

Объединенный институт ядерных исследований дубна

P17-88-359

Н.Б.Иванов, М.И.Каганов*

влияние свободной поверхности

НА ПЕТЛЮ ГИСТЕРЕЗИСА

ОБЪЕМНОГО ФАЗОВОГО ПЕРЕХОДА

Направлено в журнал "Физика твердого тела"

^{*} Институт физических проблем АН СССР, Москва

1. ВВЕДЕНИЕ

Присутствие свободной поверхности может существенно изменить фазовую диаграмму физической системы. Условно эти изменения бывают двух типов. С одной стороны, возможно возникновение новых, поверхностных фаз, которые в общем случае пространственно локализованы вблизи свободной поверхности. Поверхностная фаза возникает тогда, когда в объеме ее образование термодинамически еще не выгодно, но вблизи поверхности она становится устойчивой за счет выигрыша в поверхностной энергии. Ко второму типу относятся все изменения объемной фазовой диаграммы, которые связаны со свободной поверхностью. При этом изменения типа смещений линий фазового перехода, вообще говоря, обратно пропорциональны L, где L - характерная длина системы, и при больших L экспериментально ненаблюдаема. Как будет показано, однако возможны существенные сдвиги линий лабильности метастабильных объемных фаз, что представляет собой экспериментально наблюдаемый эффект. Исследование общего вида функционала свободной энергии, естественно, затруднительно. Вопрос о сужении объемной петли гистерезиса впервые исследовался на частном примере поверхностных переориентационных переходов в работе одного из авторов / 1/.

В настоящей работе исследовано смещение границ лабильности метастабильных фаз для двухфазной системы, описываемой функционалом свободной энергии Ландау^{/2/} с коэффициентом переменного знака при квадратичном члене разложения по параметру порядка ψ .

2. ОБЪЕМНАЯ МОДЕЛЬ

Самые простые модели обсуждаемого типа могут быть представлены в виде

$$f_{1}(\psi) = -\frac{a}{2}\psi^{2} - \frac{b}{3}\psi^{3} + \frac{c}{4}\psi^{4}, \qquad (1)$$

$$f_{2}(\psi) = \frac{a}{2}\psi^{2} - \frac{b}{4}\psi^{4} + \frac{c}{6}\psi^{6}.$$
 (2)

В выражениях для плотности объемной части функционала свободной энергии (1) и (2) ψ — параметр порядка несимметричной фазы, $a = a(T - T_c)$, a, b, c > 0; T_c — температура перехода второго рода при b = 0 для модели (1), или при b < 0 для модели (2); по порядку

величины T_с совпадает с энергией взаимодействия при расчете на одну частицу.

Эти модели описывают переход первого рода (типа "порядокбеспорядок"), близкий ко второму для модели (1), или к критической точке для модели (2) при достаточно малых константах b. Близость к критическому поведению оправдывает пренебрежение членами разложения по степеням ψ более высокого порядка, чем в (1) и (2). Модель (1) годится для физической системы, симметрия которой допускает нечетные разложения по параметру порядка ψ . К числу этого типа относятся, например, модели Поттса с q-состояниями спинов '8', а также модели, описывающие смачивание границы жидкости '4'. Модель $f_2(\psi)$ используется для описания систем вблизи трикритической точки. Как будет видно из дальнейшего, качественная сторона рассматриваемых здесь вопросов мало зависит от конкретной модели. Существенно то, что система — двухфазная, с переходом первого рода типа "порядок-беспорядок".

В выражении (1) удобно перейти к новым обозначениям по правилу

$$f = (16c^3/b^4)f_1, \quad \phi = (2c/b)\psi, \quad t = (4c/b^2)a.$$
 (3)

В новых обозначениях (1) записывается в виде:

$$f(\phi) = (t/2)\phi^2 - (2/3)\phi^3 + (1/4)\phi^4.$$
(4)

На рис. 1 представлена зависимость свободной энергии модели (4) от приведенной температуры t для симметричной (прямая f = 0) и несимметричной (кривая ABC) фаз. В симметричной фазе $\phi = 0$, а в несимметричной

$$\phi = \phi_{\rm B} = 1 + (1 - t)^{\frac{1}{2}}.$$
 (5)

Фазы с параметрами порядка $\phi = 0$ и $\phi = \phi_B$ сосуществуют в температурном интервале $0 \le t \le 1$, при этом симметричная фаза стабильна при $t > t^* = 819$, а фаза с $\phi = \phi_B -$ при $t < t^*$. $t^* -$ температура равновесия фаз (т.е. температура фазового перехода первого

Рис. 1. Зависимость свободной энергии модели $f = (t/2)\phi^2 - (2/3)\phi^3 + (1/4)\phi^4$ от приведенной температуры: симметричная фаза – прямая f(t) = 0; несимметричная – кривая ABC; $t^* = 8/9$ – температура перехода первого рода. ۵

рода; t = 0 — точка лабильности симметричной фазы, а t = 1 — несимметричной).

3. МОДЕЛЬ СО СВОБОДНОЙ ПОВЕРХНОСТЬЮ

Пусть система заполняет полупространство x > 0. Функционал свободной энергии на единицу площади с учетом свободной поверхности запишем в следующем виде:

$$\vec{\mathbf{F}}_{\mathbf{S}} \{\psi\} = \int_{0}^{\infty} \left[\frac{\beta}{2} \left(\frac{\mathrm{d}\psi}{\mathrm{d}x}\right)^{2} + \vec{\mathbf{f}}(\psi) - \vec{\mathbf{f}}(\psi_{B}) + \frac{1}{2}\mathbf{a}_{S} \psi^{2} \delta(x)\right] \mathrm{d}x, \qquad (6)$$

где *β* – параметр неоднородной части свободной энергии, *β* >0. Модель поверхностной части функционала свободной энергии (6) впервые была использована для описания магнетиков со свободной поверхностью вблизи точки Кюри в работах $^{/5'}$, причем $\tilde{I}(\psi_{\rm B})$ – плотность свободной энергии глубоко в объеме, где $\psi = \psi_{\rm B}$. Первый член под интегралом в (6) учитывает энергию неоднородности параметра порядка, а член с δ -функцией описывает дополнительную энергию, связанную с "особым" положением частиц (или спинов) вблизи поверхности. Константа 2, предполагается не зависящей от температуры и в общем случае может принимать любые действительные значения. Она определяется из микротеории для каждой конкретной модели. Для обзора работ, рассматривающих различные модели (6), см. / 6/. Отметим, что использование градиентного приближения для энергии неоднородности параметра порядка в (6), когда $f(\psi)$ описывает фазовый переход первого рода, требует некоторого уточнения. Рассмотрим уравнение (6) для модели (1):

$$F_{S} \{\phi\} = \frac{\overline{F}_{S}}{\xi_{1}a_{c}\phi_{0}^{2}} = \xi_{1}^{-1}\int_{0}^{\infty} \left[\frac{\xi_{1}}{2}\left(\frac{d\phi}{dx}\right)^{2} + f(\phi) - f(\phi_{B})\right] dx + \frac{1}{2}\operatorname{sign}(a_{S})r_{S}^{\prime\prime}\phi_{S}^{2}.$$
(7)

Здесь $r_{\rm S} = a_{\rm S}^2/\beta a_{\rm c}$, $\xi_1 = (\beta/a_{\rm c})^{\frac{1}{2}}$ — характерная длина в модели, выполняющая роль корреляционной длины в несимметричном состоянии, когда $\phi \sim 1$ ($a_{\rm c} = b^2/4c$ — характерное значение параметра а в точке лабильности несимметричной фазы, $\psi_0 = b/2c$). Корреляционная длина в симметричном состоянии задается, как обычно, выражением:

$$\xi = (\beta/a)^{\frac{1}{2}} = \xi_0 r^{\frac{1}{2}}, \quad r = (T - T_c)/T_c, \quad \xi_0 = (\beta/a T_c)^{\frac{1}{2}}$$

 ξ_{o} — микроскопическая длина, характеризующая расстояние между частицами.

Условием применимости градиентного приближения в (7) для несимметричной фазы является неравенство $\xi_0 \ll \xi_1$, которое может быть записано в виде

$$\xi_{\rm o}^{\prime}/\xi_{\rm r} = (a T_{\rm c}^{\prime}/a_{\rm c}^{\prime})^{\frac{1}{2}} \ll 1.$$
 (8)

Величина $a T_c$ — мера энергии связи частиц в микромодели, а а $_c$ — мера близости фазового перехода ко второму роду. Если воспользоваться выражением для скачка теплоемкости при t = 0, и b = 0, $\Delta C = a {}^2T_c/2c$, а также формулой $\bar{q} = T_c \Delta S = (8/9)a T_c a_c/c$ для теплоты перехода, то вместо (8) получаем

$$\xi_{\rm o}/\xi_{\rm 1} \sim (\bar{q}/T_{\rm c}\Delta C)^{4} \ll 1.$$
(9)

Неравенство (9) показывает, что градиентное приближение в (7) применимо в тех случаях, когда фазовый переход первого рода близок ко второму роду. Величина ($q/T_c \Delta C$)^{1/2} служит мерой сил, осуществляющих фазовый переход первого рода. Вблизи поверхности характерная длина изменения параметра порядка ψ определяется граничными условиями для ψ при x = 0 и имеет вид $\xi_s = \xi_1 r_s^{1/2}$. Тогда неравенство (9) записывается так:

$$(r_{s}\overline{q}/T_{c}\Delta C)^{\frac{1}{2}} \ll 1.$$
 (9')

Видно, что при больших $r_{S} >> 1$ последнее неравенство сильнее (9) если оно выполнено, (9) выполнено автоматически.

Термодинамика модели (7) содержит ряд интересных свойств, отличающих ее от случая, когда в объеме происходит переход второго рода. Впервые (7) рассматривалась в работах $^{/3}$, 7. Несмотря на то, что объемная корреляционная длина $\xi_1 = (\beta/a_c)^{1/4}$ конечна, при $t = t^*$ модель (7) описывает критическое поведение, наведенное свободной поверхностью. В частности, при $t = t^* + 0$ и $a \cdot g < 0$ должен наблюдаться так называемый экстраординарный переход, при котором параметр порядка ϕ "проникает" в объем в форме доменной стенки с расходящейся толщиной порядка $\xi \ln [t^*/(t - t^*)]$. В дальнейшем мы не будем останавливаться на этих результатах, которые описаны в упомянутых выше работах. Отметим лишь, что аналогичная ситуация, когда критическое поведение связано только с поверхностной частью свободной энергии, возникает в моделях, описывающих поверхностные переориентационные переходы, рассмотренные в работах ^{/1} и ^{/8}.

Функционал (7) стандартным путем (см., например, ¹) сводится к функции от $\phi_{\rm B}$ и $\phi_{\rm S} = \phi(x) |_{x=0}$, с использованием получающихся уравнений для $\phi(x)$ и естественных граничных условий, соответствующих минимизации $F_{\rm S} \{\phi\}$. Перечисленные преобразования приводят (7) к следующему виду:

$$F_{S}(\phi_{S},\phi_{B}) = \operatorname{sign}(a_{S}) \int_{\phi_{S}}^{\phi_{B}} [2f(\phi) - 2f(\phi_{B})]^{\frac{1}{2}} d\phi + \frac{1}{2} \operatorname{sign}(a_{S}) r_{S}^{\frac{1}{2}} \phi_{S}.$$
(10)

Уравнение для параметра порядка на поверхности $\phi_{\rm S}$ получается из равенства d F_S/d $\phi_{\rm S}$ = 0:

$$[2f(\phi_{\rm S}) - 2f(\phi_{\rm B})]^{\frac{1}{2}} = \tau_{\rm S}^{\frac{1}{2}}\phi_{\rm S}.$$
(11)

Условие устойчивости фаз d ${}^2F_S/d\phi_S^2 > 0$ в нашем случае записывается так:

$$\frac{d^{2}F_{S}}{d\phi_{S}^{2}} = -\operatorname{sign}(a_{S}) \frac{df/d\phi_{S}}{\left[2f(\phi_{S}) - 2f(\phi_{B})\right]^{\frac{1}{2}}} + \operatorname{sign}(a_{S}) r_{S}^{\frac{1}{2}} > 0.$$
(12)

Рассмотрим сначала более простой случай $a_S > 0$. Наша задача — исследование смещения точек лабильности t = 0,1 объемных фаз, которое связано со свободной поверхностью. Формально эта задача сводится к нахождению решений (t_c, ϕ_c) системы уравнений (11) и (12) при $d^2F_S/d\phi_S^2 = 0$. При $a_S > 0$ поверхность не благоприятствует образованию несимметричной фазы и всегда $\phi_S < \phi_B$. Для симметричной фазы с $\phi_B = \phi_S = 0$ неравенство (12) автоматически выполнено, так как $df/d\phi_S < 0$. Следовательно, точка лабильности симметричной фазы с $\phi_S = \phi_B = 0$ не меняется, $t_c = 0$. Результат естествен, если иметь в виду, что поверхность не благоприятствует зарождению несимметричной фазы.

Для несимметричной фазы с $\phi_B = 1 + (1 - t)^{\frac{1}{2}}$ и $\phi_S < \phi_B$ необходимо решить (11) и (12), которые переходят в систему

$$\begin{bmatrix} 2f(\phi_{c}) - 2f(\phi_{B}) \end{bmatrix}^{\frac{1}{2}} = r_{S}^{\frac{1}{2}} \phi_{c}$$

$$\phi_{c}^{2} - (8/3) \phi_{c} = r_{S} - t_{c}$$

$$(13)$$

для температуры лабильности несимметричной фазы t_c и величины $\phi_c = \phi_S \mid_{t = t_c}$. Графическое решение (13) дает следующие качественные результаты: при $r_S < t^* = 819$ точка лабильности t_c находится в температурном интервале $t^* < t_c < 1$; при этом $t_c = 1$ при $r_S = 0$ и $t_c = 8/9$ при $r_S = 8/9$. Функция $t_c(r_S)$ при $a_S > 0$ представлена на рис. 2 кривой АВ. При $r_S > 8/9$ $\phi_c = 0$, а при $0 \le r_S < 8/9$,

$$\phi_{\rm c} = 4/3 - [(4/3)^2 - t_{\rm c}]^{\frac{1}{2}}.$$

Итак, при $a_S > 0$ точка лабильности симметричной фазы не сдвигается, а соответствующая точка несимметричной фазы сдвигается в сторону сужения петли гистерезиса. Отметим, что при $r_S > 8/9$ у симметричной фазы метастабильных состояний нет вовсе.

Рис. 2. Линии лабильности термодинамических фаз на плоскости (₇₅, t): двойная линия — симметричная фаза; плотная линия — несимметричная фаза; штрих-пунктир — поверхностная фаза.

Обратимся теперь к случаю а s < 0. Это означает, что вблизи поверхности энергетически выгодно зарождение несимметричной фазы. Теперь кроме симметричной фазы с $\phi_{s} = \phi_{v} = 0$ ("0"-фаза) и несимметричной с $\phi_{s} > \phi_{B} = 1 + (1 - t)^{\frac{1}{2}}$ ("B"-фаза) появляется поверхностная фаза ("S"-фаза) с параметром порядка

$$\phi_{\rm S} = 4/3 + [(4/3)^2 + 2\tau_{\rm S} - 2t]^{\frac{1}{2}}, \quad \phi_{\rm B} = 0.$$
 (14)

Неравенство (12) определяет область устойчивости трех фаз: "О" – при $t > r_S$; "В" – при t < 1; "S" – при $0 < t < t^* + r_S$. Заметим, что теперь граница лабильности несимметричной фазы "В" не меняется. Сдвигается, однако, точка лабильности симметричной, "О"-фазы ($t_c = 0$ переходит в $t_c = r_S$). Следует отметить, что граница лабильности "О"-фазы $t_c = r_S$ в рамках моделей Ландау в определенном смысле универсальна. Это утверждение становится прозрачным, если проблему рассматривать как задачу об определении области устойчивости устойчивости симметричного состояния относительно малых флуктуаций параметра порядка для функционала (7). Ясно, что точка лабильности определяется членами наинизшего порядка по ϕ в (7), т.е. более высокие степени, даже если они есть, не меняют границу "О"-фазы $t_c = r_s$.

Тот факт, что в некотором температурном интервале сосуществуют три разные термодинамические фазы, несколько усложняет анализ возможных путей, по которым система может пройти при изменении температуры. Воспользуемся рис. 3, на котором изображены области устойчивости трех фаз $r_{\rm S} < 8/9$. При соблюдении полного равновесия система пройдет по пути 1-2-2-3-3-4. Линия 3-3 соответствует температуре равновесия $t^* = 8/9$ объемной фазы "В" с фазами "S" и "O". Равновесие фаз "S" и "O" достигается на линии 2-2, соответствующей температуре $t_{\rm S}^*$. Функция $t_{\rm S}^*(r_{\rm S})$ неявно задается условием $F_{\rm S}(\phi_{\rm B}^{\pm} = 0, \phi_{\rm S}) = 0$, которое записывается в виде

$$2^{\frac{1}{2}} \int_{0}^{s} f^{\frac{1}{2}}(\phi) d\phi = (1/2) \tau_{S}^{\frac{1}{2}} \phi_{S}^{2}, \qquad (15)$$

Рис. 3. Возможные пути изменения фазового состояния системы с температурой при $r_{\rm S} < 8/9$; $a_{\rm S} < 0$.

где $\phi_{S}(t_{S}^{*})$ определяется согласно (14). При $\tau_{S} =$ = (819) (2^{1/3} - 1), t^{*} = = 8/9. При выбранном значении параметра τ_{S} на

рис. З возможен путь 1-2-2-7-4, при котором поверхностная фаза переохлаждается до своей точки лабильности при t = 0. В этом случае точка лабильности симметричной "О"-фазы не будет проявляться. Фазовый переход 3-3 при t = 8/9 известен в литературе как экстраординарный переход /3/. Из сказанного выше вытекает, что обсуждаемый переход не будет наблюдаться в тех системах, для которых возможно переохлаждение поверхностной "S" -фазы. В зависимости от значения параметра $r_{\rm S}$ возможны и другие ситуации, анализ которых подобен представленному выше. Итак, в тех случаях, когда возможна новая, поверхностная фаза, наблюдение точек лабильности основных, объемных фаз, как правило, затрудняется. В связи с возможностью достижения точек лабильности системы отметим, что переходы по полю /8/ более интересшь из за возможного безиверционного изменения последнего.

Интересно проследить за передвижением точек лабильности, когда параметр b стремится к нулю, т.е. когда объемный переход приближается к переходу второго рода. Естественно, точка лабильности "В"-фазы $t_c = 1$ стремится к предельному значению t = 0 ($T = T_c$) и становится температурой объемного перехода второго рода. Точка лабильности симметричной фазы не меняется и переходит в температуру поверхностного фазового перехода второго рода⁶. У поверхностной фазы две точки лабильности $t_{c1} = 0$ и $t_{c2} = 8/9 + r_s$. Вторая из них стремится к значению $t'_{c2} = r_s$, т.е. к температуре поверхностного перехода второго рода, а первая ($t_{c1} - = 0$) становится температурой экстраординарного перехода при $T = T_c$, на существование которого впервые указано в работах⁷⁵. Из рассмотренного предельного перехода b $\rightarrow 0$ ясно, что в тех случаях, когда в объеме фазовый переход первого рода при $t = t_s^*$ тоже близок ко второму роду.

Итак, мы показали, что в системах, описываемых моделями Ландау, присутствие свободной поверхности в общем случае приводит к сужению петли гистерезиса перехода первого рода. Это объясняется тем, что поверхностная энергия всегда благоприятствует образованию одной из объемных фаз.

ЛИТЕРАТУРА

1. Каганов М.И. – ЖЭТФ, 1980, т.79, в.4, с.1544.

2. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: Наука, 1976, с.584.

- 3. Lipowsky R. Phys. Rev. Lett., 1982, v.49, p.1575; Z. Phys. B, 1983, v.51, p.165.
- 4. Pandit R., Wortis M. Phys. Rev. B, 1982, v.25, p.3226; Nakanishi H., Fisher M.E. – Phys. Rev. Lett., 1982, v.49, p.1565; Bresin E., Halperin B.I., Leibler S. – J. Phys., 1983, v.44, p.775.
- 5. Каганов М.И., Омельянчук А.Н. ЖЭТФ, 1971, т.61, в.4, с.1679; Mills D.L. – Phys. Rev. B, 1971, v.3, p.3887.
- 6. Binder K. Phase Transitions and Critical Phenomena, ed. by C.Domb and J.L.Lebowitz. New York, Academic, 1983, v,8, p.1
- 7. Lipowsky R., Speth M. Phys. Rev., 1983, v.28, p.3983; Lipowsky R. – J. Appl. Phys., 1984, v.55, p.2485.
- 8. Иванов Н.Б., Каганов М.И. ФТТ, 1984, т.26, с.1101; Каганов М.И., Чубуков А.В. – ЖЭТФ, 1982, т.82, в.5, с.1617.

Рукопись поступила в издательский отдел 23 мая 1988 года. Иванов Н.Б., Каганов М.И. Влияние свободной поверхности на петлю гистерезиса объемного фазового перехода

Для моделей Ландау, описывающих фазовые переходы первого рода типа "порядок-беспорядок", показано, что присутствие свободной поверхности сдвигает точки лабильности метастабильных фаз в сторону уменьшения ширины объемной петли гистерезиса. Это явление имеет общий характер и физически объясняется тем, что поверхностная энергия всегда благоприятствует образованию одной из двух фаз; точка лабильности именно этой фазы меняется.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Перевод О.С.Виноградовой

3 Que

Ivanov N.B., Kaganov M.I. Influence of a Free Surface on the Bulk Hysteresis Loop P17-88-359

P17-88-359

It is shown that in Landau "order-disorder" models describing the first-order phase transitions the free surface, in general, moves the phase metastability curve in a way leading to a narrowing of the bulk hysteresis loop. This phenomenum is explained by the observation that the free surface always favours the appearance of some concrete phase, which metastability point moves.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988