91-342

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P17-91-342

Н.В.Выонг, В.Х.Тыонг, Л.К.Куи, Ф.К.Чиеу

ВЛИЯНИЕ ПОВЕРХНОСТИ ГРАНУЛЫ НА УСТАНОВЛЕНИЕ СОДЕРЖАНИЯ КИСЛОРОДА В КЕРАМИКЕ YBa₂Cu₃O_{6+ δ}

1. ВВЕДЕНИЕ

В работах $^{/1,2,3/}$ мы провели некоторые исследования процесса установления содержания кислорода δ в УВа₂Сu₃O_{6+ δ} (δ <<1) при его отжиге. Показано, что увеличение δ в этом процессе описывается в рамках простой одномерной диффузионной модели. Текущее значение δ в зависимости от времени отжига t_{отж} выражается следующим образом $^{/2/}$:

$$\delta(t_{OTK}) = \delta_0 + (\delta_{\omega} - \delta_0) * \Phi(L_{\theta}, D, t_{OTK})$$
(1)

где б_о – величина б в исходном образце, б_ю – насъщенное значение б в образце, подвергнутом длительному отжигу, Ф – функция, зависящая от длины диффузии, коэффициента дифузии D и времени отжига t_{отж} /2/.

В упомянутом процессе существует два фактора, которые носят случайный характер. Во-первых, длина диффузии L зигзагообразна, изменяется от гранулы к грануле и тесно связяна с размером гранул. В рамках одномерной модели диффузии и для дисперсионной по размерам гранул системы длину диффузии можно охарактеризовать некой усредненной величиной L₃ /^{2/}. Для более точной оценки величины L₃, а также связанного с ней коэффициента диффузии D можно использовать аппроксимацию методом наименьших квадратов результатов измерений & в большом интервале температур с использованием представленной в /^{2/} модели.

Вторым фактором является влияние поверхности гранулы на поверхностное содержание кислорода δ_{∞} , являющееся предельным значением, которого может достигнуть объемное значение δ после длительного отжига. Значение δ_{∞} зависит от температуры отжига $T_{OTЖ}$, парциального давления кислорода окружающей среды P_{O2} и от состояния поверхности гранулы. Последнее является чисто технологическим фактором, влияние которого можно свести к минимуму, и тогда δ_{∞} будет равно равновесному значению $\delta_{DaB}(T_{OTЖ}, P_{O2})$.

> Объсябиенный систитут адсуднах асследовливо БИБЛИОТЕНА

Пример указанного эё екта приведен на рис.1 (см. экспериментальные точки на кривых 1 и 2). Зарегистрировано большое различие значений δ (t_{отж}) при отжиге тетра-фазы УВа₂Cu₃O_{6.1} для двух серий образцов, которые были изготовлены в почти одинаковых условиях. Для одной серии (кривая 1) $\delta_{\omega} \simeq 0.3$, а для другой (кривая 2) $\delta_{\omega} \simeq 0.8$.

В данном сообщении обсуждается один из возможных вариантов технологии приготовления образцов, с помощью которого можно свести поверхностное влияние до минимума и достичь δ_∞ ≈ 0.97 в образцах в ходе отжига при 350⁰C на воздухе.

Рис. 1. Зависимости содержания кислорода δ образцов УВа₂Cu₃O_{6+ δ} отожженых на воздухе при 350^OC от времени отжига. Точки - экспериментальные данные. Кривые - вычисленные по формуле (1) 1 - L = 8*10⁻³cm, D=2.97*10⁻⁹cm²/сек, δ_0 =0.14, δ_{∞} =0.3, 2 - L = 7*10⁻³cm, D=2.97*10⁻⁹cm²/сек, δ_0 =0.14, δ_{∞} =0.8, 3 - L =4.5*10⁻³cm, D=2.97*10⁻⁹cm²/сек, δ_0 =0.06, δ_{∞} =0.97

Уже установлено, что механизм диффузии кислорода в YBa₂Cu₃O₆₊₆ является вакансионным ^{/4/}.

landalah semul nebuma di dalam belangsara - dan mengerah semul

Из окружающей среды с парциалным давлением кислорода Р_{о2} атомы кислорода, после диссоциации молекулы О₂ при адсорбции на поверхности образца ^{/2/}, диффундируют в глубь образца по

al service states and the service of the

позициям 04 (0,1/2,0) через метастабильные позиции 05 (1/2,0,0). Вероятность такого процесса зависит от того, пасколько велика вероятность вакансии в позициях 04, окружающих даную позицию 05. Соответственно, коэффициент диффузии кислорода имеет максимальное значение для $YBa_2Cu_3O_6$ и минимальное значение для $YBa_2Cu_3O_6 \sim 7$. Таким образом, для повышения содержания кислорода на поверхности гранул и тем самым его значения в объеме нужно увеличить вероятность ухода вакансии 04 на поверхность гранул.

Для этой цели мы провели отжиг образца УВа₂Си₃о_{б+б} одновременно с его измельчением. Детали процесса заключаются в следующем.

Исходные образцы УВа₂Си₃0_{6 1} в виде таблеток размером 25 *10 *2. 5мм³ были получены в результате кальцинирования и синтеза оксидов Y₂O₂, CuO и карбоната бария при 950⁰C с последующей закалкой до комнатной температуры. После предварительного измельчения образцы вносились в специальную камеру, где они были измельчались и отжигались одновременно. Конечные размеры гранул были порядка 50 мкм, температура отжига – 350⁰C , атмосфера – воздух, время отжига варьировалось в интервале от 15 до 360 минут. По истечении заданного времени отжига часть порошка вынималась из камеры и быстро охлаждалась до комнатной температуры на алюминиевом поду. Для контроля сверхпроводящих качеств полученных образцов были проведены измерения температурной зависимости магнитной воспримчивости в интервале 77 ÷ 100 К (рис. 2). Структурные параметры уточнялись профильным анализом дифракционных спектров этих образцов, измеренных на установке ДН-2 на импульсном реакторе ИБР-2 по методу времени пролета /5/. Некоторые данные вместе с значениями диамагнитной температуры перехода представлены в табл. 1. Зависимости содержания кислорода ⁶ от t_{отж} для этой серии образцов показаны на рис. 1 (кривая 3).

Уже после 15-минутного отжига исходная тетрагональная фаза превращается в орторомбическую, причем параметры структуры остаются почти постоянными при продолжении отжига

2

3

Рис. 2 Температурные зависимости магнитной воспримчимости исходного образца (1) и горяче измельченных образцов при 350°С на воздухе в течение 15 мин.(2), 30 мин.(3), 45 мин.(4), 60 мин.(5), 90 мин.(6), 120 мин.(7), 240 мин.(8), 300 мин.(9) и 360 мин.(10).

до 360 минут. Наблюдается быстрое увеличение содержания кислорода : $\delta = 0.88$ после 15-минутного отжига и достигает 0.97 после 300 минут. Во всех образцах установлена высокая степень упорядоченности (соотношение заселенности $\mu(05)/\mu(04)$ близко к нулю).

На рис. 1 для зависимости δ от времени отжига наряду с экспериментальными точками представлены кривые, вычисленные по формуле (1) (подробный вид функции Ф см. в /2/). При вычислении брались экспериментальные значения δ_0 и δ_{∞} , а коэффициент диффузии D определялся по формуле (12) из работы /2/и равнялся $\simeq 3*10^{-9}$ см²/сек.

Очевидно, что экспериментальные результаты диффузии кислорода в ува₂Cu₃O_{6+δ} с учетом влияния поверхности хорошо описывались в рамках простой одномерной диффузии. Подгоночным параметром при этом является длина диффузии L , которая меняется в пределах (4.5÷8.0)*10⁻³см и сравнима с размером зерен в исследуемых образцах. Таблица 1. Результаты профильного анализа нейтронограмм и значения диамагнитной температуры перехода в сверхпроводящее состояние образцов $YBa_2Cu_3o_{6+\delta}$, отожженых на воздухе при 350°С за время от 15 до 360 минут. Среднеквадратичные ошибки параметров составляют ±0.02 для c, ±0.007 для a. b и ±0.03 для значения δ .

the second second second	1. B. C. S. C. S.	and the second			4	and the second second second
t отж (мин.)	R- факт.(a(A) %)	ه(۲)	c (🎗)	δ.	диамг. Т/К
0	7.2	3.837		11.79	0.06	
15	4.9	3.826	3.879	11.68	0.88	94.0
30	4.9	3.826	3.880	11.69	0.91	94.0
45	5.2	3.826	3.881	11.68	0.90	92.3
60	5.2	3.825	3.881	11.68	0.91	93.8
90	5.4	3.825	3.881	11.68	0.95	91.3
120	5.0	3.825	3.883	11.68	0.91	91.0
180	5.2	3.825	3.882	11.68	0.97	94.0
240	4.8	3.825	3.882	11.68	0.97	93.7
300	4.9	3.825	3.883	11.68	0.97	93.5
360	5.3	3.825	3.883	11.67	0.97	91.0

З. ВЫВОДЫ

Итак, в настоящей работе предложен и опробован вариант технологии приготовления порошка УВа, Си, О, 7 помощью "горячего измельчения". При этом снижается существенно объемного влияние поверхности гранул на установление содержания кислорода в образце, скорость достижения высоких значений δ резко увеличивается. Установление значения температуры перехода в сверхпроводящее состояние 91 ÷ 94 K происходит за 1 час.

5

Авторы благодарны А.М.Балагурову за чтение рукописи и полезное обсуждение результатов.

Литература

- 1. А. М. Балагуров и др. Сообщение ОИЯИ, Р17-91-340, Дубна, 1991.
- 2. Н.В.Выонг. Сообщение ОИЯИ, Р17-91-341, Дубна, 1991.

- 2019년 1월 1991년 1992년 1992년 1991년 1991

- 3. А. М. Балагуров и др. Сообщение ОИЯИ, Р17-91-378., Дубна, 1991.
- 4. X.M.Xie et al. Phys. Rev. B, 1989, vol.40, N7, pp.4549-4556.
- 5. A.M.Balagurov et al.- JINR Rapid Comm., 1988, N4[30], pp.38-48.

la de <u>a</u>nstratione

3.80

Рукопись поступила в издательский отдел 23 июля 1991 года.

물 수업 사업에 있는 것 같이 못 했는 것 않는 것 같이 있는 것이 물을 받았다.