





1. ‘Introductlon R s
S1nce the d1scovery of h1gh T superconduct1v1ty a greatg

; 3;deal of - efforts have been undertaken to obta1n an effect1ve}

”wHamlltonlan that. descrlbes the. low energy propertles of the?
«,CuO plane 1n ox1de superconductors. ‘As’ ‘has. been p01nted out
_‘fgby R1ce E1] the ‘aim:is" to find- the s1mplest Hamlltonlani
fi el1m1nat1ng all terms wh1ch are: not relevant 1o the determlej
‘f'natlon of the superconduct1ng f1xed p01nt. Anderson was. the;
: JflPSt to. propose {21:a Ham11ton1an of ‘that sort ‘which 1s NOW
‘fwell known as the t -J model Th1s model can be derlved fromg

e‘the s1ngle—band Hubbard model in: the large U- 11m1t [3,41.

- However,41t 1s belleved now that a generallzed (multl band)r

'i»QHubbard model. proposed by Emery {51, “ghould " be taken as a?

f7start1ng polnt of th1s reductlon The - flrst step 1n thls wayg

o was made by Zhang and R1ce (61 (ZR hereafter) who suggested a-

*uperturbatlon scheme on the ba51s of a- s1mplif1ed verslon of
ithe Emery model They have found that the Cu—O hybrldlzatlonn
strongly binds a hole on ‘each square of 0-1ons w1th the-cent--

- ['ral Cu—1on t0. form a: local 51nglet state w1th a. b1nd1ng;
‘flenergy (w1th respect to the trlplet state and the ‘nonbonding

f‘state) greater that the s1nglet bandw1dth. After neglectlngf
'fthe tr1p1et hole band 7R’ arrlved at ‘the t-J. model.;Thls :has:

S led to cons1derable d1scu531on in the’ 11terature on the vall—f

,fffdlty and 11m1tatlons of the reductlon from a .multi- band
”ffdescrlptlon to a: one band model [7—13]. Part1cu1arly,f1t hau&

‘ g,been p01nted out that the .approach suggested by ZR 1s not
‘*lcontrolled by a small. parameter, 1 e.,the same’ phy81cal quan—

N 1t1t1es determlne the blndlng energy of the 51nglet, its band
‘vaWldth dnd the parameter of the s1nglet tr1plet m1x1ng asi
'~;fwell.,”( T B 5 [ s L ?
'f ' In thls paper, startlng w1th the same Hamlltonlan a :
!Ref [6] we present a d1fferent perturbatlve approach 10" the;
‘reductlon wh1ch allows us. to overcome ~the obJectlon mentloned‘




_above and to obtain the effective singlet-triplet Hamiltonian
for "the CuO plane in oxide superconductors. At the same
tlme, based on the Wannier representatlon for oxygen hole
,operatoru our consideration is s;mllar to that by ZR. Thus,
the Hamiltonian obtained, though somewhat more complicated,
in main features resembles the t-J model. We believe that the
‘latter is contained in our resulting Hamiltonian as a limit-

~ing case for a certain range of relevant model parameters and
low temperatures.

- 2. ‘Model Hamiltonian »
In the Emery model [5]1 the 1argest energy parameter is
the on-site Coulomb interaction between copper d-electrons,
U ;- and the largest hopplng 1ntegral tdp, corresponds to the
‘6 bond between copper d(x®-y®)- and oxygen p(x,y)- orbitals.
The simplified version of the Emery model, we start wlth, lS
gained by keeping these parameters and ignoring the on-site
Coulomb interaction on the O-ions, the intersite Cu-0 Coulomb
~interaction and: direct 0-0 hopplng terms. Two different
regimes should be distinguished for a hole dynamics. The -
first one,the so-called spin fluctuation regime, corresponds
10 a weak Cu-O hybridization, t%P/A= t <<1 and tdp/(U - ) t
<< 1, where A= ep—e >0 is the energy dlstance between D- and
d-atomic levels and (U - A ) is the energy of the higher Hub-
bard sublevel at copper sites with respect to the p-level.
Small t; and té provide a commonly used perturbation expan-
sion used by ZR [6,101 and other authors [9,12,131 in deriv-
ing an effective one-band description. However, more re-
~presentative values of the parameters in copper oxides do not
give not so weak hybridization. Actually, according to
£7,11,161 one has t;z1/2 and té£1/4 and hence only the latter
parameter may provide a good perturbation expansion. That is
the change fluctuation regime because the charge degrees of
freedom at copper sites should be taken into account. Just .
‘this regime is treated below.
o After projecting out the upper Hubbard sublevel the two-
band Emery model can be written to the second order in t} as
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(1n hole notatlon)

-A 2 X% 4 2 tdg [ X% .+ h.c.l+ (1)
tdptdp oG | 55 |
im’in + +

+ 2 (U.— A )[X l:mCiDﬂO X b OpnO ] .

imn0 d :

Here Hubbard operators for a hole at Cu T-sites are introdu-

ced:
00 _ 4+ ,4_ _ 00 _ g - y00 _ a4
X°g = djgli-ng o)y X7y = nglt-ny o)y K75 = diglig
where § = -0, and tdp = 1dp S, 1s the hybridization ampli-

tude which is nonzero for neareut HELgthUFb. The sign con-

vension Sim—:1 is chosen in agreenent with ZR [61. The atomic,‘

energy of the p-level is chosen to be zero, epzo. According

to ZR let us now défine a symmetric_combination of four.0-.

hole states around a Cu site

¢ )1 o .
: S ““"E' 2 » - . (2)
m ‘

which are not orthogonal. The Wannipr ”epreuentation brovidpﬂv 3
the orthogonal symmetrlc O-states with _corresponding opera-
‘The relation between them is fami-

' 1nstead of p (S)

tors c, 4

liar,

p{P= TadD o @
where (N being the number of Cu sites)

> o 4 . 1/2 . ‘?__“?‘
MI-3) = 2[1— 5 (cosk, + cosk ) ] ki)

k<

- (D

One can check that A(I-J) rapidly decreases with the distance

(3-3). Particularly, several largest values of M3I-F) are

presented in Table 1. . ‘ R
After introducing the notation v, -°thX(T~3), the Hamil-

4
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tonian (1) can be represented in the following form

_ (1) (i, 3).
o= Hot Hypy o Hos y ot =0 HiLy (5)
i 1#3

where

(i) %00 00 GO+ oo
H. AE DI eSS WER EN)Y el hl gt I

o

(i, §)_ 00, oo oo + ]

Hlnt vlJ [k * {[1( 10 jJ X 1(7 3(7] + h C. (7)

0

and =V, /(U,~0), J=gV_.Here H(l) gives the on-site inter-
action with the 0Cu-0. hybl'dlud’“ﬁﬁ term ~V ”tdph (where
A,=0.96), the hopping term H(I’J) with any dlstancp prwcen 1
and J sites is QOchnPd by ‘rather small parameters
V. J—”tpdx(i -3). Hence, the on-site Hamiltonian will be diago-
nalized exactly and the hupplng terms will be treated as a
perturbation.

3. Diagonalization of HO and perturbation
expansion 1in ztdpkl /A »
The dlagonalluatlon of H is performed at each site in-

. dependently. There are two dlffplent fermionic degrees of

freedom at a site and we ehoose the aux111arv representation
for them following Long [141 in main features. Namely, we de-
fine two kinds of ¢reation (annihilation) operators: gzo(gio)
for an oxygen and fzo(fia) for a copper hole,respectively.
Then the complete set of basic vectors for one-site states
can be subdivided into two sectors. The first one is given by
(a eite index is dropped): '

£1100=1 1>, T g gh 100= 15, *1—-§ 20 £ g5 10>= (>,
| (8)

<

(st gt , g, —J——Z fg gg )10> (IT1>, LT_,>, ITO> )

I v v V7o

<

with one copper hole at the site; o = +1/2. The vectors [¢»
5



and |7,> in (8) give the singlet and triplet states, respec-
tively. The vector (§O> represents the only three-particle
state at the site. The second sector is given by the follow-
ing basic vectors

10>, g5l0> = lgy>, € ey 10> = |g> (9)

with no copper hole operator.
Now we represent how the operators Xgu and C:o act in
- the united state space defined above. That representation is

given by the following formulas

00 o 20 0 et 1 v .
X —lf0><01+ v”?lw ><gol+ ;:§|Toxxg5|+|Izoxxg0|+|§o,<@[’(]O)

+ ' 20 ' . 1
- < o= == > = —_—_— > 1 -
Cy=1842<01 + 20lg><g5l + - o <f5) _‘TO <5l (11)
=l o<ELl - —1—I§ >apl - gg—I& 2Tyl - 20| E=3<T =] -
20770 /= 207 ' =070t “7isprhreot -

Analogously, thevon—site Hamiltonian Héi) is represented as

.Héi): > [ A fg;5<s5l + Vollgggo<tipl + Ml +
5 _

+[ A |wi><wi| + VIV (1o ><b, | + hocl) = 201 ><, T +

+L A 10,5401 =T ) L&, ><Eigl - AT, (12)

0

We diagonalize Héi) by applying the canonical transformation

iy _ (i)-
Hy =exp(5,) Hy exp(—Si)

with the generators Si-

5,= 8, [|g6i><f0il - h.c.] + 6, [1@i><wil - h.c.] .

tg(28,) = ( 2V,/8 ), tg(20,) = VZ 2 V /(8+2]). (13)
Finally,we obtain

Héi)I N E(w) [w, ><w, | +) E(V) [V, ><v,| (14)
WO v

where w = £,g,f ; v = 0,0,¢; and the energy of these locali-.
zed states are defined as follows

e
BE)=J, Bg .t ) =F[asvaPev)? ] (15)

=

E(O) =& , B9 , 0 ) = .%.[ (a-20) =V (av20)242(2V,)2 '] _

We note that three triplet states from (8) possess the
same energy which is zero in our notation, i.e. E(t)=0. The

.on-site energy spectrum given by (15) is presented in Fig.1

for various values of the ratio tdp/A, (in numerical calcula-
tions throughout in this  paper we choose Ud by putting
t9P/(U -0) = 1/4) .

- One can clearly see that at any value of the on-site
hybridization parameter V0(=°tdpko) the states from the sec-
tor (9) are separated from the f-sector (8) by the energy di-
stance not smaller than the charge transfer gap A. So in the
following we shall call the former as the upper subspace and
the latter as the lower subspace. Just the lower subspace de-
termines the low-energy physics in the system. It is worth
noting also that though the three-particle state (E-level)
lies in the lower subspace, it can be neglected in the small
doping 1imit we treat below. A doped hole goes to the singlet
state, which provides the lowest energy in the system. This
state is well separated from the triplet states. Particular-
1y, at t%P/A = 1/2 one has E(T)~E(¢) = 1.5A.
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As the next step, we apply the canonical transformation
(13) to the hopping Hamiltonian

~

H; 4= €XD(X 5;) Hy . €Xp(-Z 8,) (16)
i i
and ﬁii%j) is clearly obtained from (7) by replacing
Xgo > ggoz e5; Xgoe'si » Cig > EZG: e ci e %L ()

Let us now introduce the projection operator P1 onto the lo-
wer subspacewand P2 onto the upper subspace. Then the hopping

Hamiltonian H, , involves different kinds of contributions:

P1H’imP,1 and P H tP2 corresgpnd towthe lowerngnd upper
subspa;es, respectlvely, while Hmix:P1HinLPE + PeHintP‘ mi-
Xes these subspaces.

Our aim is to obtain the effective Hamiltonian H off de-
scrlblng the low- Pnergy physice 1in the system. Requiring
!VIJI/A<<1- it can be written formally to the second order in
V../A as *

ij
L, o 1 : ;
Heff“ P1H P + P1H1ntp1k P1HintP2 ﬁ §(o P2H1ntp1 (18)

0

where E¢®) is the energy of a refering ground state. Taking
into account that the largest value of lhi;l is for the
nearest (i,j)-sites and equals |h } =~ 0.14 we have lVijI/A <
2t9PA /A . Hence,the expansion (18) is valid if ’
199/ << 1/(210,1) = (19)

We emphasize that the requirement (19) on t9P is more soft
than that one commonly uses, 1i.e. tdp/A << 1,in derivation of
the effective second-order Hamiltonian in the spin fluc-
tuation regime [3,4,6,8-131. Moreover,the expansion procedure

developed here 1is more suitable for copper oxides where
19P/8 & /2.

o e

4. Effective Hamiltonian: zero- and first-order contri-
butions
To obtain effective Hdmlltonlan (18) explicitly, let us_
first note that the- zero-order part P, H P, comes from (14)

after omitting the terms acting in the upppr subspace and, of

course, ihe three-particle contribution (g—teﬁm) due to a
emall doping. Further the first-order. term, P1HintP1 is ob-
tained from Hint by the following replacement ’
w0 v00n _ 00 o+ “Fopoo N1 o
Koo = POX{R = Ky psCie™ PaCioPy® Cip - (20)
Making some simple algebra one obtains
S00 . ‘+11 PN ¢ N o
tX11‘, c; )= OA {¢i><fic + {21
+ AT ( —1~lt PRSP B K IR N )
x;je' o 10 i0 i20” "Ti0
where
AY = (- cose coss, + sine,sing, ; - L sing,cose,) ,
3 X v f 2 Y
T e P ~n
Ac;x:( - cosB, ; - u;ne1). (22)

To present the results in a more convenient form, from now we

introduce the new type of Hubbard operators defined as
follows ' '

007 _ L To I N . .
xi = |fi0><fiol| ; Xi = |¢i><¢i| ; xi = ‘¢1'<f10|’ {23)
oo _ o ot _ ) PRV [V , .

Xi |Tia)\T a’! ; Xi = |¢i>\tial, X, = |tia>\fi0L,
(a=20,=x1), etc.

For examplé, in terms of these operators the zero-order effe-

ctive Hamiltonian is written as



= B(£) § X% + By § x [(24)

i0 i

and the triplet sector in our notation is_ located at the zero

energy E(t)=0. For the first-order contribution we obtain fi-
nally the form .
o - do o )
PH P T v Ky, 10 X0 (25)
: i%3,0

A 00 00 20,0 40,20 5 (v20,0 40,0 ]“
3K [ 190 %30 4 2 k2 X 20+ vz (E% 0 X8 % el

~ 20K [ L xboyoo | xb, 0x0: 20, n.c. ]}
Q)T}/z‘lj_l

where

Kyp =2 A% A, Kop =2aT AT, Ko = BV AT 4 4 2T (26)

V“{Posﬁ cosb, and all coefficients A“ .o are
Z).Several (ontrlbutlon° are involved in Hamllh
tonian (25):the first tern wa corresponds to singlet-
singlet hoprings, subsequent terms ~ KTT represent the hop-
pings from triplet to iriplet states and the hybridization
between them, and, at last, the terms ~ me represent the
hybridization between singlet and triplet states. »

The results of numerical analyols for the coefficients Kuv
from (26) are presented in Fig.2 However, more represen-—
tative quantities are the hopping integrals between neigh-
bouring T and ¥ sites, vy K= “tdph K, Particularly, at
t9P/5 ~ 1/2 one has for the 31ng1et~51ng1et hopping 2t9PA wa
= 0.16A (0.48eV. at A~3eV ) and for triplet-triplet hopplng
”poA1KTT ~ ~0.12A . We note these values to be by an order
of magnitude smaller than the relevant energy distance
E(T)-E())=1.5A (see . Fig.1). Moreover, we obtain (at
t9%/A~1/2) that the singlet-triplet mixing parameter is quite
small thpx1K¢Tz—0.03A. These findings are consistent with
the ZE result and hence make plausible further reduction of

Here Ki = Aw
defined in (2

10

the singlet—triplet description io the one-band t-J model
(101. In this cage t=219PA K.

Recently, Hybersten et al. [11] have used a cluster method .
1o reduce a multi-band description to the one-band, the so-
called t-t'-J, model. They added a t‘-term describing the
next nearest neighbour hopping of the singlet and obtained
the following  estimations:t~0.44eV. and t’=-0.06eV. In our
consideration t’—°tdpk Ky With=A,=0.02 (see Table 1); hence
t’ —(x /k Yt= +0.07eV. It 1s remarkable that both t andltl
parameters obtained here are very close to that of Ref.[111.

Now we demonstrate more.clearly that results obtained by

Zk [101 and others [121 are contained in ours as a 11m1t1ng )
case. Actually, for small on-site hybridization 2V —4tdpk
A ,let us expand the cose 2 and 51n6 functlons 10 the
second order in th/A<<1/(4x ) =1/4. Then the singlet binding
energy relative to the trlplet states is

N

= 2
E(T)-E(¢) = 8 Ap €t +t,) (27)
which 1s very close to the ZR result (here t ~(tdp)E/A and
t —(tdp)z/(U -A) ). Analogously, for the nearest neighbours
hopplng and m1x1ng parameters in Hamiltonian (25) we obtain
(i,Jj=n.n.)

= 4A At

o 1 .
VigBogp=™ = SR (ot 41,); Viskers MoMts

v, WZAA T, (28)

ij LI)‘E

Taking into account that 8A0K1= ~1-we again come to the ZR
result for the singlet-singlet hopping parameter. Moreover,
all the parameters (28) coincide with that of Ref [12] obtai-
ned in the spin fluctuation regime t9%/A <<1, 19%/(y ) <«
However, we emphasize that the estlmatlons 27) and (28)
follow from our consideration in a more strong limit,
19%/A¢<1/4, while t9P/(U a~D) <<1. Just the exact diagonaliza-
tion of the on-site Hamlltonlan (6) establishes this limit as
a real weak hybridization (or spin fluctuation) regime.

11



Strictly speaking, .this 1limit is not realized 1in copper
oxides, where t4P/p ~ 1/2. The more general approach valid
for rather strong hybridization 14P/p << 1/(°|k (Y= 4 1z de-
veloped here, which gives effective Hamiltonian (°4) and (25),

5. Second-order contributions. Superexchange
interaction

In this section our aim is to obtain the contributions
of second order in Vij/A to the effective Hamiltonian Heif,
i.e. the last term in (18). However, instead of the operator
form, given by(18), we have chosen an equivalent way of deri-
vation = Dbased on the canonical Schriffer-Wolff transforma-
tion. This transformation is more convenient. because it
allows one to take into account all the necessary virtual
processes on an equal- footing. Requiring that the final ef-
fpctlve Hamiltonian should not include the term linear in,
H =P H P_+ h.c.,we obtain the following equation for the

mix “ 1 int 2
generator W of the canonical transformation

Y

CH o, W1=H. (29)

o’ mix.

Then the second order contribution Hi?% isg formally given by

(2 _ A e ) -
Hosr = 'Z‘P1[ w,H.1P . (:30)
To present it explicitly, we decgmpoap H nt? o deflnpd in (5),
(7y, and (16), into two parts: Hintz ot T H , which 1is
obvious. Then, particularly, the part P,Hln,P Cdn be written
as '

i ~G0 11 +12 Y00 L300 .
1 1nt 2 z V [ X112(C ) t C (X11“ XJ11 )+
i#j
6 v12 g1 jo0 -
S RIS xJ1ﬁ)] (31)

and the operators enterlng into (31) are defined by (21) and
the following formulas
12

itz io ok )OFx. if16%<wi! >
(%gun cHiay o [HE. 520 e
i12? vio X3 e ' ] Ob + ™ lclof ng' + 20 \g16|]+
+ 20 i i
<0 X1 O| (32)
F_ =(-L coed sing, ~ sind, coep ;- s1 i '
cix o ~ S1n8,cosb,; - £1ing,sind,) |
L =( -8inf, ; cosb ) |
oy x LA RO (33)
Mooo=(—L 6 cosd - o coa 1 ‘
eix 18,cos8, c089151n82, ;:; SB COue ).
I [4

The part y P H” P can be represented in the Same manner
which we omlt for clarity. After some lengthy calculation one

can check that the second order contributions can be finally
written as

(2) 22 4 _
b= ] a8 85 -~ ¥ N |+ (34)

Ci#d

. 2vE
+ 2 1!:_ [ d(x o X}lv " C\(C\ X{ﬁ X}lv ] n 2 H(Z)\_LJ}()

oy N" i uv
e 1#57x

e QO N . . A s )
Here Si (@ = X,y,2) are the 1/2-spin operators to be defined
through the Hubbard operators as

oa_ 4,
s¥= 172§

,Xoo N= 5 %00
00° 2 X

%50 ’ 15

where o% are the Pauli matrices. The operators X“v(u v,7,6 =
$,0,+1) act in the space of ginglet and triplet statéc Sum-
mation over equal indices in (34) 1is 1mp11ed.We dellberately
subgivide boson-like operators into itwo class 5% and
{xHYy }, 1o extract explicitly superexchange 1nteract10n bet-
ween localized spins given by the first sum in (34). Three-

’
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0.00 0.20 0.40 . 0.60 0.80

t*® /A

Fig.1. Calculated energies of the localized states as
functions of the radio tdP/A. Curves from 1 to T correspond
to E(y),E(f),E(E),E(T),E(0),E(g) and E(g),respectively. The
singlet state energy E(Y) is the lowest.

Table 1. The values of the coefficients A(i-J) as
functions of the intersite distance (I-3) = nx§x+ nyﬁy

TSN\l 0 1 2

0 0.96 | -0.14 | =0.013
1 -0.14 | -0.02 | -0.07

2 -0.013' -0.07 '—=0.003

14

site interaction H(E)(ijk) is out of our consideration. In
this paper we also do not explicitly specify the c-number
matrix factor dﬁ and Cﬂv and restrict ourselves to an analy-
sis of the magnetic interaction between localized spins. The
magnetic term that is of the second order in Vij in our con-
sideration, is analogous to the fourth-order (in t%P) term in
the LonVHntlonal expansion and, hence, to the J-term in the
1-J model.

The dimensionless factors a and b in (34) are given by

A [ ' 005226_1 (cosB, + 1/vZ sin2e, 81n92)2
a = - - : -
2 2E(L)-E(0)-E(T) 2E(f)—E(O)—E($)
(sing, - 1/vZ sin28, cosd,)® sin®28,
; | PGS

+
2E(£)-E(0)~E(9) T W
b=a —»2c053281.

The form of the denominators in (35) shows which kinds of
virtual. processes contribute to the superexchange constant.

 Namely,as the first step, one of two particles should be

excited from the f-level to the initially empty level (with

- the energy E(0)), while the other goes either to a triplet

¢-level (E(t)=0 in our notation ), or a singlet Y-, or
p-level starting from the same f-level. The second step
should restore their position. It is worth noting that the
second order (in tdp/(Ué—A) ) contribution . from the upper
Hubbard sublevel is taken into account in the starting Hamil-
tonian (1). This contribution enters additively into the ex-
change constant as the last term in (35).

We have numerically analyzed the factorsva, that is po-
sitive, and b as functions of t9P/A . These factors allows
one to estimate the superexchange antiferromagnetic integral

dd(l j)= 2a(2tdr A4 5 )2/h , and the additional integral

4q(is3)= 20 (219 A, )Z/A, entering into Hamiltonian (34),
for any distance between i and j sites. For the neighbouring
sites (i;jzn.n.) these quantities are presented in Fig.3.

15
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Fig.2. Calculated scale factors »Kuv entering into

Hamiltonian (25): (1) Kyp »(2) Kyoo(3) Keqpoo
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Fig.3.  Calculated superexchange antlferromagnptlc integral

J and additional integral Idd taken for n.n.

dd
definitions are given in the text.
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Particularly, at  t%°/A=1/2 we obtain J_ . (i,=n.n.)=

JddmO'OSA Then if A=3 eV., one has J ~O 15 eV. that is very

close to the Pxpprlmentdl value [1J] and to the estimation -

given in Ref. [11]. We note that in the typical approach
(6,161 one has ag a rule a larger value of Jdd in the same:
range of model parameters. -

For the second neighbours (dlagnnal bond) the correspon-
ding superexchange integral is

- 2 .
(1 J=n.n.n.) = dd = Jdd(KE/Kq) = 0.0014A .

If A =23 eV.,ihen J;d =(0.003 eV. which is agaln close to that
of Rev.[111. We note that in our approach there is an obvious
otriet relation between the singlet-singlet hopping parame-
ters t, 17 and the excpange integrals Jdd,J;d, namely - -

o

el

The valueg for these parameters obtained humprically by Hy-
herstsen et.al. 1171 on the basig of a cluster method appro-
ximately obey this relation as well. -

6. Conclusion _

[t this paper we developed an approach to reduction of
the two-band p-d-model of the Cu0, plane to an effective Ha-
miltonian giving a low-energy behav1our of the system. Fol-
lowing the main idea of ZR {61 we eliminate the operators as-

‘sociated with oxygen coordinates and describe the system in

terms of local singlet and triplet states. However, our con-

‘°1d€PJT10n is valid in a more wide range 0f the p-d hybridi-

sation pdrampter tdp including the charge-fluctuation
regime, in comparison with ZR who treated the limit of .rela-
tively weak hybridization, i.e. the spin—fluotuation regime.
Two successive steps are used in our appfnach first, the on-
site interactions 1nv01v1ng the hybridization term V —°tdpk

are Kept exactly and,second, intersite 1nteract10ns ~Vij:
219P) 1/’ V are treated perturbatively. This approach is de-
vploped 10 thp second order in V /A and the effective Hamil-

17



tonian:isvDFESehted in terms of Hubbard operators associated
with singlet and triplet local states. We analyzed the resul-
ting Hamiltonian in some limiting cases and estimated the re-
levant quantities for the most représentative values of the
model parameters. Along this way we obtained a good agreement
with other coneiderations [6,10-121. 50 a further reduction
of the effective Hamiltonian to the one-band t-J, or t-t"-J,
‘model [6,111 seems to be very plausible. However, 1o justify
this reduction, some subtle questions remain 1o be examined
carefully.
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