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1. .Introduction 
Since the discovery of high-T superconductivity a great· . . C . , . . . • 

, , deal of efforts have been undertaken to · obtain an effective : 
Hamilto~ian that describes· the low-en~rgy properti~s of the 
Cu.0

2 
plane in oxide ·superconductors. As. has been poin~ed out: 

by Rice· [ 1J, , the. aim is to, find· the simple'st Hamiltonian 
eliminating all,terms which are·not 'relevant to the deterini:-

. nation of the superconducting fixed point. Anderson. was. the. 
.first to propose [2] a>Hamiltonian of that sort which is,now 

.· well-known as the t_:J model~ .This model .can be derived from· 
. the single-band Hubbard model in the large U-1:l.mi t [3,4]. 

However, it is believed now that a generalized (multi-band) 
Hubbard model · proposed by Emery· [SJ should be taken as a 
starting point of this. reduction. The first step in· this way . 
was made by Zhang and Rice [6J (ZR hereafter) who suggested a 

' - . ., , ' , , . l _, , , 

.perturbation scheme on t_he · basis of a simplified version of 
the Emery model. They have found that the Cu-0 hybridization 
strongly . bin.ds a hole· on' each squa;e. of 0-io'ns _with ~he· cent-:-· 
ral. Cu-ion to form a local si.nglet state with a binding 
energy (with'respect to the triplet state and the nonbonding 

· state) greater that the singlet bandwidth .. · After neglecting 
, . the triplet hole band. ZR arrived at th~ t-J model. This' has 

• ' , • < • , , • ,, • , ' 

led to considerable discussion in the literature on the vali-. 
. 'di ty and limitations of ; the reduction. from· a multi .:.band 

description to a·one-band model [7,13J. Particularly, if has~1 
been pointed out· that the · approach suggested< by ZR is not · 
controlled by a small para~eter, i.e ... the s~me physical quan'-­
ti tie; 'determine the binding en~rgy of the singlet, •its band 
width; and the. parameter of. _the singlet-tr.iplef mixing• as 
well. 

· In this.paper, starting with the same Hamiltonian as in 
Ref. [6J we· present a different _perturbative approach to the .. 
reduction which allows us to overcome the objection mentioned:\ . . ' 
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_above and. to obtain the effective singlet-triplet Hamiltonian 
for· the .cuo,., plane in oxide superconductors. At the same .. ,:. 

time, based on the Wannier representation for oxygen hole 
. operators our consideration is similar to that by ZR. Thus, 
the Hamiltonian obt~ined, though somewhat more complicated, 
in main features resembles the t-J model. We believe that the 
latter is contained in our resulting Hamiltonian as a limit-

~ing case for a certain range of relevant model parameters and 
low .temperatures. 

2. Model Hamiltonian 
In the Emery model E5J the largest energy parameter is 

the on-site Coulomb interaction between copper d-electrons, 
U ct; and _the largest hopping integral, tdp, corresponds to the 
a-bond between copper d(x2 -y2 )- and oxygen p(x,y)- orbitals. 
The simplified version of the Emery model, we start with, is 
gained by keeping these parameters and ignoring the on-site 
Coulomb interaction on the 0-ions, the intersite Cu-0 Coulomb 
interaction and· direct 0-0 hopping terms. Two different 
regimes should be distinguished for a hole dynamics. The 
first one,the so-called spin fluctuation regime, corresponds 
to a weak Cu-0 hybridization, tdP/b=t;<<1 and tdP/(Ud- b)=t; 
<< 1, where l=£p-£d>O is the energy distance between p- and 
ct-atomic levels and (Ud- b) is the energy of the higher Hub­
bard sublevel at copper sites . with respect to the p-level. 
Small t; and t; provide a commonly used perturbation expan­
sion used by ZR E6,10J and other authors E9,12,13J in deriv­
ing an effective one-band description. However, more re­
presentative values of the parameters in copper oxides do not 
give not so weak hybridization. Actually, according to 
[7,·11,16] one has t;~112 and t;~114 and hence only the latter 
parameter may provide a good perturbation expansion. That is 
the change fluctuation regime because the charge degrees of 
freedom at copper sites should be taken into account. Just . 
this regime is treated below. 

After projecting out the upper Hubbard sublevel the two­
band Emery model can be written to the second order int; as 



(in hole notation): 

H = -ll \ x?0 + \ t~P [ x?0p ...r+ h.c.] + l 1. l 1.m 1 mv 
( 1 ) 

iO imO 

tdptdp' - --+, im in (x?OJ/-p -'x?Op+ p ] 
. l ( U _ ll ) 1 mO nO 1 mO nO • 
1.mnO d 

Here Hubbard operators for a hole at Cut-sites are introdu­
ced: 

Xoo _ d+ (1-n. 
0

)j · = iO i-.i -

00 _ (· · 00 _ + X. = n. 0 . 1-n. 0.), X. = d. 0ct.-0 i 1 i- l. ·i i 

where o = -o, and t~P = tdp S. is the hybridization am11li-· 
. 1.m im 

tude which is nonzero for nearest neighbours. Tr1e sign con-
vension s. =±1 is chosen in agreement with ZR [6J. The atomic 

im . 

energy of the p-level is cl10sen to be zero, £P =O. Accorcling 
to ZR let us now define a symmetric combination of four. 0-
hole states around a Cu site 

(s)=_i_ '\' S 
p iO 0 l 'im Pmo 

L 

(;2) 
m 

which are not orthogonal. The Wannier representation provide:::: 
the orthogonal symmetric 0-sta tes with corresponding opera­
tors c. 0 instead of p ~so)· The relation between them is fami~ 

i ' i . 

liar, 

P 
( s) -
iO - 2 71.(t-j) 

j 

where (N being the number of Cu site.s) 

CjO 

1( .... j' 1 '[ ·1 ]1/2 -+-j>-3o--/\ 1-) =ir l 1- ~ (coskx + cosk) eik(i-j). 
k 

( 3) 

( 4) 

One can check that A(i-j) rapidly decrease.s with the distance 
(t-j). Particularly, several largest va],ues of A(i-j) are 
presented in Table 1. 

After introducing the notation V .. =2tdP"'(t-j), the Hamil-
. l.J 

4 
~:;~ ! 

I 
' ! 

tonian (1) can be represented in the following form 

H = H0 + Hint ' 
H =, H(i) 

o l 'o 
i 

wl1ere 

H. =' int l 
ifj 

H~i,jl. 
int 

( 5) 

11til ___ AL ,.oo_ v [Xoo h , J+J}:[xoB +_ -Xoo + J (6 ) 
1 _ - 11 A • t C • C • C + • C. . • C • O C • O • C • ,,,C • O 1J i I l. i I l. l. i i iv i ~ 

0 0 

H < i , j ) _ V l [vu o . [Xoo + Xoo + ] h ] • t - .. ,.., .c.
0 

+ t . c. 0- c."- . c."'c.,.. + .c. in 'lJ l J l i JU l iv Ju 
( 7) 

I) 

and t==V
0

/(Ud--L\), J=tV
0

.Here H6i) gives the on-site inter-
1ctlon with the Gu-0. l1:>'bl'idizaticin t1::'rm "'V 0=2tdp"-r (where 

( • • ) ,J 

Ar=0.96), the hopping term H. 1 t'J with any distance between t 
J in 

and j si ter. is governed by rattier small parameters 
V .. =2tpdA(i-j). Hence, the on-site Hamiltonian will be diago-

1.J 
nalized exactly and the hopping terms will be treated as a 
perturbation. 

3. Diagonalization of H0 and perturbation 
expansion in 2tdPJ\. . . Ill 

lJ 
The diagonalization of H

0 
is performed at each site in-

depend~ntly. There are two different fermionic degrees of 
freedom at a site and we choose tlfe auxiliary representation 
for them following Long [14J in main features. Namely, we de­
fine two kinds of treation (annihilation) operators: g~0 (g. 0 ) 

. l. i 

for an oxygen and f:
0
(f.

0
) for a copper hole,respectively. 

1 i .> 

Then the complete set of basic vectors for one-site states 
can be subdivided into two sectors. The first one is given by 
(a site index is dropped): 

r;1o>=lf0 >, £+0 g+ g+ 10,= 1~0>, - 1-L 20 r; ga 10>= 141>, 
"' "' v7o 

( 8) 

(f+ g+ 
"' "' 

f+ g + _1_ L f+ g± 
,., ,., ' Y7o o o )10> = (li

1
>, 1.i_ 1>, li0 >) 

with one copper hole at the site; o = ±1/2. The vectors 141> 
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and It«> in (8) give the singlet and triplet states, respec­
tively. The vector I g

0
> represents the only three--_particle 

state at the site. The second sector is given by the follow­
ing basic vecto~s 

lo> +10~ =lg~ + g+ 10- = Im~ ' go · - o·' g+ ~ - - ~-

with no copper hole operator. 

( 9) 

Now we represent how the operators x? 0 and c!
0 

act in 
1 1 

the united state space defined above. That representation is 
given by the following formulas 

x00=1 f 0 ><.0I + ~Ill> ><g01 + ~I t 0 ><g01 +I ·c 20 ><g0 1 +I !; 0 ><1PI, ( 10) 

c;=I g0 ><01 + 20 I <.p><g01 + ~
2

11.!J><f0 1 - ~I T0 ><f01 - ( 11 ) 

- I t 20 ><f0 1 - ~I g0 ><ll>I - ~I !; 0 ><T,/ - 201 !;0><T20 1 . 

Analogously, the on-site Hamiltonian H6i) is represented as 

Hbi>= l [ 6 lgio><giol + Vo(lgio><fiol + h.c.)] + 
0 

+[ 6 1<.Jl.><<.p.l + ffV
0

(1<.p.><1.!J.I + h.c.) ,_ 2Jl1.!J.><l!J.IJ + 
1 1 1 1 1 1 

+[ 6 IOi><Oil -J l li;io><!;iol 
0 

6 J . ('12) 

We diagonalize H~i) by applying the canonical transformation 

Hbi)=exp(Si) H~i)·exp(-Si) 

with the generators S. 
. 1 

6 

(' - 8 0 i- 1 [1g0 i><f0 il - h.c.] + 02 [1<.Jli><ll>il - h.c.], 

tg(28
1

) = ( 2V
0
/6 ), tg(28

2
) = ff2 V

0
/(6+2J). (13) 

Finally,we obtain 

H6i)= l E(w)lwrn><wrnl +}: E(v)lvi><vil ('14) 

\fO V 

where w = !;,g,f; v = O,<.p,l!J; and the energy of these locali-. 
zed states are defined as follows 

E(!; )=-J , E(g ,f = i [ 6 + c... -
v· 62 +(2V )2 

. 0 ] ' ( 15) 

E(O) = ts. , E(<p , ll> ) = + [ (6-2J) ± / (6+2J) 2 +2(2V
0

) 2 • ] 

We note that three triplet states from (8) possess the 
,same energy wt1icl1 is zero in our notation, i.e. E( t) =O. The 

. on--site energy spectrum given by ( 15) is presented in Fig.1 
for various values of the ratio tdP/6, (in numerical calcula­
tions throughout in this paper we choose Ud by putting 
tdp/(U -6) ~ 1/4) 

d 
One can clearly see that at any value of the on-site 

hybridization parameter V
0

(=2tdP1
0

) the states from the sec­
tor (9) are separated from the f-sector (8) by the energy di­
stance not smaller than the charge transfer gap 6. So in the 
following we shall call the former as the upper subspace and 
the latter as the lower subspace. Just the lower subspace de­
termines the low-energy physics in the system. It is worth 
noting also that though the three-particle state ( !;-level) 
lies in the lower subspace, it can.be n~glected in the small 
doping limit we treat below. A doped hole goes to the singlet 
state, which provides the lowest energy in the system. This 
state is well separated from the triplet states. Particular­
ly, at tdP/6 ~ 1/2 one has E(t)-E(l!J) ~ 1.56. 

7 



As the next step, we apply the canonical transformation 
(13) to the hopping Hamiltonian 

~ 
H. t= exp(I S.) H. t exp(-I S.) in i in i 

i i 

and ~~it,j) is clearly obtained from (7) by replacing 
in 

XOO XOO= es. XOOe-S. i ➔ i i i i ' 
+ "'+ cio + cio= s. + -s .. e i ci0 e 1. 

( 16) 

( 17) 

Let us now introduce the projection operator P1 onto the lo­
wer subspace"'and P2 onto the upper subspace. Then the hopping 
Hamiltonian H. • involves different kfods of contributions: 

N 1n~ N 

P1H. tP.1 and P2H. tP2 correspond to the lower and upper 
in in ~ ~ ~ 

subspaces, respectively, wt,ile H . =P1H. tP..., + P...,H. tP
1 

mi-
mix in.~ ~ in 

xes these subspaces. 
Our aim is to obtain the effective Hamiltonian Heff de­

scribing the low-energy physics in . the system. Requiring 
IV .. I /ll«1, it can be written formally to the second order in l.J 
V • .Ill as 
iJ 

N N N 1 N 

Herr= P1HO P1 +' P1HintP1- P,HintP2- H _ 8(0) P2Hintp1 
0 

( 18) 

where E< 0 > is the energy of a refering ground state. Taking 
into account that the largest value of I A •• I is for the 

iJ 
nearest (i,j)-sites and equals l'A.

1
1 ~ 0.'14 we have IV . . Ill.I~ 

1J 
2tdPA.1 /li . Hence, the e:xpansion ( ·18) is valid if 

tdP/l.\ « 1/(21 A.1 I) "" 4 · ('19) 

We emphasize that the requirement (19) on tdp is more soft 
than that one commonly uses, i.e. tdP/li << 1,in derivation of 
the effective second'-order Hamiltonian in the spin fluc­
tuation regime [3,4,6,8-13]. Moreover,the expansion procedure 
developed here is more suitable for copper oxides where 
tdP/t,,::, 1/2. 

8 

\ 
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\; 
I 

4. Effective Hamiltonian: zero- and first-order contri­
butions 

To obtain effective Hamiltonian (1~) explicitly, let us 
first note that the• zero-order part P1H0 

P1 comes from (14) 

after omitting the terms acting in the upper subspace and, of 
course, the ttiree-particle contribution (g-tei;:_m) due to a 
small doping~ Further the first-order term, P 1 Hintp 1 is ob­
tained from H. t by the following replacement 

in 

Noo ~oo ~oo "'+ ~+ • ~+11 
xi ➔ P,Xi P,= xi11;ci0➔ P1ciOP1= ciO (20) 

Making srnne simple algebra one obtains 

,?Jo • r~+11)-,.., A'.V I'·,, -f I ~- i11' ciO - c...O x;c 1vi,< iO + ( 21) 

+ Ai ( 1 I ,,.- '• ·· f I + ' ..,., ·· < f 1 ·) 
- 0 ·0/'- · □- . I c.,,o,, · ·o X;C n i i iL i 

wt,ere 

A1
~. = (.___L cor]8 1cos82 + .sin8

1
sin8..., 

, .... ,x n c... 
v2 sin81cose) 

L 2 , 

At_,=( - cose
1 

; ~sine,). c,x 
(22) 

To present Hie results in a more convenient form, from now we 
introduce the new type of Hubbard operators defined as 
follows 

x~o·= lf.
0

><f.
0

, I 
l. l. i 

; x~l\J = I 1.µ. ><~,. I 
i i i 

· xl\1° - ll\J ,<f I· , . = ., . ·o , 
1 1 i l 

(23) 

x~· = li.a><'t.a· I 
i 1 l 

• xiva = I t!J > / 'l: I . xClO = I T '> , f I . ' • - • .• • CJ.. ' • - • Cl' ' . 0 ' i i i. i i i 

(a= o, ± 1 ), etc. 

For example, in terms of these operators the zero-order effe­
ctive Hamiltonian is written as 

9 



rJi0 P1 = E(f) l x~0 + E(1ti) 2 xf'V ·(24) 
iO i 

and the triplet .sector.in our notation is.located at ttie 2ero 
energy E( •c)=O. For the first-order contribution we obtain fi­
nally the form 

P,HintP,= l 
Uj,O 

v .. { K x1vo ,,01µ 
lJ ~µ i Aj + (25) 

+1K.,.,,. [ x? 0 x~ 0 + 2 x~0
• 

0 x~· 20 + v'Z (x~0 • 0 x~· 0+ 11. c. )]-.. 
~ cc l J l J l ,l 

20KtjJ't'[ ~ xf0 x~ 0 
+ xf, 0 x~· 20

+ h.c.]} 

where 

K,i. 1 =2 AtjJ A'V 
'1'1¥ X e ' 

K . =2A'[ A re , K . . = A1v Ai + A1t' A'C . ( 26) "C't' X C tjJ"C X C C X 

Here .A1
V = AtjJ - v'2tcos81 co.ss .... and all coefficients Aµ are 
X X c.. Xj G 

defined in ( 22). Several contributions are involved in Hamil--
tonian (;~5): the first term -~\vi)! corresponds to singlet­
.singlet t1oppings, subsequ~nt terms ,v Kit represent .the hop­
pings from triplet to triplet states and trie hybridization 
between them, and, at last, Hie term,c3 -~· K,)li represent the 
hybridization between singlet and triplet ,states. 

Tlie re.sult.s of numerical analysis for the coefficients Kµv 
from ( 26) are presented in Fig. 2 • However, more represen­
tative quantities are· the hopping integrals ·between neigh­
bouring i and j sites, VijKµv= 2tdpi\Kµv· Particularly, at 
tdP/ll"' 1/2 one has for.the singlet-singlet hopping 2tdPi\.1Kl\JtjJ 
"'0.16ll (O.48eV. at A~3eV ) and for triplet-triplet hopping 
2tdPi\.1K11 ~ -O.12ll. We note these values to be by an order 
of magnitude smaller than the relevant energy distance 
E('t')-E(1ti)~1.5A (see Fig.1). Moreover, we obtain (at 
tdP/llcel/2) that the singlet-triplet mixing parameter is quite 
small 2tdPi\.1 KtjJ't'~-o. O3A. These findings are consistent with 
the ZR result and hence make plausible further reduction of 

10 

i 

1
1, 

ii 

I 

l l 
·I 
i 

the singlet-triplet description to the one-band t-J model 
[ 1OJ. In this case t=2tdPi\.1K,lJtjJ" 

Recently, Hybersten et al. [ ·1 ·1 J have used a cluster method 
to reduce a multi-band description to the one-band, the so­
called t-t' -J, model. They added a t' -term describing the 
next nearest neighbour hopping of the singlet and obtained 
the following estimations: t~o. 44eV. and t' ~-o. O6eV. In our 
consideration t'=2tdPi\.2Kl\lt.l> with-i\.2ceO.O2 (see.Table 1); hence 
t' =( i\.2/i\.1) t~ +O. O7eV. It is remarkable that both t and_ lt'I 
parameters obtained here are very close to that of Ref.[11].' 

Now we demonstrate more.clearly that results obtained by 
ZR [ 10] and others [12] are contained in ours as a limiting 
case. Actually, for sma~l on-site hybridization 2V

0
=4tdPi\.

0 
<< · 

l'i , let us expand the cos01 : 2 . and sin01 ; 2 
functions to the 

second order in tdP/l'i<<1/(4i\.
0

) ~1/4. Then the singlet binding 
energy relative to the triplet states is 

E('t')-E(t.l>) ~ 8 i\.~ ( t 1+t
2 ( 27) 

which is very close to the ZR result (here t
1
=(tdP) 2 /A and 

t 2=(tdP) 2 /(Ud-A) ). Analogously, for the nearest neighbours 
hopping and mixing parameters in Hamiltonian (25) we obtain 
(i,j=n.n.) 

vijKl\J,v= - 8i\.oi\.1< ft1+t2>; vijKn.= 4i\.oi\.1t1; 

V ijKl!Jt= 4ff i\.0 i\.1 t 2 • (28) 

Taking into account that 8i\.
0

i\.1~ -1 we again come to the ZR 
result for the singlet-singlet hopping parameter .. Moreover, 
all the parameters (28) coincide with that of Ref [12] obtai­
ned in the spin fluctuation regime tdP/A <<1, tdP;(Ud-A) <<1. 

However, we emphasize that the estimations (27) and (28) 
follow from our consideration in a more strong limit, 
tdP/A<<1/4, while tdP/(Ud-A) <<1. Just the exact diagonaliza­
tion of the on-site Hamiltonian (6) establishes this limit as 
a real · weak hybridization (or spin fluctuation) regime. 

11. 



Strictly speaking, this limit is not realized in copper 
oxides, where tdP/ll <:: 1/2. The more general approach valid 
for rather strong hybridization tdP/ll << 1/(21~1 1)~ 4 is de­
veloped here, which gives effective Hamiltonian (24) and (25). 

5. Second-order contributions. Superexchange 
interaction 

In this section our aim is to obtain Hie contribution,<:, 
of second order in V . .Ill to the effective Hamiltonian H f. 1., iJ ~ 
i.e. the last term in (18). However, instead of the operator 
form, given by(18), we have chosen an equivalent way of deri­
vation based on the canonical Scririffer-Wolff transforma­
tion. This transformation is more convenient . because it 
allows one to take into account all tl1e necessary virtual 
processes on an equal footing. Requiring that the fi.nal ef­
fective Hamiltonian should not include the term linear in 
N N • O 

H. =P
1

H. tP2+ h.c.,we obtain the following equation for the 
mix in 

generator W of the canonical transformation 

·~ 
[ Ho 

N 

W ] 0= Hmix • (29) 

Then t11e second order contribution H~~~ is formally given by 

H( 2 ) = i P [ W H. JP 
eff 2 1 ' ffiJ.X 1 • 

(30) 

~ 
To present it explicitly, we decompose H. t' defined in (5), 

rv N lfl rv 

(7), and (16), into two parts: H. t=H: .. + 6 H:'t , which is 
in inuv in 

obvious. Then, particularly, the part P1H'. tp 0 can be written in .. ,__ 

as 

"', , [ "'crn "'12 
P1HintP2= £ Vij Xi12(cj0 +~~1) + ~:12 (X~o +X~o )· + 

JO 10 J12 J11 

i;lj 

+ < x~~,;;~ + ;:~
1 x~~ 2 >] (31) 

and the operators entering into (31) are defined by (21) and 
the following formulas 

12 

-~00. ~ 12,= ?r _ -''< 
lAi12' Lio 1 -JFx:clfiO P1i 

.,.(\( '"+1 :, • 
(X: 1'..,; c. 0 '-) c:c L [if.

0
><0 I +-L1,c .. ·<.g.-

0
1 + i't:...,

0
><g.

0
1J+ 

l. t.:. l l x; e l ~ 10 l le.. l 

+ 2o M _ I 1!1. '-· <.g. 
0
-1 x: C' l l 

( 32) 

F =1-1- cuss sine - sine cose_· 
C ; X .,r· ~~ 1 2 1 C: 1 

1 . n srn81sin0) 2 , 

L =( -.sinS 1 ; co~38 1) , c;x · ( 33) 

M =(-1-· sin8
1
cos8.., - cos8

1
sin8~; 

~;X n L L . r- cos0 CO"0 ) r c~ 1 ,=> 2 • 

N 

The part t P1Hi~tP2 can be represented in the same manner, 
which we omit for clarity. After some lengthy calculation one 
can check that the second order contributions can be finally 
written as 

H(2) = l 2V~. 
[ a S.S. - +N. N. ]+ - J.,J ( 34) eff A l J i J 

i;ij 

') 

2: 
2V':. 

[ ctcx. s« xµv + cfu xto xµv ] + l e< 2 l'. 'k) + i,J 
llJ • ti µv i j ·µv i j 

i;t:j ' i-/ j-/k 

Here st! (ex. = x,y,z) are the !/;~--spin operators to be defined 
i 

through the Hubbard op1irators as 

s<:-= 112 L'. ocx.
00

, x?0 ' 
i oo' i 

N;= I x?o 
1. 0 i 

where oct are the Pauli matrices. The operators X~v(µ,v, 6,15 = 
. J 

~.0,±1) act in the space of singlet and triplet states. Sum-
mation over equal indices in (34) is implied.We deliberately 
subdivide boson-like operators into two classes, {SC('} and 
CXµv}, to extract explicitly superexchange interaction bet­
ween localized spins given by the first sum in (34). Three-

' rn 
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Fig.1. Calculated energies of the localized states as 
functions of ttie radio tdp /1'1. Curve,s from 1 to 7 correspond 
to E(1~),E(f),E(£,),E('t),E(0),E(g) and E((J)),respectively. The 
singlet state energy E(1v) is the lowest . 

. 
Table 1. The values of the coefficients A(i-j) as 
functions of Hie intersite distance (i-j) = n a+ n a X X Y Y 

n0s.n 
., X 0 1 2 

0 0.96 -0.14 -0.013 

1 -0.14 -0.02 --0. 07 

2 -0.0"13 -0.07 - 0. 003 
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site interaction tt< 2 )(ijk) is out of our consideration. In 
thi.s paper we also do not explicitly specify the c-number 
matrix factor d~v and c£e and restrict ourselves to an analy­
sis <~f the magnetic interaction between localized spins. The 
magnetic term that is of the second order in V .. in our con­
.sideration, is analogous to the fourth-order (i1JtdP) term in 
the conventional expansion and, hence, to the J-term in the 
t-J model. 

The dimensionless factors a and bin (34) are given by 

a = f [ 
<-

2 cos 201 

2E(f)-E(0)-E('C) 

( cos8
2 

+ 1 /i/2 sin28
1 

sin8
2

) 2 

2E(f)-E(0)-E(4J) 

( sin8
2 

- 1 /i/2 sin28
1 

cos8) 2 

+ 
2E(f)-E(0)-E((J)) 

sin22e 1 

(Ud-~) ] ' 

b = a - 2cos328
1 

(35) 

The form of the denominators in (35) shows which kinds of 
virtual. processes contribute to the superexchange constant. 
Namely ,as the first step, one of two particles should be 
excited from the f-level to the initially empty level (with 
the energy E( 0)), while the other goes either to a triplet 
'G-level ( E( t) =0 in our notation ) , or a singlet 4J:-, or 
(J)-level starting from the same £-level. The second step 
should restore their position. It is worth noting that the 
second order (in tdP;(Ud-1'1) ) contribution. from the upper 
Hubbard pUblevel is taken into account in the starting Hamil­
tonian (1). This contribution enters additively into the ex­
change' constant as the last term in (35). 

We have numerically analyzed the factors a, that is po­
sitive, and bas functions of tdP/1'1. These factors· allows 
one to estimate the superexchange antiferromagnetic integral 
Jdd(i,j)= 2a(2tdp A .. )2 /1'1 , and the additional integral 1J . . 
Idd(i,j)= 2b (2tdP Aij) 2 /li, entering into Hamiltonian (34), 
for any distance between i and j sites. For the neighbouring 
sites ( i, j=n. n. ) these quantities are presented in Fig. 3. 
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Fig.3. Calculated superexchange antiferromagnetic integral 
Jdd and additional integral Idd taken for n.n. sites . The 
definitions are given in the text. 
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Par·tlcularly, at tdP;f:1,,,1/2 we obtain Jdd(i,j=n.n.)= 
Jctct~6.056. Then if ~=3 eV., one has Jctct=0.15 eV. that is very 
close to the experimental value [ 15J and to the .estimation 
given in Ref. [ 11 J. We note triat in the typical approach_­
[ 6, 16 J one ha.s as a rule a larger value of J dd in the same· 
range of model parameters. 

.For the second neighbours ( diagonal bond) the correspon..,. 
1.U ng superexchange integral is 

Jdd(i,j=n.n.n.) ~ J~d = Jdd(~2/A1) 2 = o.001i. 

If A~ 3 eV.,then J~d ~□ .003 eV. which is again close to that 
of Rev. [ 11 J. We note ttlat in our approach there is an obvious 
1:tr-ict relation between thr~ singlet-singlet hopping parame­
ters t, t' and the exchange integrals Jctct'J~ct' namely 

J~d t' 2 

-~=[-t]. 

The v0.lue,s for these parameters obtained numerically by Hy­
lJr•rsttc}en et.al. [ 11 l on tl1e basi.:; of a clw.3ter m~thod appro­
x1matcily obey Hti.s 1·ela tlon a,s welL · 

6. Conclusion 
It this paper we developed an approach to reduction of 

the two-band p-d-model of the Cu□~ plane to an effective Ha-
"' miltonian giving a low-energy behaviour of the system. Fol-

lowing the main idea of ZR [6J we eliminate·the operators as­
sociated with oxygen coordinates and describe the sys.tern in 
terms of local singlet and triplet states. However, our con­
sideration is valid in a more wide range of the p-d hybridi­
zation parameter tctP, including the charge-fluctuation 
regime, in comparison with ZR who treated the limit of rela­
tively weak hybridization, i.e. the spjn-fluctuation regime. 
Two successive steps are used in our approach:first, the'on­
site interactions involving the hybridization term V

0
=2tdPA

0 
are kept exactly and,second, intersite interactions ~V .. = 

. , J.J 
2tctPA .. << V0 are treated perturbatively. This approach is de­iJ 
veloped to the second order in V . ./6 and the effective Hamil-

1J 
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tonian, is presented in terms of Hubbard operators associated 
with singlet and triplet local states. We analyzed the resul-­
ting Hamiltonian in some limiting ca,se,s and estimated the re­
levant ·quantities for the most representative value,s of the 
model parameters. Along this way we obtained a good agreement 
with other considerations [6,10-121. So a further reduction 
of the effective Hamiltonian to the one-band t-J, or t-t'-J, 
model [6, ·11 J seems to be very plausible. However, to justify 
this reduction, some subtle questions remain to be examined 

carefully. 
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