

P17-87-488

198

Н.М.Плакида, В.С.Шахматов*

СТРУКТУРНЫЙ ФАЗОВЫЙ ПЕРЕХОД В La₂CuO₄

Направлено в журнал "Кристаллография"

Физико-энергетический институт, Обнинск

Интерес к изучению свойств кристалла $La_2 Cu \theta_4$ возник в связи с открытием Беднорцем и Мюллером высокотемпературной сверхпроводимости в системе Ba - La - Cu - 0 /I/. При температуре 533 К в $La_2 cu \theta_4$ происходит структурный фазовый переход из орторомоической фазы в тетрагональную со структурой типа $K_2 Ni F_4$ /2/. Пространственная групна (пр.гр.) кристалла в орторомоической фазе, Cmca (D_{2h}^{13}), онла определена методами дифракции рентгеновских лучей/3/и нейтронов/4/. В работе^{/5/} для орторомоической фазы $La_2 Cu \theta_4$, синтезированной по определенной технологии, приводится другая пр.гр. – Fmm2 (C_{2r}^{18}). Кроме того, онло отмечено, что соединения $La_{2-x} M_x Cu \theta_4$ ($M = P_T$, Nd) в тетрагональной фазе изоструктурны и отличаются от $La_2 Cu \theta_4$ тетраэдрической координацией кислорода в лантановом слое. В работе^{/6/} изучено влияние технологии приготовления образцов на их структуру и физические свойства.

Исследование сверхпроводника $La_{1.85} Ba_{0.15} Cu O_4$, проведенное методом дифракции нейтронов⁴, показало, что это соединение имеет пр. гр. I 4/mmm (D 4) и аналогично по структуре $K_2 N$; F_4 .

В работах^{7,8} сделан расчет электронной зонной структуры $La_2(u 0_4)$. Сильное перекрытие орбиталей Cu(5d) - 0(2p) в базисной илоскости приводит к двумерному характеру зоны проводимости. Полупроводниковые свойства $La_2Cu 0_4$ при низких температурах были объяснены пайерлсовской неустойчивостью с волновым вектором на границе зоны Бриллюэна (X -точка). Согласно работе⁷⁷ в базисной плоскости $La_2Cu 0_4$ возможны два типа колебаний кислорода, которые изменяют расстояние Cu - 0. Одно из них (колебание типа "breathing") сильно связано с электронами проводимости и, вследствие пайерлсовской неустойчивости, может привести к структурному переходу с понижением точечной симметрии кристалла от тетрагональной D_{4b} до орторомбической D_{2b} .

В работе^{/4/} была также обсуждена природа фазового перехода, разделяющего сверхпроводник и полупроводник. Смещения ионов в мяткой фононной моде соответствуют наклону кислородного октаэдра (колебание типа " tilting"). Такие моды не связаны с электронными зонами, образованными из орбиталей Cuc (3d) - O(2p), однако могут взаимодействовать с

l

электронами проводимости косвенно, через связь с электронными зонами, построенными из орбиталей лантана и кислорода в лантановом слое^{/4/}.

В настоящей работе проведен симметрийный анализ возможных структурных переходов из пр.гр. I 4/m m m с волновым вектором на границе зоны Бриллюзна (Х -точка). Представлена феноменологическая теория Ландау структурного фазового перехода в La₂Cu 0₄.

I. СИММЕТРИЙНЫЙ АНАЛИЗ

А. Разложение свободной энергии

Кристалл $L\alpha_2 Cu O_4$ имеет симморфную пр.гр. I 4/mmm (D_{4h}^{17}) : $D_{4h}^{17} = \{E, C_4^2, U_{\bar{x}y}, U_{xy}, U_x, U_y, C_4, C_4^3, I, G_{\bar{x}}, G_{\bar{x}y}, G_{xy}, G_x, G_y, S_4^3, S_4\} \times T_9^{(I)}$ где E,..., S_4 – представители смежных классов. Нормальная подгруппа трансляций T определяется объемноцентрированной тетрагональной (ОЦТ) решеткой Бравэ. Основные векторы трансляции прямой решетки/9/:

$$\vec{a}_1 = (-\tau \tau \tau_z), \quad \vec{a}_2 = (\tau - \tau \tau_z), \quad \vec{a}_3 = (\tau \tau - \tau_z), \quad (2)$$

обратной решетки:

$$\vec{b}_{1} = \pi \left(0 \ \frac{1}{\tau} \ \frac{1}{\tau_{z}} \right), \quad \vec{b}_{2} = \pi \left(\frac{1}{\tau} \ 0 \ \frac{1}{\tau_{z}} \right), \quad \vec{b}_{3} = \pi \left(\frac{1}{\tau} \ \frac{1}{\tau} \ 0 \right). \tag{3}$$

Элементарная ОЦТ-ячейка содержит две формульные единицы $L \alpha_2 C_4 O_4$ (см. рисунск). Атомы в примитивной ячейке занимают следуршие позиции: C_4 – позиция Ia с локальной симметрией D_{4h} , координаты (000); $L\alpha_1 - 2e$, C_{4r} , (00 $Z_{L\alpha}$); $L\alpha_2 - 2e$, C_{4r} , (00 – $Z_{L\alpha}$); $O(I)_I - 2c$, D_{2h} , (I/200); $O(I)_2 - 2c$, D_{2h} , (01/20); $O(2)_I - 2e$, C_{4r} , (00 Z_{\circ}); $O(2)_2 - 2e$, C_{4r} , (00 – Z_{\circ}), где $Z_{L\alpha} = 0,36063(9)$ и $Z_{\circ} = 0,1828(2)/4/$.

Структурный фазовый переход $D_{4h}^{17} \rightarrow D_{2h}^{18}$ происходит с волновым вектором на границе зоны Бриллиюзна (Х –точка), двухлучевая звезда волнового вектора в обозначениях Ковалева⁹⁹ – { $\vec{k}_{43} = \vec{b}_3/2$ }. Группы волнового вектора для оимморфных пр.гр. изоморфны точечным группам, а проективные (или нагружонные) предотавления совпадают с малыми представлениями. Группа волнового вектора $G_{\vec{k}_{43}}$ имеет восемь одномерных неприводимых представлений (H1): τ_i , $i = 1, \ldots, 8$. В качестве элемента-представителя разложения пр.гр. D_{4h}^{4h} в смежные класон по подгруппе $G_{\vec{k}_{43}}$ выберем элемент C_4 . Все НП τ_i $i = 1, \ldots, 8$, группы

Элементарная ОШТ-ячейка кристалла 1. 2. С. 0, /5/: • - медь, © - лантан, •, О -кислород. Х₄У₄Z₄, Х₆У₆Z₆-декартовы системы координат в тетрагональной и орторомби-ческой фазах.

 D_{4h}^{ii} являются двумерными представлениями. Группа образа НП τ_i , i = 2,...,8, изоморфна двумерной точечной группе C_{4b} /10/. Таким образом, для всех НП τ_i , i = 2,...8, целый рациональный базис инвариантов (ЦРБИ)/II/ имеет вид

$$I_{1} = \eta_{1}^{2} + \eta_{2}^{2}$$
, $I_{2} = \eta_{1}^{2} \cdot \eta_{2}^{2}$, (4)

где {n;} -двухкомпонентный параметр порядка. Разложение свободной энергии по параметру порядка удобно записать в следующем виде:

$$F_{\eta} = \frac{\gamma}{2} \left(\eta_{1}^{2} + \eta_{2}^{2} \right) + \frac{U_{1}}{2} \eta_{1}^{2} \eta_{2}^{2} + \frac{U_{2}}{4} \left(\eta_{1}^{4} + \eta_{2}^{4} \right) + \cdots , \qquad (5)$$

где многоточием обозначены члены более высокого порядка. Деформационный вклад в свободную энергию записывается в обычном виде:

$$F_{\mathcal{E}} = \frac{1}{2} C_{11} \left(\xi_{1}^{2} + \xi_{2}^{2} \right) + C_{12} \xi_{1} \xi_{2} + C_{13} \left(\xi_{1} \xi_{3} + \xi_{2} \xi_{3} \right) + \\ + \frac{1}{2} C_{33} \xi_{3}^{2} + \frac{1}{2} C_{44} \left(\xi_{4}^{2} + \xi_{5}^{2} \right) + \frac{1}{2} C_{66} \xi_{6}^{2},$$
(6)

эдесь использованы обозначения Фойгта и опущены члены более высокого порядка, C_{ij} - коэффициенты жесткости кристалла.

Построим смешанные инварианты. Симметризованный квадрат HII \mathcal{T}_{i} , $i = 1, \ldots, 8$, для звезды $\{\vec{k}_{i4} = 0\}$ раскладывается в прямую сумму HII точечной группы \mathbb{D}_{4b} :

$$\tau_{1}(A_{1g}) \oplus \tau_{f}(B_{2g}).$$
(7)

В скобках указаны обозначения НП по Ландау – Лифшицу/12/. По этим НП преобразуются следующие симметризованные величины:

$$\tau_{1}: \eta_{1}^{2} + \eta_{2}^{2}; \qquad \tau_{1}: \eta_{1}^{2} - \eta_{2}^{2}. \qquad (8)$$

Симметризованный квадрат векторного представления имеет состав

$$2 \tau_{i} (A_{1g}) \oplus \tau_{5} (B_{1g}) \oplus \tau_{7} (B_{2g}) \oplus \tau_{g} (E_{g}).$$
(9)

Соответствущие базисные функции:

$$2\tau_{1}: zz, xx+yy; \tau_{5}: xx-yy; \tau_{7}: xy; \tau_{g}: \begin{pmatrix} y \\ x \\ x \end{pmatrix}.$$
(IO)

Члены взаимодействия низших порядков по параметрам η_i и ε_i возникают из НП τ_i и τ_r : $F_{\eta \varepsilon} = \left\{ \alpha \left(\varepsilon_1 + \varepsilon_2 \right) + \beta \varepsilon_3 \right\} \left(\eta_1^2 + \eta_2^2 \right) + \gamma \varepsilon_6 \left(\eta_1^2 - \eta_2^2 \right), \tag{II}$

Следовательно, полное разложение свободной энергии принимает вид

$$= F_{\eta} + F_{\eta\varepsilon} + F_{\varepsilon} .$$
 (12)

Согласно критерию Бирмана^{/13/} ответственное НП, по которому происходит фазовый переход, совместно с единичным представлением низкосимметричной группы. Условие инвариантности функции плотности $\delta_{\mathcal{P}} = \sum_{i=1}^{2} \eta_i \varphi_i$ относительно группы D_{2h}^{18} для ответственного НП τ_3 приводит к следующему типу решения:

$$\eta_1 \neq 0, \qquad \eta_2 = 0, \qquad (13)$$

при этом сохраняются элементы симметрии

E, $u_{\bar{x}y}$, $(u_{xy} | \vec{a}_3)$, $(C_4^2 | \vec{a}_3)$, I, $\sigma_{\bar{x}y}$, $(\sigma_{xy} | \vec{a}_3)$, $(\sigma_{\bar{z}} | \vec{a}_3)$. (14)

Фазовый переход по второму лучу звезды (тип решения $\eta_1 = 0$, $\eta_2 \neq 0$, НП τ_5) приводит к возникновению другого домена, при этом сохраняются те же элементы симметрии (I4).

Таким образом, фазовый переход $D_{4h}^{17} \longrightarrow D_{2h}^{18}$ связан с удвоением объема примитивной ячейки кристалла. Ниже температуры фазового перехода возможно появление двух доменов, обусловленных фазовым переходом по одному из двух лучей звезды $\left\{ \vec{k}_{13} = \vec{\ell}_3/2 \right\}$.

Б Микроскопический параметр порядка (ПП)

Примитивная ячейка в высокотемпературной фазе содержит одну формульную единицу. $La_2 Cu O_4$, таким образом, декартовы смещения семи атомов составляют базис механического представления. Разложение механического представления по НП группы волнового вектора $G \vec{k}_{13}$ имеет вид

$$4\tau_{4} \oplus 3\tau_{3} \oplus 3\tau_{4} \oplus 3\tau_{5} \oplus 3\tau_{6} \oplus 2\tau_{4} \oplus 3\tau_{8} . \tag{15}$$

Базисные функции для различных НП приведены в таблице. Для луча К₁₃ смещение атома сорта ж в примитивной ячейке R_l определяется по формуле

$$\vec{u} \begin{pmatrix} \ell \\ \mathbf{x} \end{pmatrix} = \vec{u} \begin{pmatrix} o \\ \mathbf{x} \end{pmatrix} \cdot \exp\left(-i \vec{k}_{13} \cdot \vec{R}_{e}\right).$$
(16)

rα1

-TOTKE. NOHAM

IDENCTABLEHAR B

MEXAHNTECKOFO

зисные функции

ц В Из базисных функций ответственного НП τ_3 видно, что смещения ионов в мягкой моде обусловлены поворотом кислородных октаэдров вокруг оси, параллельной направлению [110].

2. СТРУКТУРНЫЙ ФАЗОВЫЙ ПЕРЕХОД

Параметри кристаллической решетки $La_2 (u 0_4)$ в тетрагональной фазе^{/2}: $a_t = b_t = 3,81(1), c_t = 13,24(5)$ Å (при 693 К), в орторомоической фазе^{/3-6}/: $a_o = 5,36, b_o = 5,40, c_o = 13,16$ Å, $\delta_o = 90,43^\circ$ (при 294 К). Экстраполируя параметри решетки тетрагональной фази на комнатную температуру, можно оценить значения спонтанных деформаций:

Рассмотрим фазовый переход в монодоменное состояние по лучу k_{13} . Учитывая тип решения (I3), из выражения (I2) получаем эффективный потенциал для однокомпонентного IIII, связанного с деформациями:

$$F_{s\phi\phi} = \frac{1}{2} \tau \eta^{2} + \frac{1}{4} \mathcal{U} \eta^{4} + \frac{1}{6} \mathcal{F} \eta^{6} + d(\mathcal{E}, \mathcal{E}_{z}) \eta^{2} + \beta \mathcal{E}_{3} \eta^{2} + \beta \mathcal{E}_{6} \eta^{2} + F_{\epsilon} .$$
(18)

Из энергетических соображений и экспериментальных значений спонтанных деформаций (17) следуют ограничения на феноменологические константы: d < 0, $\gamma > 0$. Из уравнений состояния $\frac{\partial F}{\partial \varepsilon_i} = 0$ для потенциала (18) получаем равновесные значения деформаций:

$$\begin{array}{l} \alpha \\ & C_{11} \neq C_{12} , \ \mathcal{E}_{1} = \mathcal{E}_{2} = A \eta^{2}, \ \mathcal{E}_{3} = -\beta \eta^{2} / \mathcal{C}_{33} - 2 \mathcal{C}_{13} A \eta^{2} / \mathcal{C}_{33} , \\ & \mathcal{E}_{6} = -\gamma \eta^{2} / \mathcal{C}_{66} , \\ \delta \\ \end{array}$$
(I9)
$$\begin{array}{l} \delta \\ \delta \\ & C_{11} = C_{12} , \ \mathcal{E}_{1} + \mathcal{E}_{2} = B \eta^{2}, \ \mathcal{E}_{3} = -\beta \eta^{2} / \mathcal{C}_{33} - \mathcal{C}_{13} B \eta^{2} / \mathcal{C}_{33} , \\ & \mathcal{E}_{6} = -\gamma \eta^{2} / \mathcal{C}_{66} , \\ \end{array}$$

где $A = \frac{\beta C_{13} - \lambda C_{33}}{C_{33} (C_{11} + C_{12}) - 2C_{13}^2}$, $B = \frac{\beta C_{13} - \lambda C_{33}}{C_{11} C_{33} - C_{13}^2}$. Отметим, что в случае о независимой деформацией является сумма $\varepsilon_1 + \varepsilon_2$. Уравнение для Ш имеет вид

-6

7

$$\mathcal{L}\eta + \widetilde{u}\eta^{3} + \mathcal{E}\eta^{5} = \mathbf{0},$$
 (20).

где $\widetilde{\mathcal{U}}$ -перенормированная за счет взаимодействия Ш с деформациями константа \mathcal{U} . Для случая а имеем

$$\widetilde{u} = u + 4 dA + 2 \beta \left(-\beta / C_{33} - 2 C_{43} A / C_{33} \right) - 2 \gamma^2 / C_{66} .$$
(21)

Перенормировка уменьшает константу \mathcal{U} . Для $\widetilde{\mathcal{U}} < \mathcal{O}$ эффективный потенциал (18) описывает фазовый переход первого рода. При температуре фазового перехода T_c возникает скачок III: $\delta \eta^2 = -3 \widetilde{\mathcal{U}}/4\mathcal{F}$. Из формул (19) видно, что будут происходить аналогичные скачки деформаций \mathcal{E}_4 , \mathcal{E}_2 , \mathcal{E}_3 и \mathcal{E}_4 . Для $\widetilde{\mathcal{U}} > \mathcal{O}$ эффективный потенциал описывает переход второго рода. В этом случае III и спонтанные деформации будут непрерывно зависеть от температуры.

Обратная восприимчивость по полю X $_{\eta}$, сопряженному III $_{\eta}$, на-ходится по формуле

$$\mathcal{J}^{-1} = \frac{\partial X}{\partial \eta} = \begin{cases} \mathcal{T}, \quad \mathcal{T} > \mathcal{T}_{c}, \\ \mathcal{T} + 3 u \eta_{s}^{2} + 5 \gamma \eta_{s}^{4} + 2 d (\xi_{1} + \xi_{2})_{g} + 2 \beta (\xi_{3})_{g} + 2 \gamma (\xi_{6})_{g}, \quad \mathcal{T} < \mathcal{T}_{c}. \end{cases}$$
(22)

Индекс S указывает на то, что III и компоненты тензора спонтанной деформации определяются из уравнений состояния при $T < T_c$. В случае фазового перехода второго рода имеем

$$\begin{aligned} \chi^{-1} &= -2\tau \left[\left(3u - \widetilde{u} \right) / (2\widetilde{u}) + 2dA / \widetilde{u} - \beta^2 / (C_{33}\widetilde{u}) - \right. \\ &\left. -2\beta C_{13}A / (c_{33}\widetilde{u}) - \gamma^2 / (c_{66}\widetilde{u}) \right]. \end{aligned}$$
(23)

Из формул (22) и (23) следует, что температурные зависимости восприимчивостей выше и ниже T_c подчиняются закону Кори-Вейсса, однако изза взаимодействия ПП с деформациями отношение констант Кюри - Вейсса не равно двум.

Внчислим аномалии коэффициентов жесткости кристалла C_{ij} в точке фазового перехода. Согласно определению имеем

$$\mathcal{L}_{ij}\left(\mathbf{T}\right) = \left(\frac{\partial \mathbf{X}_{i}}{\partial \epsilon_{j}}\right)_{s}, \qquad (24)$$

где X_i -внешнее поле, сопряженное деформации ε_i . Индекс S имеет тот же смысл, что и выше. Таким образом, получаем

$$C_{11}(T) = C_{11} - 2 a^{2} \Delta , \quad C_{12}(T) = C_{12} - 2 a^{2} \Delta ,$$

$$C_{13}(T) = C_{13} - 2 a^{2} \Delta , \quad C_{33}(T) = C_{33} - 2 a^{2} \Delta ,$$

$$C_{66}(T) = C_{66} - 2 \beta^{2} \Delta , \quad C_{44}(T) = C_{44} ,$$
(25)

где

$$\Delta = \begin{cases} 1/u - для фазового перехода второго рода, \\ 1/(u + 2 \sqrt[6]{s}) - для фазового перехода первого рода. \end{cases}$$
(26)

Из формул (25) и (26) следует, что коэффициенты жесткости кристалла в тетрагональной фазе C_{11} , C_{12} , C_{33} , C_{66} при $T < T_{C}$ скачком уменьшают свою величину. Коэффициент C_{44} остается постоянным, а C_{43} , по-видимому, скачком увеличивается. Для фазового перехода первого рода, обусловленного взаимодействием Ш с деформациями, скачок Δ зависит от температури.

З. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Из таблицы видно, что структурные переходы из пр.гр. 14/т т.т. с волновым вектором в X -точке происходят только в фазы с орторомбической симметрией. Согласно разложению (15) четыре фононные моды преобразуются по НП τ_1 , причем одна мода определяет колебания ионов кислорода в базисной плоскости и сильно связана с электронами проводимости⁷⁷. Замораживание смещений ионов в мягкой моде приводит к пр.гр. D_{2h}^{19} . Отметим, что в данном случае симметрия допускает существование инварианта третьей степени по ПП. Другое колебание ионов кислорода, изменяющее расстояние $\mathcal{L}u - 0$ в базисной плоскости, преобразуется по НП τ_7 (имеется еще одна мода этой же симметрии). Структурный переход по НП τ_7 приводит к пр.гр. D_{2h}^{20} . В кристаллах, изоструктурных $K_2 N : F_4$, нет фононных мод симметрии τ_2 , следовательно, переход $D_{4h}^{11} \longrightarrow D_{2h}^{22}$ не связан с конденсацией фононной модн.

Экспериментально наблюдаемый в $ba_2 C_4 0_4$ переход в пр.гр. D_{2h}^{18} обусловлен конценсацией мяткой моды, которая преобразуется по τ_3 или τ_5 . Двум НП τ_3 и τ_5 соответствуют смещения ионов, приводящие к двум доменам, которые могут образоваться ниже температуры фазового перехода. В соответствии с работой/10/ структурный переход является несобственным сегнетоэластическим переходом и приводит

к скачкам коэффициентов жесткости кристалла. Отметим также, что возможна связь между колебаниями симметрии \mathcal{T}_1 и \mathcal{T}_3 . Симметризованное произведение НП \mathcal{T}_1 и \mathcal{T}_3 для звезды $\{\vec{k}_{14}=0\}$ преобразуется по НП $\mathcal{T}_9(E_9)$: $[\tau_1 \otimes \tau_5] \sim \mathcal{T}_9(E_9)$. Следовательно, имеется ангармоническое взаимодействие, связывающее колебания симметрии \mathcal{T}_1 и \mathcal{T}_3 с оптической модой симметрии E_9 или компонентами тензора деформации (\mathcal{E}_4 , \mathcal{E}_5). При этом конденсация мяткой моды симметрии \mathcal{T}_3 может приводить к сопутствующим смещениям ионов кислорода симметрии \mathcal{T}_1 и смещениям ионов $\mathcal{L}a$ и O(2) в базисной плоскости (оптическая мода симметрии E_g) или появлению компонент тензора спонтанной деформации (\mathcal{E}_4 , \mathcal{E}_5), которые понижают симметрию кристаллической решетки до моноклинной.

Представляют интерес экспериментальные измерения скачков коэффициентов жесткости и нараметров решетки кристалла волизи фазового перехода. Существенный вклад в понимание природы фазового перехода могли он внести экспериментальные исследования мягкой моды методом неупругого рассеяния нейтронв. Так, определение смещений ионов в мягкой моде методом динамической нейтронографии позволяет проверить гипотезу об ангармоническом взаимодействии мод симметрии τ_1 и τ_3 .

ЛИТЕРАТУРА

- I. J.G.Bednorz, K.A.Muller. Z.Phys.B, 1986, v.64, No.2, p.189-193.
- 2. J.M.Longo, P.M.Raccah. J. Solid State Chem., 1973, v.6, p.526-531.
- V.B.Grande, Hk.Muller-Buschbaum, M.Schweizer. Z.Anorg. Allg.Chem., 1977, v.428, p.120-124.
- 4. J.D.Jorgensen et al. Phys. Rev. Lett., 1987, v.58, No.10, p.1024-1027.
- K.K.Singh, P.Ganguly, J.B.Goodenough. J.Solid State Chem., 1984, v.52, No.3, p.254-273.
- 6. C.Michel, B.Raveau. Rev.Chim.Miner., 1984, v.21, No.4, p.407-425.
- 7. L.F.Mattheiss. Phys.Rev.Lett., 1987, v.58, No.10, p. 1028-1030.
- 8. J.Yu, F.J. Freeman, J.-H. Xu. Phys. Rev. Lett., 1987, v. 58, No. 10, p. 1035-1037.
- 9. 0.В. Ковалев. Неприводимые и индуцированные представления и копредставления федоровских групп. М.: Наука, 1986.
- IO. J.C.Toledano, P.Toledano. Phys.Rev.B, 1980, v.21, No.3, p.1139-1172.
- II. D.А.ИЗЮМОВ, В.Н.Сыромятников. Фазовые переходы и симметрия кристаллов. М.: Наука, 1984.
- I2. Л.Д. Ландау, Е.М. Лифиниц. Квантовая механика. М.: Наука, 1974. I3. J.L.Birman. Phys. Rev. Lett., 1966, v.17, No.24, p. 1216-1219.

Рукопись поступила в издательский отдел 29 июня 1987 года.

Плакида Н.М., Шахматов В.С. P17-87-488 Структурный фазовый переход в La₂CuO₄

Па основе симметрийного лилииза рассмотрены возможные фазовые переходы D₄¹⁷ → D_{2h}, индуцировлиные мягкой модой в точке X зоны Бриллюзиа. Обсуждается структурный переход в высокотемпературном сверхпроводнике типа La2CuO4.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод авторов

Plakida N.M., Shakhmatov V.S. P17-87-488 Structural Phase Transition in La₂CuO₄

On the basis of symmetry analysis possible phase transitions $D_{4h}^{17} + p_{2h}$ induced by soft mode at the X-point of Brillouin zone are considered. The structural phase transition in high - T_c superconductor of La₂CuO₄ type is discussed.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987