказано в работе Ходхдона и др. [19]. Пользуясь теориями кластеров конечных размеров и эффективной среды, авторы вычислили эффективное поле, действующее в МГО образца, вокруг которой сосредоточены гранулы, находящиеся в полном диамагнитном состоянии. Результаты вычисления показывают, что в зависимости от конкретной конфигурации гранул (одномерной, двухмерной или трехмерной) эффективное поле может либо усиливаться, либо ослабляться.

Вопреки многочисленным экспериментальным данным, покаэывающим эффект концентрации (усиления) поля в ВТСП-обраэцах за счет отталкивания поля диамагнитными гранулами, полученные этими авторами результаты предсказывают обратный эффект – эффект разрежения (ослабления) поля в ВТСП-образцах за счет компенсации подобных воздействий гранул при сгущенной упаковке этих гранул. Такой эффект разрежения впервые наблюдается в нашем исследовании dc-гистерезиса керамических образцов $YBa_2Cu_3O_{7-\delta}$.

4. Заключение

На основе анализа результатов измерений гистерезиса фундаментальной динамической восприимчивости в керамике $YBa_2Cu_3O_{7-\delta}$ и результатов вычислений такого эффекта в рамках расширенной модели критического состояния мы сделаем следующие основные выводы:

1). Расширенная модель критического состояния, развиваемая нами в [5], адекватно описывает процессы намагничивания межгранульной и гранульной областей в отдельности.

2). При изучении гистерезисного поведения фундаментальной динамической восприимчивости керамических образцов $YBa_2Cu_3O_{7-\delta}$, имеющих различные гранулярные структуры, впервые показано существование эффекта ослабления магнитного поля внутри ВТСП-образца, охлаждаемого вначале в нулевом поле и помещенного во внешнее магнитное поле. Предсказание такого эффекта было сделано в работе [19] при теоретическом исследовании влияния гранулярной структуры на поле, действующее внутри ВТСП-образца.

3). Показано, что реальная гранулярная структура исследуемых образцов принципиально влияет на достоверность результатов анализа магнитных свойств ВТСП-образцов. Из-за пространственной неоднородности гранулярной структуры (разбросы по размерам гранул, по степени локальной текстуры, по пространственной структуре межгранульной области и т. п.) очень трудно точно описывать процессы намагничивания в ВТСП-образцах. Для познания истинных сверхпроводящих свойств сверхпроводящей фазы необходимо разработать технологии изготовления ВТСП массивных образцов, у которых грану-

Рис.2. Кривые мнимой (а) и реальной (б) частей ас-восприимчивости образца MS, измеренные при циклировании H_{dc} с $H_o = 0.33$ Э при различных значениях H_{dcm} , T = 77 K

лярность сводится к минимуму (то есть $f_n \to 0$), одним из вариантов такого рода технологии является разработанная нами процедура пересинтеза керамических образцов в расплаве [15].

14

б)

Рис.3. Кривые мнимой (а) и реальной (б) частей ас-восприимчивости образца RS, измеренные при циклировании H_{dc} с $H_o = 0.33$ Э при различных значениях H_{dcm} , T = 77 K

Рис.4. DC-гистерезисы исследуемых образцов, измеренных при маленьких эначениях H_{dcm} . $H_o = 0.33$ Э, T = 77 K. а)-кривые мнимой части, б)-кривые реальной части.

Рис.5. DC-гистерезисы образца RS, измеренные с $H_o = 4,62$ и $H_{dem} = 377,5$ Э при различных температурах. а)-кривые мнимой части, б)-кривые реальной части.

Рис.6. Поведение эффективного поля $H_{dc}^{\circ \phi \phi}$ для исходной и убывающей ветвей циклирования внешнего поля H_{dc} . Кривые вычислены по формуле (6) (—) и (8) (о) с параметрами $H_o/H_{pj} = 0.2, H_{c1j} = 0, H_{c1g}/H_{pj} = 0.4, H_{pg}/H_{pj} = 3, n_g = 0.3, \beta_g = 0.5, H_{dcm}/H_{pj} = 3$

Рис.7. DC-гистерезис с положительным смещением. Кривые вычислены по (2), (3) и (6) с параметрами: $H_o/H_{pj} = 0.2$, $H_{c1j} = 0$, $H_{c1g}/H_{pj} = 0.4$, $H_{pg}/H_{pj} = 3$, $n_g = 0.3$, $\beta_j = 2$, $\beta_g = 0.5$, $H_{dcm}/H_{pj} = 1$ (—) и = 3 (0) 19

Рис.8. DC-гистеревис с отрицательным смещением. Кривые вычислены по (2), (3) и (8) с параметрами, как на рис.7

Таблица 1. Некоторые характеристики исследуемых образцов

Образец	Плотность,	$T_{cg},$	$T_{cj},$	f_j ,	$R_{g},$
	г/см ³	K	K	%	μкм
IS	5,2	91	89	50	15
MS	5,3	92	90,5	20	15
RS	6,2	94	91	5	30

Список литературы

- Evett J.E and Glowacki B.A. Cryogenics, 1988, v.28, p. 641-649.
- [2]. Vad K., Meszaros S., Hegman N., Halasz G.
 J. Supercond., 1992, v.5, N.6, p. 491-495.
- [3]. Chen K.Y. and Qian Y.J. Physica C, 1989, v.159, p.131-136.
- [4]. Kim Y., Lam Q.H. and Jeffries C.D. Phys. Rev. B, 1991, v.43, N13, p. 11404-11407.
- [5]. Vuong N.V.Supercond. Sci. Technol., 1995, N.8, p. 783-790.
- [6]. Park K., Kim J.J. and Park J.C. Sol. St. Comm., 1989, v.71, n9, p. 743-746.
- [7]. Mehbod M., Sergeenkov S., Ausloos M., Schroeder J., Dang A. Phys. Rev. B, 1993, v.48, N1, p.483-486.
- [8]. Nikolo M.Supercond. Sci. Technol., 1993, N6, p.618-623.
- [9]. Taylor K.N.R., Wang J., Russell G.J. Mod. Phys. Lett. B, 1993, v.7, N2, p. 83-89.
- [10]. Wang J., Gamchi H.S., Taylor K.N.R., Russell G.J., Yue J. Physica C, 1993, v.205, p. 363-370.
- [11]. Sun H.B., Russell G.R., Taylor K.N.R. Physica C,1995, v.243, p. 139-152.
- [12]. Dhingra I., Moorthy V.N., Das B.K. Supercond. Sci. Technol., 1995, N8, p.252-258.
- [13]. Андревский К.Н., Бирюкова Е.А., Гигаури и др. Сверхпроводимость: Ф, Х, Т, 1992, т.5, N2, с. 326-331.

[14]. Muller K.H.

Physica C, 1989, v.159, p. 717-726.

- [15]. Выонг Н.В., Распопина Е.В., Яковенко Н.А. Препринт ОИЯИ, Дубна, 1996, Р17-96-27
- [16]. Обухов Ю.В. и др. Препринт Инст. Физико-Техн. Пробл., Дубна, 1993, 93-5-5.
- [17]. Clem J.R.Physica C, 1988, v.133-135, p. 50-55.
- [18]. Navarro R. and Campbell L.J. Supercond. Sci. Technol., 1992, v.5, S121-S124.
- [19]. Hodgdon M.L., Navarro R., Campbell L.J. Europhys. Lett., 1991, v.16, N.7, p. 677-682.

Рукопись поступила в издательский отдел 26 января 1996 года.