91-340

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P17-91-340

1991

А.М.Балагуров, Н.В.Выонг, Ч.А.Куан, Л.К.Куи, Ф.К.Чиеу

ДИФФУЗИЯ КИСЛОРОДА В КЕРАМИКЕ ҮВа₂Cu₃O_{6+ б} ПРИ НАГРЕВАНИИ

的自由政制结正

1. ВВЕДЕНИЕ

Процесс диххузии кислорода в несверхпроводящий материал $YBa_2Cu_3O_{6+\delta}$ (YBCO) (δ <<1) играет крайне важнур роль. С ним связаны увеличение содержания и упорядочение кислорода в плоскости CuO_{δ} , что в свою очередь контролирует концентрацию и распределение заряда между неактивным $BaO-CuO_{\delta}-BaO$ и активным $CuO_2-Y-CuO_2$ слоями и тем самым влияет на температуру перехода T_c в сверхпроводящее состояние /1/.

Эффективность этого процесса определяют, в основном, три фактора :

1. Величина термодинамически равновесного содержания кислорода $\delta_{\text{рав}}(T_{\text{отж}}, P_{\text{о2}})$, которая зависит от температуры отжига $T_{\text{отж}}$ и парциального давления кислорода $P_{\text{о2}}$. Сейчас уже известно, что в области Т≤400°С и $P_{\text{о2}}$ >10⁻¹атм $\delta_{\text{рав}}$ почти не зависит от $T_{\text{отж}}$ и $P_{\text{о2}}$ и близка к 0.9. После 400°С $\delta_{\text{рав}}$ начинает быстро уменьшаться.

2. Диффузионная способность D, которая слабо зависит от давления P_{O2}, но зависит от самой величины δ и поэтому сложным образом изменяется с температурой /2/.

3. Продолжительность процесса диффузии, которая зависит в основном от размера гранул.

Эти факторы в своем сочетании опрелеляют увеличение величины б от исходного значения бодо равновесного б_{рав}(Т_{отж}, Р_{о2}), и распределение атомов кислорода по позициям О4(0,1/2,0) и О5(1/2,0,0) в элементарной ячейке.

Известно, что образцы, обладающие δ в интервале 0.8 ÷ 1 и высокой степенью упорядоченности $\mu(05)/\mu(04) << 1$ (μ -заселенность), являются хорошими сверхпроводниками с $T_{c} \approx$ 90 К, $\Delta T \leq 1$ К. Для получения таких образцов. изготовленные в результате синтеза при 950°С материалы YBa₂Cu₃O_{≈ 6.1} подтвергаются отжигу при $T_{OT} \approx 300 \div 450°$ С в атмосфере кислорода или на воздухе. Такой отжиг обеспечивает высокое значение δ_{pab} и при нем не происходит химического разложения образца на исходные компоненты.

Проблеме диффузии кислорода в УВСО посвящены многочисленные теоретические и экспериментальные работы однако до сих пор не завершено ее единое описание и разброс в количественной оценке наблюдается большой характерных параметров процесса. Например, при исследовании диххузии кислорода в УВа₂Си₃0_{6.6} гравиметрическим методом ^{/12/} при Т_{отж}≤ 500⁰С для энергии активации получено Е ≃ (1.25 ± 0.05) эВ. Измерения сопротивления образца Измерения сопротивления образца $YBa_2Cu_3O_{6,35}$ в зависимости от времени отжига /13/ при Т = 215 ÷ 366°С дали значение E= (0.9 ± 0.1)эВ. В /14/ на основе результатов кинетического анализа данных работы /2/ поглощению кислорода в УВа₂Си₃0₆ при Т = 0 ÷ 700⁰С под давлением P_{DP} = 1.4 ÷ 10.7 атм показано, что в тетрагональной фазе имеют место две стадии диффузии, первая соответствует Е = 0.14 эВ, а вторая - 0.6 эВ. Поэтому представляется необходимым дальнейшее изучение явлений в УВСО, происходящих

В данной работе проведено исследование процесса увеличения содержания кислорода при нагревании $YBa_2Cu_3O_{6.1}$ от $T_{Hay} = T_{KOM}$ до $T_{KOH} = 350^{O}C$ с постоянной скоростью и дано его феноменологическое описание, на основе которого обсуждается эффективность диффузии при таком режиме нагревания.

при сравнительно низкой температуре (Т≤ 500⁰C) нагрева.

2. ЭКСПЕРИМЕНТЫ

Образцы приготовлялись по стандартной керамической технологии. После синтеза при 950° С они быстро охлаждались до комнатной температуры. Эти исходные образцы нагревались от T_{KOM} до 350° С с постоянной скоростью v = 0.5 (образец K1), 1.0 (образец K2), 2.0 (образец K3) и 3.0°С/мин (образец K4) с последующей закалкой. Для сравнения один из исходных образцов (образец C1) отжигали при 350° С в течение 10 часов. Все отжиги были проведены в потоке кислорода со скоростью 100 мл/мин. Качество образцов проверялось измерением температурной зависимости магнитной восприимчивости (puc.1).

South and waters and a second a secon

© Объединенный институт ядерных исследований Дубна, 1991

Структурные параметры уточнялись по нейтронным спектрам, измеренным на установке ДН-2 на реакторе ИБР-2 по методу времени пролета /15/

дифракционным

ИМПУЛЬСНОМ

Рис. 1. Температурные зависимости магнитной восприимчивости исследуемых образцов.

Исходные образцы находились в тетрагональной фазе (пр. гр. Р4/mmm) с параметрами элементарной ячейки а = b = 3.860(6) Я, c = 1.790(2) Я и содержанием кислорода в формульной единице, близким к 6.1.

При нагревании, в зависимости от величины v, содержание кислорода б увеличивалось и соответственно изменялись параметры ячейки. Структурные данные образцов представлены в таблице 1. Они подтверждают известную связь между содержанием кислорода б и параметром с ячейки /3/.

З. РЕЗУЛЬТАТЫ

В работе /14/ была обоснована применимость одномерной модели для изучения процесса диффузии кислорода при отжиге керамики УВСО. Можно использовать эту модель и для описания увеличения содержания кислорода & в образце ¥ВСО с исходным ⁸о при его нагревании от Т_{нач} до Т_{кон}. Сделаем следующие допущения :

Равновесное содержание кислорода ^δрав^{(T, P}o²⁾ при ^Tотж
400^oC не зависит от ^Tотж и ^Po².
Содержание кислорода ^δ при T > 400^oC меняется по ходу

2. Содержание кислорода δ при I > 400°С меняется по ходу кривой $\delta_{\text{рав}}(T, P_{02})$. Такое поведение наблюдается на практике /16/, если размер гранул порядка $\simeq 1 \mu \text{км}$ и скорость нагревания $\simeq 1^0$ С/мин .

Таблица 1. Параметры исследованных образцов (уточнены по методу Ритвельда). Среднеквадратичные ошибки параметров составляют ±0.02 для с, ±0.007 для а,6 и ±0.03 для факторов µ

06-	Режим отжига	R- факт. %	Параметры ячейки			Содержания	
ра - зец			a(R)	٥(R)	c(R)	- кисло µ(04)	рода µ(05)
C1	350 ⁰ С, О ₂ ,10ч.	4.7	3.820	3.885	11.69	0. 91	0.00
K1	v=0.5 ⁰ С/мин ⁰ 2	4.8	3. 824	3. 881	11.68	0. 81	0. 07
K2	v=1 ⁰ С/мин ⁰ 2	5.2	3.821	3. 884	11.68	0.86	0.00
КЗ	v=2 ⁰ С/мин ^О 2	5.4	3.826	3. 874	11.70	0.63	0.00
K4	v=3 ⁰ С/мин О ₂	6.2	3.829	3.870	11.70	0. 52	0.00
Ис- ход.		7.8	3.861	3. 861	11.79	0.12	

5

Зависимость, описывающая температурный ход увеличения содержания кислорода δ(T), имеет вид /14/.

$$\delta(T) = \delta_{0} + (\delta_{paB} - \delta_{0}) * \frac{2}{L} * \sum_{n=0}^{\infty} (-1)^{n} * \int_{0}^{L} \operatorname{erfc} \frac{n * L + x}{2\sqrt{y}} dx, (1)$$

rge $y(T) = \int_{Hay}^{T} D(T') dT', \qquad (2)$
 $T' = T_{Hay} + vt, \qquad (3)$

L - длина диффузии , t - время отжига.

Выражение (1) всегда имеет место при Т ≤400⁰С (на основе первого допущения) и справедливо при Т >400⁰С , вследствие второго допущения.

На рис. 2 вместе с результатом ТГА-измерений из работы /^{16/} представлена кривая, вычисленная по (1) и выраженная в процентном изменении веса для однофазного образца YBa₂Cu₃O_{6+δ} /^{17/}. При этом предполагалось, что

$$D = D_0 \exp\left(\frac{L}{K(I_{Hay} + vt)}\right)$$
 (4)

Значения D₀ и E были взяты из $^{/14/}$ и равны D₀ = 2.1*10⁻⁴ см²/сек, E = 0.6 эв . Получено хорошее совпадение между вычисленной кривой и экспериментальными данными, если L равно 5*10⁻³ см.

Видно, что выражение (1) описывает поведение кривой б(Т) при нагревании достаточно хорошо. В дальнейшем мы используем его для оценки характеристических параметров процесса диффузии кислорода в YBCO при нагревании.

Рис. 2. Изменение содержания кислорода в процессе нагревания увсо:Точки-результат ГГА-измерения /16/, $v = 1^{O}$ С/мин., $P_{O2} = 1$ атм. Сплошная кривая -вычисленные по (1), выраженные в процентном изменении веса исходного состава УВа₂Си₃О_{6,18}, L = 3*10⁻³см, D₀= 2.1*10⁻⁴см²/сек, E = 0.6 эВ.

Из табл. 1 видно, что в образце С1 после длительного отжига содержание кислорода достигло равновесного значения б -= 0.91 и установилась полная упорядоченность $\mu(05)/\mu(04) \simeq 0$. В образцах К1 ÷ К4 б увеличилось от исходного значения б конечного $\delta(T_{KOH}, v)$, которое зависило от T_{KOH} и скорости v и от коэффициента диффузии D в температурном интервале от T_{Hay} до T_{KOH} . Такие зависимости могут быть выраженными через формулы (1) (2) и (4).

В табл. 2 представлены результаты вычисления величины интеграла у из выражения (1) для $T = 350^{\circ}C$, при этом были использованы экспериментальные значения δ ($T = 350^{\circ}C$) (см. табл. 1) и конкретная скорость нагревания v. Расчет проведен для $\delta_{\text{рав}} = 0.9$, $\delta_0 = 0.1$ и трех значения L = 1, 10 и 50 мкм. Оказывается, что для фиксированной величины длины диффузии L величина у остается почти постоянной, не зависящей от скорости нагревания v в ее заданном интервале. Если выражать температурную зависимость D(T) формулой (4), то с

7

Таблица 2. Результаты вычислений интеграла у по (1) и энергии активации E по (2) и (4)

	<i>ь</i> при 350 ⁰ С			Е(ЭВ)			
L(CM)		∨ (^О С∕мин)	у при 350 ⁰ С	для D _o (см ² /сек)*10 ⁴			
				350	40	2.1	
10 ⁻⁴	0.88	0.5	1.81*10 ⁻¹¹	1.09	0. 98	0. 84	
	0.86	1.0	3.35*10 ⁻¹¹	1.06	0. 95	0. 81	
	0.63	2.0	2.94*10 ⁻¹¹	1.06	0. 96	0. 81	
	0.52	3.0	2.68*10 ⁻¹¹	1.06	0. 96	0. 82	
10-3	0.88	0.5	1.80*10 ⁻⁹	0. 86	0.75	0. 61	
	0.86	1.0	3.35*10 ⁻⁹	0. 83	0.72	0. 58	
	0.63	2.0	2.94*10 ⁻⁹	0. 84	0.73	0. 59	
	0.52	3.0	2.68*10 ⁻⁹	0. 84	0.74	0. 59	
5*10 ⁻³	0.88	0.5	4.50*10 ⁻⁸	0. 70	0. 60	0. 46	
	0.86	1.0	8.40*10 ⁻⁸	0. 67	0. 57	0. 43	
	0.63	2.0	7.33*10 ⁻⁸	0. 73	0. 62	0. 48	
	0.52	3.0	6.68*10 ⁻⁸	0. 73	0. 63	0. 48	

помощью (2) при $T_{Hay} = 20^{\circ}$ С и $T = 350^{\circ}$ С можно оценить усредненную энергию активации Е в температурном интервале 20 ÷ 350°С. Для определения Е предэкспоненциальный коэффицент D (см²/сек) полагался равным 0.035 , /11/ 4*10³ /18/, 2.1*10⁴ /1⁴/, эти значения охватывают разброс величины D₀, имеющийся в литературе.

Полученные значения энергии активации свидетельствуют о том, что наблюдаемый разброс ее значений в литературе тесно связан с неопределенностью двух факторов L и D_o, которые не могут быть определены непосредственно. В принципе, для более точногс определения трех независимых характеристик процесса диффузии L, D_o и Е можно использовать метод наименьших квадратов по результатам измерений & в большом интервале температур с использованием какой-либо модели, одной из

8

которых может быть выражение (1).

Из наших данных следует, что предпочтительное значение Длины диффузии L находится в интервале 1 ÷ 50 мкм, так что из-за неопределенности величины D_о энергия активации оценивается в интервале 0.45 ÷ 1.0 эВ.Однако в работах /2,14/ при исследовании временной зависимости диффузии кислорода в Увсо при отжиге в интервале 150 ÷ 500°С было показано, что в основном коэффициент D в тетра-фазе Увсо есть:

D (CM²/CEK) = (0.84÷3.4).10⁻⁴exp
$$\frac{-0.6 \ \Im B}{KT}$$
 . (5)

В нашем случае,если взять D_o ≃ 2.1*10⁻⁴см²/сек , мы получаем Е,равную 0.45 ÷ 0.8 эВ, охватывающую данное значение О.6 эВ.

4. ВЫВОДЫ

1. Исследован процесс диффузии кислорода в УВа₂Си₃0_{6+б} при нагревании образцов с постоянной скоростью.

2. На основе полученных результатов, а также результатов исследования временных характеристик диффузии кислорода в ходе отжига при постоянной температуре ^{/14}/ можно заключить, что при Т ≤ 500⁰C для коэффициента D справедлива формула (5).

3. Из-за неопределенности значения длины диффузии нельзя непосредственно определить обе характеристики процесса диффузии - D_o и E. Оценку величин L, D_o и E можно получить только обрабатывая значения δ, измеренные в широком интервале температур по методу наименьших квадратов с использованием какой либо модели, одной из которых может быть выражение (1).

В заключение отмечаем, что в кинетическом режиме диффузии (т.е. при нагревании или охлаждении образцов) наблюдается некая неравновесная неупорядоченность атомов кислорода по оси а и в базовой плоскости а-в, которая может быть объяснена в рамках вакансионного механизма диффузии кислорода в увсо.

Детальное изучение процесса установления такой неупорядоченности в кинетическом режиме диффузии будет представлено в следующей работе.

Литература

- 1. John B. Goodenough.- Supercond. Sci. Technol., 1990, vol. 3, pp. 26-37.
- 2. А. А. Степанов и др. Сверхпроводимость : Ф., Х., Г., 1990, т.3, N 1, стр. 119-124.
- Высокотемпературная сверх проводимость: Фундамент. и прикл. исслед. - Сб. статей, под ред. А.А.Киселева. Л., Машиностроение, 1990, вып. 1, стр. 214.
- 4. H. Bakker et al. Physica C , 1989, vol.157, pp. 25-36.
- 5. X. M. Xie et al. Phys. Rev. B, 1989, vol. 40, N 7,
- 6. H. Shaked et al. Phys. Rev. B, 1989, vol.39, N 10, pp. 7363-7366.
- 7. Jeffery L. Tallon. Phys. Rev. B, 1989, vol.39, N 4, pp. 2784-2787.
- Xie Sike et al. Suppercond. Sci. Technol., 1989, v. 2, p. 122-124.
- 9. С. А. Дектярев. Сверхпроводиммость : Ф., Х., Т., 1990, т.3, N 2. стр. 269-278.
- 10. K. N. Tu at al. Phys. Rev. B , 1988, V.38, N 7, pp. 5118-5121
- 11. K. N. Tu at al.- Phys. Rev. B, 1988, vol.39, N 1, p. 304-314.
- 12.L. T. Shi and K. N .Tu.- Appl. Phys. Lett., 1989, v. 55, N 13, pp. 1351-135.
- 13. G. Ottaviani et al. Phys. Rev. B, 1989, vol. 39, N 13, pp.9069-9073.
- 14. Н. В. Выонг. Сообщение ОИЯИ, Р17-91-341, Дубна, 1991.
- 15.A.M.Balagurov et al.- JINR Rapid Comm., 1988, N. 4 [30] pp. 38-48.
- 16.Jonh B.Goodenough , A. Manthiram. Inter. J. Mod. Phys.B, 1988, vol.2, N 3&4, pp. 379-391.
- 17.H. E. Horng et al. Physica C158, 1988, pp. 480-484.
- 18.Т. Е. Оськина и др. Сверхпроводимость : Ф. Х. Т, 1989, т. 2. N 3. стр 24-29 , 1988.

Рукопись поступила в издательский отдел 23 июля 1991 года.

Балагуров А.М. и др. Диффузия кислорода в керамике YBa2Cu3O6+δ при нагревании

Исследован процесс диффузии кислорода в керамике $YBa_2Cu_3O_{6+\delta}$ при ее нагревании от T_{KOMH} до 350°C с постоянной скоростью v=0,5; 1; 2 и 3°C/мин. Показано, что изменение содержания кислорода в исходном образце $YBa_2Cu_3O_6$ описывается одномерной моделью диффузии. Подтверждено, что в тетра-фазе при T \leq 500°C коэффициент диффузии имеет вид D (см²/с) = (0,84 ÷ 3,4) * 10⁻⁴ exp (-0,6 эB/KT).

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1991

Перевод авторов

Balagurov A.M. et al. Oxygen Diffusion in $YBa_2Cu_3O_{6+\delta}$ -Ceramics by Heating

P17-91-340

P17-91-340

The oxygen diffusion in YBa₂Cu₃O_{6+δ}-ceramics by heating the samples from room temperature to 350°C with constant rate v=0.5, 1, 2 and 3°C/min was investigated. It has been shown, that the oxygen uptake in initial sample YBa₂Cu₃O₆ can be described by the one-dimensional diffusion model. The diffusion coefficient in the tetra-phase at T \leq 500°C is confirmed to be D (cm²/sec) = (0.84 ÷ 3.4) * 10⁻⁴ exp (-0.6 eV/KT).

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1991