

СОВОЩОНИЯ Вбъединенного института ядерных исследеваний дубна

P17-87-286

1987

В.А.Загребнов, Ф. де Смедт*

ВАН-ДЕР-ВААЛЬСОВСКИЙ ПРЕДЕЛ ДЛЯ НЕИДЕАЛЬНОГО БОЗЕ-ГАЗА В СЛАБОМ ВНЕШНЕМ ПОЛЕ

Институт теоретической физики, Като**л**ический университет Левен /Хаверле/, Бельгия

I. Введение

Известно, что свойства идеального бозе-газа могут существенно измениться, если его поместить во внешнее поле, см., например, I. В этой работе было показано, что конденсацию в одно- и двумерном идеальном бозе-газе можно вызвать путём включения специального (инфинитезимального) внешнего поля. Кроме того, авторы привели пример, когда эта конденсация приводит к микроскопическому заполнению бесконечного числа низколежащих уровней (так называемая обобщенная бозе--конденсация²). При этом конденсат или сверхтекучая фаза занимает только микроскопическую часть объёма: отношение объёма, занятого конденсатом, к объёму всего сосуда стремится к нулю в термодинамическом пределе. В то же время появление конденсации соответствует неаналитическому поведению термодинамических потенциалов (давления и плотности свободной энергия) как функций плотности и температуры.

Трудной и до сих пор не решенной задачей является учет влияния на конденсат включения взаимодействия между частицами. Хорошо известно. что при отсутствии внешнего поля конденсация в одно- и ДВУМерном бозе-газе (идеальном и неидеальном) невозможна/3-4/.В то же время было установлено,что в ван-дер-ваальсовском пределе (этот предел соответствует пределу сил взаимодействия бесконечного радиуса, который однако, остается малым по сравнению с размерами сосуда) для размерностей не меньше трех явление бозе-конденсации сохраняется /5/. В работе /6/ был рассмотрен случай обычного внешнего поля, которое достаточно сильно для того, чтобы появился по крайней мере один связанный уровень, для размерностей один и два в этом предположении необходимости нет. В этом случае бозо-кондонсация сохраняется, если между частицами включается взаимодействие типа среднего поля. С другой стороны, простые аргументы, использующие свойство сверхустойчивости взаимодействия, показывают, что включение такого взаимодействия при наличии инфинитезимального внешнего поля приводит к тому, что конденсат теперь не может занимать микроскопическую часть сосуда (см., например/7/). Сверхтекучая фаза могла бы, однако, занимать макроскопическую его часть. В качестве первого шага к пониманию того, что же происходит с конденсатом в этом случае, мы рассмотрим в настоящей работе неидеальный бозе-газ для взаимодействия в ван-дер-ваальсовском пределе и при наличии инфинитезимального внешнего поля. Оказывается, что теперь, в отличие от случая идеального газа, предельное термодинамическое давле-

1

С С - функцией как химического потенциала и ние становится (или плотности), так и температуры для размерностей $\mathcal{V} = I.2$. Более того, оно допускает аналитическое продолжение в комплексные области в окрестности соответствующих реальных осей. Это очевидным образом свидетельствует в пользу того, что в системе не происходит фазового перехода. Для размерностей У≥З оказывается, что существует много точек, где предельное термодинамическое давление, как функция . и , не является бесконечно дифференцируемым. В частности, существует целый интервал значений μ (плотностей), на котором множество локальных плотностей не являются С⁰⁰ - функциями M . Выражения для давления и локальных плотностей указывают на то. что при некоторой нижней критической плотности сверхтекучая фаза заполняет некоторую макроскопическую область сосуда, которая постепенно (с ростом плотности) увеличивается до тех пор, пока при некоторой плотности не займет весь сосуд. Таким образом, взаимодействие подностью меняет термодинамические свойства системы по сравнению со случаем идеального газа. В качестве примера читатель может представить себе сосул. наполненный бозонами и помещенный в (слабое) гравитационное поле Земли. Если взаимодействие между частицами отсутствует, тогда сверхтекучая фаза (конденсат) будет концентрироваться на пне сосуда и образует микроскопические плёнку. Учет взаимолействия в ван-дер-ваальсовском пределе меняет эту картину, а в пределе среднего поля оставляет её неизменной.

В следуищем разделе обсуждается модель и вводятся основние понятия, которые потребуются в дальнейшем. В разделе 3 получено явное выражение для термодинамического давления неидеального бозе-газа в ван-дер-ваальсовском пределе. Наконец, в разделе 4 мы обсудим свойства этого давления, а также поведение локальной плотности. Мы также сравним эти результаты со свойствами системы, соответствующей приближению среднего поля для нашей модели. Показано, что между ними имеется существенное различие.

2. Описание модели

Рассмотрим \vee – мерный сосуд Λ_L , который имеет форму куба: $\Lambda_L = [0, L]^{\vee}$ и обозначим через \mathcal{H}_L^n пространство симметричных комплексных, квадратично интегрируемых функций с носителями в $\Lambda_{L=i,I}^{n}$. Определим, как обично, соответствующее фоковское пространство симметричных функций:

$$\mathcal{F}_{L} = \bigoplus_{n=0}^{\infty} \mathcal{H}_{L}^{n}$$
 (1)

Ми будем предполагать, что на бозе-частици в сосуде Λ_i действу-

ет инфинитезимальное внешнее поле V(x/L), а между ними включен парный потенциал $\lambda' U(\lambda x)$, $\lambda > 0$. Пусть V и U удовлетворяют следующим условиям:

I)
$$V \in C^{\infty}(\Lambda_{1});$$
 (2)

2)
$$\hat{U}(k) = \int d^{n}x U(x) \exp(ikx) \ge 0$$
; $\forall k \in \mathbb{R}^{2}$; (3a)

$$U(0) < \infty ; \tag{36}$$

$$|\mathbf{U}(\mathbf{x})| \leq \mathbf{D} |\mathbf{x}|^{-\nu-\varepsilon} ; \quad \forall \mathbf{x} \in |\mathbf{R}^{\nu}; \quad \mathbf{D} > \mathbf{0}, \varepsilon > \mathbf{0}; \tag{3B}$$

$$U(\mathbf{x}) \ge \mathbf{0} \quad ; \quad \mathbf{x} \in \mathbb{R}^{2}. \tag{3r}$$

Мы полагаем, что последнее условие (Зг) не является существенным для исследования ван-дер-ваальсовского предела, хотя соответствующие рассуждения существенно усложняются без этого условия. Заметим, что класс парных потенциалов, удовлетворяющих условиям (За-г) не пуст: например, он содержит потенциал $U(|\alpha|) = a \exp(-b|\alpha|^2); a, b > 0$.

В дальнейшем мы будем использовать следующие обозначения: $X^{n} = (x_{1}, ..., x_{n})$ и $dX^{n} = dx_{n}$. Определим на \mathcal{F}_{L} следующие квадратичные формы, определяемые своими сужениями на \mathcal{H}_{L}^{n} :

I) <u>Кинетическая энергия</u>

$$E_{L}^{\infty}(\psi) = \frac{1}{2} \sum_{k=1}^{n} \int dX^{n} \left| \nabla_{k} \psi(X^{n}) \right|^{2}$$
(4)

Область определения этой формы $Q(t_{L}^{\infty}) = S(C_{0}^{4}(\Lambda_{L}^{n}))$, где S – оператор симметризации. Квадратичная форма $t_{L}^{0}(\psi)$ определяется аналогично, причем $Q(t_{L}^{0}) = S(C^{4}(\Lambda_{L}))$, см. / 10/ Эти формы соответствуют двум типам граничных условий на $3\Lambda_{L}$: условию Дирихле и условию Неймана.

2) Потенциал внешнего поля

$$\upsilon_{L}(\psi) = \sum_{\substack{k=1\\k=1}}^{n} \int dX^{n} \nabla(x_{k}/L) |\psi(X^{n})|^{2}.$$
(5)

3) <u>Энергия взаимодействия</u>

$$u_{L,\lambda}(\psi) = \sum_{1 \le i < j \le n} \int dX^n \lambda^{\nu} U(\lambda(x_i - x_j)) |\psi(X^n)|^2$$
(6)

Мы обозначим $\hat{h}_{L,\lambda}^{\circ}(\psi)$ (соответственно $\hat{h}_{L,\lambda}^{\circ}(\psi)$) замыкание квадратичной формы $(t_{L}^{\circ}+\upsilon_{L}+u_{L,\lambda})(\psi)$ (соответственно $(t_{0}^{\circ}+\upsilon_{L}+u_{L,\lambda})(\psi)$), а через $H_{L,\lambda}^{\circ}$ (соответственно $H_{L,\lambda}^{\circ\circ}$) обозначим ассоциированные с этими формами самосопряженные операторы, которые соответствуют гамильтонианам нашей системы. Таким же образом определяются гамильтонианы системы, соответствующие модели среднего поля, $\tilde{H}_{L,a}^{o(\infty)}$; они отвечают замыканию квадратичных форм $t_{L}^{o(\infty)}(\psi) + \frac{a}{2L}(\psi, N_{L}^{2}\psi)$. Здесь N_{L} – обычный оператор числа частиц:

$$(N_{L}\psi)(X^{n}) = n\psi(X^{n}), \forall \psi \in \mathcal{H}_{L}^{n}.$$

Термодинамическое давление $p_{L,\lambda}^{o(\infty)}(\mu)$ определяется стандартно:

$$P_{L,\lambda}^{0}(\omega) = \frac{1}{\beta L^{\nu}} \ln \operatorname{Tr} \exp\left[-\beta \left(H_{L,\lambda}^{0} - \mu N_{L}\right)\right]$$
(7)

Термодинамическое давление $\tilde{P}_{L,\alpha}^{0(\infty)}(\mu)$, соответствующее модели сред-него поля, определяется аналогично. Мы также обычным образом опреде-лим гиббсовское состояние в конечном сосуде $\Lambda_L : \omega_{L,\lambda,\mu}^{0(\infty)}(\cdot)$. Заметим, что сверхустойчивость взаимодействия гарантирует су-ществование давления $P_{L,\lambda}^{0(\infty)}(\mu)$ для $\forall \mu \in \mathbb{R}^1$. В следующем разде-ле мы получим для давления $P_{L,\lambda}^{0(\infty)}(\mu)$ в ван-дер-ваальсовском пределе lim lim (·), явное выражение.

3. Давление в ван-дер-ваальсовском пределе

Прежде, чем приступить к доказательству основной теоремы, напомним вначале некоторые свойства системы, соответствующей модели среднего поля $\tilde{H}_{L,\alpha}^{o(\infty)}$, когда V=0, см. /II/. Для давления в этой системе имеем:

$$\widetilde{P}_{a}(\mu) = \lim_{L \to \infty} \widetilde{P}_{L,a}^{o}(\mu) = \lim_{L \to \infty} \widetilde{P}_{L,a}^{\infty}(\mu) =$$

$$= \frac{(\mu - \overline{\alpha})^{2}}{2a} + P_{o}(\overline{\alpha}).$$
(8a)

где переменная $\vec{\alpha}$ оџределяется условиями: $\alpha = \mu - \alpha \rho_0(\alpha)$, если $\mu \ge \alpha \rho_c$, а функции $\rho_0(\alpha), \rho_0(\alpha)$ соответствуют идеальному бозе-газу и имеют вид:

$$p_{0}(\alpha) = \beta^{-1} \int \frac{d'k}{(2\pi)} \ln \left\{ 1 - \exp\left[-\beta\left(\frac{k^{2}}{2} - \alpha\right)\right] \right\}, \quad \alpha \leq 0 ; \quad (86)$$

$$P_{0}(\alpha) = \int \frac{d^{2}k}{(2\pi)^{2}} \left\{ \exp\left[\beta\left(\frac{k^{2}}{2} - \alpha\right)\right] - 1 \right\}, \quad \alpha \leq 0 \quad ; \qquad (86)$$

$$\rho_{c} \equiv \rho_{o}(\alpha = 0) < \infty \quad , \quad (\rho_{c} < \infty, \gamma \ge 3) \quad (8r)$$

Заметим, что в модели среднего поля имеет место фазовый переход третьего (соответственно второго) рода для размерностей У = 3,4 (соответственно $\forall \ge 5$), когда $\mu = \mu = a \rho_c$. В этой точке плотность , а при $\mu > \mu_c$ в системе появляется бозесистемы равна р конденсат, плотность которого $\eta = \rho(\mu) - \rho_c$.

Остальная часть этого раздела посвящена доказательству следурщей основной теоремы:

Теорема. С учетом обозначений и предположений, сделанных выше, для давления неидеального созе-газа в ван-дер-ваальсовском пределе имеем:

$$P(\mu) \equiv P_{V.derW}(\mu) = \lim_{\lambda \neq 0} \lim_{L \to \infty} P_{L,\lambda}^{0(\infty)}(\mu) = \int_{\Lambda_1} d^{*}x \, \widetilde{P}_{a}(\mu - V(x)),$$
FIGE

 $a = \int dx U(x) .$

Идея доказательства заключается в нахождении таких верхней и нижней границ для $P_{L,\lambda}^{0}(\mu)$, чтобы они совпадали в ван-дер-ваальсовском пределе. Например, для давлений, соответствующих условиям Дирихле и Неймана, на границах сосуда имеем (см., например/10/)

$$P_{L,\lambda}^{\infty}(\mu) \leq P_{L,\lambda}^{0}(\mu).$$
⁽⁹⁾

Поэтому достаточно найти соответствующую верхнюю границу для $P_{L,\lambda}^{\circ}(\mu)$.

A. <u>Bepxnar panula dan</u> $p_{12}(\mu)$

Для построения верхней границы мы разобъём куб Λ_L на кубики $\Lambda_{k=x}^{(m)} [(k_i-1)\frac{L}{m}, k_i\frac{L}{m}]$, $1 \le k_i \le m$, $m \in \mathbb{N}$. Тогда очевидно, что

$$\bigcup_{\underline{k}} \Lambda_{\underline{k}}^{(m)} = \Lambda_{\underline{L}} , \quad \mathfrak{F}_{\underline{L}} = \bigotimes_{\underline{k}} \mathfrak{F}_{\underline{k}} , \qquad (10)$$

где \mathcal{F}_k - фоковское пространство в сосуде Λ_k^{choy} .

В соответствии с описанным выше разбиением определим и следующие квадратичные формы ($\psi \in \mathcal{H}_{i}^{n}$)

$$t_{\underline{k}}^{0}(\psi) = \sum_{j=1}^{n} \int dX^{n} \mathcal{J}_{\underline{k}}(x_{j}) \left| \nabla_{j} \psi(X^{n}) \right|^{2},$$

$$Q(t_{\underline{k}}^{0}) = S(C^{4}(\Lambda_{\underline{k}}^{n})),$$
(IIa)

где $\mathcal{F}_k(\mathbf{x})$ - характеристическая функция области $\Lambda_k^{(n)}$

$$n_{\underline{k}}^{2}(\psi) = \int dX^{n} \left\{ \sum_{j=1}^{n} \chi_{\underline{k}}(x_{j}) \right\}^{2} \left| \psi(X^{n}) \right|^{2}; \qquad (\text{IIB})$$

$$\underline{\underline{v}}_{\underline{k}}(\psi) = \underline{V}_{\underline{k}} \underline{n}_{\underline{k}}(\psi) , \quad \underline{V}_{\underline{k}} = \min_{\underline{x} \in \Lambda_{\underline{k}}} V(\underline{x}/L). \quad (IIF)$$

Предложение I. Для форм, определенных выше, имеем
(i)
$$t_{L}^{o}(\psi) = \sum_{k} t_{k}^{o}(\psi)$$
, $\forall \psi \in S(C^{4}(\Lambda_{L}^{n}));$ (I2a)
(ii) $\mathcal{V}_{L}(\psi) \ge \sum_{k} \underbrace{\mathcal{V}}_{k}(\psi);$ (I26)

iii)
$$\mu_{IF} \forall \lambda > 0 \quad \mu \forall \varepsilon > 0 \exists L_0, \text{ takee, yto } \mu_{IF}$$

$$u_{L,\lambda}(\psi) \ge \frac{a(1-\varepsilon)}{2} \frac{m'}{L'} \sum_{k} n_k^2(\psi) - \lambda' U(0) \sum_{k} n_k(\psi),$$
$$a = \int_{\mathbb{R}^3} d^3x U(x). \quad (I2B)$$

<u>Доказательство</u>. Соотношения (i) и (ii) тривиально следуют из определений. Для доказательства (iii) мы воспользуемся следующим результатом /12/: для $\forall \lambda > 0$, $\forall \varepsilon > 0 \exists L_4$ такое, что для $\forall L > L_4$, $\forall N$ и $\forall x_i \in \Lambda_L$ имеем

$$\sum_{\substack{\xi \in \langle j | \xi | N \rangle^{2}}} \lambda^{\vee} U\left(\lambda(x_{i} - x_{j})\right) > \frac{a(1 - \varepsilon)}{2L^{\vee}} N^{2} - \lambda^{\vee} U(0) N$$
(13)

Возьмем теперь произвольный вектор $\psi \in \mathcal{H}_{L}^{n}$ и положим $U_{\lambda}(X^{n}) = \sum_{\substack{\lambda \in U \\ \lambda \in L \leq i \leq n}} \chi^{n} U(\lambda(x_{i} - x_{j}))$. Тогда получим:

$$u_{L,\lambda}(\psi) = \int dX^{n} U_{\lambda}(X^{n}) |\psi(X^{n})|^{2} =$$

$$= \sum_{\substack{i_{1},\dots,i_{n} \\ i_{1},\dots,i_{n}}} \int dx_{n} U_{\lambda}(X_{n}) |\psi(X^{n})|^{2}; \qquad (14)$$

$$= \sum_{\substack{i_{1},\dots,i_{n} \\ i_{1},\dots,i_{n}}} P_{IN_{k}} \left(\prod_{\substack{i_{1},\dots,i_{n} \\ i_{n},\dots,i_{n}}} \int dx^{N_{k}}\right) U_{\lambda}(X^{n}) |\psi(X^{n})|^{2}, \qquad (15)$$

где $\sum_{k=1}^{m_{k}} (m_{k}) + k + k$ где $\sum_{k=1}^{m_{k}} (m_{k}) + k + k$ $N_{k} \geq 0$ соответствует суммированию по всем возможным наборам $\{N_{k} : N_{k} = 0\}_{k}$, таким, что $\sum_{k=1}^{m_{k}} N_{k} = 1$, а $\int_{dX} (M_{k}) = 1$, $\sum_{k=1}^{m_{k}} (M_{k}) + M_{k}$. Для того чтобы первие от (14) к (15), мы упорядочили частицы таким образом, чтобы первые N_{k} частиц находились в кубике $\Lambda_{k}^{(m)}$, вторые N_{k} частиц в кубике $\Lambda_{k}^{(m)}$ и так далее. Множитель $P_{\{N_{k}\}}$ учитывает число членов в сумме (14), которые дают один и тот же вклад в (15). Теперь, используя неотрицательность парного потенциала (3г), получаем:

$$u_{L,\lambda}(\psi) \geq \sum_{\{N_k\}}' P_{\{N_k\}} \left(\prod_{k} \int_{k} dX^{N_k} \right) \left\{ \sum_{k} U_{\lambda}(X^{N_k}) \right\} |\psi(X^n)|^2$$

Наконец, используя (13) и выбирая $L_m > L_4$, это неравенство можно преобразовать к виду

$$u_{L,\lambda}(\psi) \ge \sum_{\{N_{\underline{k}}\}}^{\prime} P_{\{N_{\underline{k}}\}} \left(\prod_{\underline{k}} \sum_{\underline{k}} dX^{N_{\underline{k}}} \right) \left\{ \frac{a(4-\varepsilon)}{2} \frac{m}{L^{\nu}} \sum_{\underline{k}} N_{\underline{k}}^{2} - -\gamma^{\prime} U(0) \sum_{\underline{k}} N_{\underline{k}} \right\} \left| \psi(X^{n}) \right|^{2}$$
(16)

Нетрудно проверить, что (16) эквивалентно (12в). 🛛

Используя (10) и предложение I, с помощью стандартных рассуждений /IO/ получаем оценку:

$$\mathcal{P}^{\mathfrak{o}}_{L,\lambda}(\mu) \leq \frac{1}{m^{\nu}} \sum_{\underline{k}} \tilde{\mathcal{P}}^{\mathfrak{o}}_{\underline{k}}, \alpha(1-\varepsilon) \left(\mu - \underline{V}_{\underline{k}} + \lambda^{\nu} U(0) \right) .$$

$$\lim_{\lambda \neq 0} \sup_{L \to \infty} \tilde{P}_{L,\lambda}^{o}(\mu) \leq \int_{\Lambda} d^{\infty} \tilde{P}_{a}(\mu - V(\infty)).$$
(17)
(Существование предела $\lim_{L \to \infty} \tilde{P}_{L,\lambda}^{o}(\mu)$ и его равенство пределу $\lim_{L \to \infty} \tilde{P}_{L,\lambda}^{o}(\mu)$)
показываются так же. как это спедано в /10/).

Б. Нижняя граница для
$$\mathcal{P}_{L,\lambda}^{\infty}(\mu)$$

Для этого поделим Λ_{L} на кубики $\Lambda_{\underline{k}}^{(q,z)}$:
 $\Lambda_{\underline{k}}^{(q,z)} \bigvee_{\underline{k}=\underline{k}=1}^{\vee} \left[k_i \left(\frac{L}{q} + \frac{L}{z} \right), k_i \left(\frac{L}{q} + \frac{L}{z} \right) + \frac{L}{q} \right], \quad 0 \leq k_i \leq \operatorname{In} t \left(\frac{q \cdot z}{q + z} \right) - 1$. (18)

Здесь Int(x) соответствует целой части числа x и $q, \tau \in \mathbb{N}$. Объём кубиков $\Lambda_k^{(q,\tau)}$ равен $(L/q)^{\vee}$, а минимальное расстояние между ними не менъще, чем L/τ . Ясно, что

$$P_{L,\lambda}^{\infty}(\mu) \ge \overline{Tr}_{M} \exp\left[-\beta\left(H_{L,\lambda}^{\infty}-\mu N_{L}\right)\right], \qquad (19)$$

где $\overline{\mathsf{Tr}}_{\mathsf{M}}$ обозначает след по пространству $\mathfrak{H}_{\mathsf{M}}$ состояний, которые соответствуют конфигурациям, когда вне кубов $\Lambda_{k}^{(q,z)}$ частицы отсутствуют, причем внутри каждого из кубов $\Lambda_{k}^{(q,z)}$ содержится не более ML^{V} частиц. Здесь M -большое фиксированное число, которое будет определено ниже.

Определим квадратичную форму
$$\overline{v}_{\underline{k}}$$
:
 $\overline{v}_{\underline{k}}(\psi) = \overline{V}_{\underline{k}} n_{\underline{k}}(\psi)$, $\overline{V}_{\underline{k}} = \max_{\substack{x \in \Lambda_{\underline{k}}^{(q,z)}}} V(x/L)$, (20)

6

7

где $n_k(\psi)$ определяется так же, как и в (II6), лишь с заменой $\Lambda_k^{(m)}$ на $\Lambda_k^{(q,c)}$. Аналогично изложенному выше определяются формы t_k^{∞} и $u_{k,\lambda}$. Имеет место следующее предложение. <u>Предложение 2.</u> Для $\forall \psi \in \mathfrak{H}_{M}$ имеем: (i) $t_{L}^{\infty}(\psi) = \sum_{k} t_{k}^{\infty}(\psi)$; (2Ta) (ii) $\ensuremath{\mathbb{V}}_{L}(\psi) \leq \sum_{k} \ensuremath{\widetilde{\mathbb{V}}}_{\underline{k}}(\psi) \ ;$ (2Td)

(iii)
$$u_{L,\lambda}(\psi) \leq \sum_{\underline{k}} u_{\underline{k},\lambda}(\psi) + A(\lambda,q,z,M) L^{\nu-\varepsilon} \|\psi\|^2$$
, (21b)

где $A(\lambda,q,z,M)$ - конечное число, зависящее от параметров λ,q,z,M а величина Е такая же, как и в выражении (Зв).

Доказательство. Доказательство (i) и (ii). так же. как и в предложении I, тривиально. Остановимся на (iii). Ясно, что Ц. (4) равно $\sum_{k} u_{k,\lambda}(\psi)$ плюс $u_{int}(\psi)$, соответствующее вкладу от взаимодей-ствия между частицами, находящимися в разных кубах $\Lambda_{k}^{(q,z)}$. Получим для $|u_{int}(\psi)|$ оценку сверху. Ясно, что взаимодействие между кубами $\Lambda_{k}^{(q,r)}$ и $\Lambda_{\ell}^{(q,r)}$ ограничено величиной $(ML^{\nu})^{2} K(\xi,\xi)$, где

$$K(\underline{k},\underline{\ell}) = \max_{\underline{x} \in \Lambda_{\underline{k}}^{(g,R)}, y \in \Lambda_{\underline{\ell}}^{(g,R)}} \lambda^{\nu} U(\lambda(\underline{x}-\underline{y})).$$

Тогда, используя оценку (Зв) и суммируя по всем кубикам $\Lambda_{k}^{(q,z)}$, получаем:

$$|u_{int}(\psi)| \leq ||\psi||^2 \left[\frac{qz}{q+z}\right]^{\nu} \sum_{\underline{k} \in \mathbb{Z}^{\nu} \setminus \{0\}} \frac{\lambda^{\nu} D \left(ML^{\nu}\right)^2}{\lambda^{\nu+\varepsilon} L^{\nu+\varepsilon} \left(d(\underline{k})\right)^{\nu+\varepsilon}} , \quad (22)$$

где $d(\underline{k}) = L^{-4} dist \left(\Lambda_{\underline{p}}^{(q,r)}, \Lambda_{\underline{k}}^{(q,r)} \right)$, и мы воспользовались естествен-ным обобщением определения (18) для $\underline{k} \in \mathbb{Z}^{\vee}$. Формула (22) дает явное выражение $A(\underline{\lambda}, q, r, M)$, что и завершает доказательство. Определим теперь интерполирующее давление $f_{L,\underline{\lambda}}^{(M)}(\mu)$ формулой

$$f_{L,\lambda}^{(M)}(\mu) = \frac{1}{\beta L^{\gamma}} \ln \operatorname{Tr}_{M} \exp \left[-\beta \left(\overline{H}_{L,\lambda}^{\infty} - \mu N_{L}\right)\right]$$

где $\overline{H}_{L,\lambda}^{\infty}$ – гамильтониан неидеального бозе-газа в отсутствие внешне-го поля, а Tr_{M} обозначает след по состояниям, в которых число частиц в кубе Л, не превышает ML^V. С помощью (IO) и предложения 2 получаем:

$$D_{L,\lambda}^{\infty}(\mu) \ge \frac{1}{q^{\nu}} \sum_{\underline{k}} f_{\underline{l}}^{(\mathsf{M}q^{\nu})}(\mu - \overline{V}_{\underline{k}}) - \frac{1}{L^{\varepsilon}} A(\lambda, q, z, M)$$
(23)

Как показано в Приложении для $\forall \mu_o$, $\forall \lambda_o > 0 \exists M$ для $\forall \mu < \mu_o$ и $\forall \lambda$: $0 < \lambda < \lambda_o$ имеем такое. что

$$\lim_{L\to\infty} f_{L,\lambda}^{(M)}(\mu) = \overline{P}_{\lambda}(\mu) , \qquad (24)$$

. rne

$$\overline{P}_{\lambda}(\mu) = \lim_{L \to \infty} (\beta L^{\nu})^{-1} \ln \operatorname{Tr} \exp\left[-\beta \left(\overline{H}_{L,\lambda}^{\infty} - \mu N_{L}\right)\right].$$

Таким образом. переходя к пределу $L \rightarrow \infty$ в оценке (23). получаем

$$\lim_{L\to\infty} \mathcal{P}_{L,\lambda}^{\infty}(\mu) \geq \frac{1}{q^{\nu}} \sum_{k} \overline{\mathcal{P}}_{\lambda}(\mu - V_{k}). \tag{25}$$
Odhako, kak xopomo usbectho (cm., hanpimep, $\tilde{\mathcal{P}}_{\lambda}).$ имеем:

 $\lim_{\lambda \neq 0} \overline{\vec{p}}_{\lambda}(\mu) = \widetilde{\vec{p}}_{a}(\mu).$ Переходя в неравенстве (25) к пределам limlimlim (·), получаем неравенство

$$\lim_{\lambda \downarrow 0} \inf_{L \to \infty} \mathcal{P}^{\infty}_{L,\lambda}(\mu) \ge \int_{\Lambda_1} d^{\prime} x \, \widetilde{\mathcal{P}}_{\alpha}(\mu - \mathbf{V}(\mathbf{x})) \, . \tag{26}$$

Утверждение теоремы следует теперь из комбинации соотношений (9). (I7) x (26).

4. Термодинамические свойства неидеального бозе-газа в ван-дер-ваальсовском пределе

Как было доказано выше (теорема). термодинамическое давление в такой системе имеет вил

$$P(\mu) = \lim_{\lambda \neq 0} \lim_{L \to \infty} P_{L,\lambda}^{o(\infty)}(\mu) = \int_{\Lambda} d^{\vee}_{x} \widetilde{P}_{a}(\mu - V(x)) =$$

$$= \int_{\Lambda} d^{\vee}_{x} \left\{ \frac{(\mu - \overline{\alpha}(x))^{2}}{2a} + P_{o}(\overline{\alpha}(x)) \right\},$$
(27a)

где функция 🗟 (х) 'определяется из усл

$$\alpha(\mathbf{x}) = \begin{cases} \mu - \mathbf{V}(\mathbf{x}) - \alpha \rho_0(\alpha(\mathbf{x})) , \mu - \mathbf{V}(\mathbf{x}) \leq \alpha \rho_e \\ 0 , \mu - \mathbf{V}(\mathbf{x}) \geq \alpha \rho_e . \end{cases}$$
⁽²⁷⁶⁾

Здесь мы исследуем поведение давления $\mathcal{P}(\mu)$ как функции химического потенциала μ , или , что эквивалентно, средней плотности числа частиц $\rho(\mu) = \partial_{\mu} \rho(\mu)$.

Для размерностей $\nu = I,2$ критическая плотность $\rho_c = \infty$, откуда следует, что $p(\mu)$ является C^{∞} функцией μ (а следовательно, и ρ). Более того, эта функция допускает аналитическое продолжение в некоторую окрестность вещественной оси.

Ситуация меняется для размерностей $\nu > 2$, когда $\rho_c < \infty$. Для того, чтобы представить, что происходит, рассмотрим случай $\nu = 3$ (исследование размерностей $\nu > 3$ аналогично). Рассмотрим для простоты центрально симметричный случай: Λ_{4} вместо куба является шаром радиуса R = I с центром в начале координат, а функция, опре-- деляющая потенциал внешнего поля, имеет вид $V(\infty) = V_0(1 \propto l)$, где $V_0 \in C^{\infty}(0,4)$.

Рис. I. Простейший ход функции V_0 , позволяющий проиллюстрировать типичные особенности термодинамического поведения системи. Области [0,7,] и [τ_2, τ_3] заняты сверхтекучей фазой для модели с гамильтонианом $H_{L,\lambda}^{o(\infty)}(\lambda \downarrow 0)$. Для модели с гамильтонианом $\hat{H}_{L,a}^{o(\infty)}$ сверхтекучая фаза сосредоточена в точке $|\infty| = 0$.

Выражение для давления принимает тогда следующий вид:

$$P(\mu) = 4\pi \int dr r^2 \widetilde{P}_a(\mu - V_o(r)) .$$

Используя тот факт, что для малых $|\alpha|$ функция $\rho_0(\alpha)$ имеет вид $^{/13/}$

$$\beta_{0}(\alpha) = \beta_{c} + \Gamma\left(-\frac{1}{2}\right)\left(-\beta\alpha\right)^{4/2} + 0(\alpha) ,$$

и формулы (8), нетрудно проверить, что производные $\Im_{\mu}^{n} \widetilde{P}_{a}(\mu)$ до четвертого порядка существуют и ограничены всюду, кроме точки $\mu = a_{\beta}$, где $\Im_{\mu}^{3} \widetilde{P}_{a}(\mu)$ является разрывной функцией μ . Обозначим теперь через $\{z_{i}\}_{i=1}^{d}$ множество таких точек, что (см. рис. I)

$$V_o(\tau_i) = \mu - a \rho_c$$
.

Тогда из явного выражения для давления получаем

 $\partial_{\mu}^{4} \mathcal{P}(\mu) = 4\pi \int_{0}^{1} dz z^{2} \partial_{\mu}^{4} \widetilde{\mathcal{P}}_{a}(\mu - V_{0}(z)) + 4\pi C \sum_{i=1}^{K} z_{i}^{2} \partial_{\mu} z_{i}$

где

=
$$\lim_{\mu \to a_{p,+0}} \tilde{p}_{a}(\mu) - \lim_{\mu \to a_{p,-0}} \tilde{\sigma}_{\mu} \tilde{p}_{a}(\mu)$$
.

Из этого непосредственно следует, что функция $\mathcal{D}_{\mu}^{4} P(\mu)$ является разрывной в точках $\mu = a\rho_c + V_0(R_j)$, j = 1, 2, ..., M и $\mu = a\rho_c + V_0(z=1)$, где $\{R_j\}_{j=4}^{M}$ являются экстремумами функций $V_0(|\infty|)$, см. рис. I. Точка $\mu = a\rho_c + V_0(0)$ требует специального анализа, однако можно показать, что и в ней давление $P(\mu)$ неаналитично. Степень гладкости $P(\mu)$ в этой точке зависит от поведения $V_0(z)$ в окрестности z = 0.

Рассмотрим теперь поведение локальной плотности $\rho(\mu; \mathbf{x})$, которое оказывается более поучительным. Пусть $N_L^{\mathbf{x},A}$ -оператор числа частиц в области $\Lambda_L^{\mathbf{x},A} = \prod [L(\mathbf{x}_i - A), L(\mathbf{x}_i + A)]$, т.е. $N_L^{\mathbf{x},A} \psi(X^n) = \sum_{\substack{i \leq x \\ i \leq x \\ i$

$$\mathfrak{g}_{L,\lambda}^{\mathfrak{o}(\infty)}(\delta) = (\mathfrak{g}_{L}^{\nu})^{-1} \ln \operatorname{Trexp}\left[-\mathfrak{g}\left(H_{L,\lambda}^{\mathfrak{o}(\infty)} + N_{L}^{-} \delta N_{L}^{\infty,A}\right)\right]$$

С помощью тех же рассуждений, что были использованы в разделе 2, можно показать следующее:

$$g(\delta) = \lim_{\lambda \neq 0} \lim_{L \to \infty} g_{L,\lambda}^{0(\infty)}(\delta) = \int_{\Lambda_{1} \cap \Lambda_{1}^{x,A}} dx \widetilde{p}_{\alpha}(\mu - V(x) + \delta) + \int_{\Lambda_{1} \cap \Lambda_{1}^{x,A}} dx \widetilde{p}_{\alpha}(\mu - V(x)).$$

Поскольку функция $\mathcal{G}_{L,\lambda}^{\mathfrak{o}(\infty)}(\delta)$ является выпуклой по параметру δ , то имеем:

$$\int_{\Lambda_{1}\Lambda_{1}^{x,A}} d^{x} \varphi(\mu; x) = \lim_{\lambda \neq 0} \lim_{L \to \infty} L^{-\nu} \omega_{L,\lambda}^{0(\infty)}(N_{L}^{x,A}) =$$

$$= \lim_{\lambda \neq 0} \lim_{L \to \infty} \partial_{\xi} g_{L,\lambda}^{0(\infty)}(\delta) \Big|_{\delta=0} = \partial_{\xi} g(\delta) \Big|_{\delta=0} = \int_{\Lambda_{1}\Lambda_{1}^{x,A}} d^{y} x \left\{ \partial_{\chi} \widetilde{P}_{\alpha}^{(\alpha)} \right|_{\alpha=\mu-V(\alpha)}.$$

Следовательно, локальную плотность можно представить в виде $\rho(\mu; x) = 2 \alpha \tilde{\rho}_{\alpha}(x)|_{\alpha = \mu - V(x)}$. Заметим, что $\rho(\mu; x)$ является C^{∞} -функцией аргумента μ всюду, за исключением точки $\mu_{c}(x)$: $\mu_{c}(x) = = 2 \alpha \rho_{c} + V(x)$.

Когда средняя плотность числа частиц в системе возрастает, ло-

кальная плотность $\rho(\mu; x)$ также растет, причем все частицы в окрест-ности точки ∞ вначале находятся в нормальной фазе. Однако, как только локальная плотность превысит ρ_c , все вновь добавленные частицы в окрестности ∞ попадают в бозе-конденсат, т.е. в этой точке появляется сверхтекучая фаза. Из этого можно заключить, что для любого μ , удовлетворяющего неравенству (см. рис. I),

$$a p_c + \min V(y) \leq \mu \leq a p_c + \max V(y)$$

 $y \in \Lambda_1$ $y \in \Lambda_1$

существует некоторая точка x* ∈ Λ, , где локальная плотность ρ(μ;x)
 является неаналитической функцией μ. Такое же утверждение справедливо по отношению к локальной плотности как функции средней плотности р.

В заключение этого раздела мы хотим подчеркнуть разницу между неидеальным бозе-газом в ван-дер-ваальсовском пределе и моделью неидеального бозе-газа, соответствующей среднему полю. Последняя модель описывается гамильтонианом $\hat{H}_{L,a}^{0(\infty)}$, которому соответствует квадратичная форма, учитывающая внешнее поле (ср. с гамильтонианом $\tilde{H}_{L,a}^{0(\infty)}$),

$$t_{L}^{\mathfrak{a}(\boldsymbol{\infty})}(\boldsymbol{\psi}) + \boldsymbol{v}_{L}(\boldsymbol{\psi}) + \frac{a}{2L^{\nu}}(\boldsymbol{\psi}, N_{L}^{2}\boldsymbol{\psi}).$$

Тогда предельное термодинамическое давление $\mathcal{P}_{mf}(\mu)$ для этой системы имеет вид

$$\mathcal{P}_{mf}(\mu) = \int_{\Lambda_{4}} d^{\nu} x \left\{ \frac{(\mu - \bar{\alpha})^{2}}{2a} + \mathcal{P}_{0}(\bar{\alpha} - V(\infty)) \right\}, \quad (28a)$$

$$\mathbf{r}_{\text{TE}} \quad \bar{\alpha} \quad \text{определяется из условия } (\underline{V} = \min_{\mathbf{x} \in \Lambda_{4}} V(\mathbf{x}))$$

$$\alpha = \begin{cases} \mu - a \int_{\Lambda_{4}} d^{\nu} x \, \rho_{0}(\alpha - V(\mathbf{x})), \quad \mu \leq a \rho_{c,ext} + \underline{V}; \\ \Lambda_{4} & \mu \leq a \rho_{c,ext} + \underline{V}; \end{cases}$$

$$(286)$$

а локальная и критическая плотности имеют вид

$$p_{mf}(\mu; x) = p_0(\alpha - V(x)),$$

$$p_{c,ext} = \lim_{\alpha \to \underline{V} = 0} \int_{A} d^{\gamma} \alpha p(\alpha - V(x))$$

Виражение (28) полезно сравнить с (27) и локальной плотностью р(м;х).

Заметим, что давление $p_{mf}(\mu)$ является сингулярным только в точке $\mu = a p_{c,ext} + Y$, и что плотность $p_{c,ext}$ может быть конечной даже для размерностей $\mathcal{V} = I,2$, ср. /I/и /6/. Для этой системы также можно изучить локальную плотность $p_{mf}(\mu; \infty)$. Она имеет следующее свойство: если $\mu > a p_{c,ext} + Y$, то для $\forall \infty$, соответствуnomero $V(x) > \underline{V}$,

$$\mathcal{P}_{mf}(\mu; x) = \mathcal{P}_0(\underline{V} - V(x))$$

Следовательно, как только средняя плотность ρ начинает превышать величину $\rho_{c,ext}$, локальная плотность в точках ∞ , удовлетворяющих условию $V(\infty) > V$, достигает своего максимального (критического) значения, а любие вновь добавляемые частицы образуют бозе-конденсат, который стремится занять место в области минимума внешнего поля. Для случая внешнего потенциала, изображенного на рис J, это означает, что сверхтекучая фаза (бозе-конденсат) локализуется в точке $|\infty| = 0$. Эта картина существенно отличается от того, что происходит в случае неидеального бозе-газа в ван-дер-ваальсовском пределе, когда локальная плотность во всех точках ∞ является строго монотонной, возрастающей функцией средней плотности ρ .

Эту разницу в поведении двух моделей нетрудно понять, если принять во внимание, что для модели среднего поля энергия взаимодействия в некотором малом сосуде внутри куба Λ_L пропорциональна квадрату средней (глобальной) плотности числа частиц в системе, в то время как для неидеального бозе-газа в ван-дер-вальсовском пределе эта энергия пропорциональна квадрату локальной плотности. Поэтому в первом случае бозе-конденсат может локализоваться в области с термодинамически микроскопическими линейными размерами ℓ_L : $\lim_{L\to\infty} \ell_L/L = 0$, что соответствует точке min $V(\infty)$, см. рис. I. Во втором случае такая локализация невозможна: из-за локального характера взаимодействия бозе-конденсат распределяется в области с термодинамически макроскопическими линейными размерами \varkappa_L : $\lim_{L\to\infty} \varkappa_L/L > 0$, что соответствует конечным областям на рис. I.

Один из нас (Ф. де Смедт) благодарен Лаборатории теоретической физики ОИЯИ за гостеприимство, способствовавшее написанию настоящей работи, а также Бельгийскому научно-исследовательскому фонду за финансовую поддержку.

Приложение

Здесь мы докажем равенство (24). Идея доказательства такая же, как и в работех / I3, I4/.

Выберем некоторые μ_0 и λ_0 и предположим, что $\mu < \mu_0$, $0 < \lambda < \lambda_0$. Обозначим через $K_{,}(\infty)$ функцию распределения

$$K_{L}(x) = \frac{\sum_{\substack{i:nL \leq x_{3} \\ exp(\beta L^{\vee} \bar{p}_{L,\lambda}^{\infty}(\mu))}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ exp(\beta L^{\vee} \bar{p}_{L,\lambda}^{\infty}(\mu))}} \sum_{i=1}^{\infty} \frac{\sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \leq x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \leq x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in x_{3} \\ i=1, \dots, i \in x_{3}}} \sum_{\substack{i=1, \dots, i \in$$

Тогна имеем:

$$\exp\left(\beta L^{\nu}f_{L,\lambda}^{(M)}(\mu)\right) = \exp\left(\beta L^{\nu}\overline{p}_{L,\lambda}^{\infty}(\mu)\right)\left\{1 - \int_{M}^{\infty}K_{L}(dx)\right\}. \tag{29}$$

Пусть с > 0 , ясно, что

$$\int_{M}^{\infty} K_{L}(dx) \leq \exp\left(-\beta c M L^{\nu}\right) \int_{0}^{\infty} K_{L}(dx) \exp\left(\beta c L^{\nu} x\right) = \\ = \exp\left\{c\beta L^{\nu}\left(-M + \frac{\overline{P}_{L,\lambda}^{\infty}(\mu+c) - \overline{P}_{L,\lambda}^{\infty}(\mu)}{c}\right)\right\}.$$

Однако, с другой стороны:

$$0 \leq \vec{p}_{L,\lambda}^{\infty}(\mu+c) \leq \vec{p}_{L,\alpha(1-\epsilon)}^{\infty}(\mu_{\circ}+c+\lambda_{\circ}^{\vee}U(0))$$

где мы использовали (I3) (для достаточно большого L) и тот факт, что давление является возрастающей функцией μ .

Выберем теперь $M > \min c^{-1} \tilde{p}_{a(1-\epsilon)}(\mu_{+}c+\lambda_{0}^{*}U(0))$, тогда легко проверить, что для любых $U < \lambda < \lambda_{0}$ и $\mu < \mu_{0}$

$$\lim_{t\to\infty}\frac{1}{\beta^{L'}}\ln\left(1-\int_{M}^{\infty}K_{L}(dx)\right)=0$$

Этот предел вместе с (29) и доказывает (24).

Литература

- I. Van den Berg M., Lewis J.T.-Comm. Math. Phys., 1981, 81, p.435.
- Van den Berg M., Lewis J.T., Pulè J.V.-Helv. Phys. Acta, 1986, 59, p. 1271.
- 3. Hohenberg P.C.-Phys. Rev., 1967, 158, p. 383.

16

- 4. Bouziane M., Martin Ph.A.-J. Math. Phys., 1976, 17, p. 1848.
- Lewis J.T, Pulè J.V. de Smedt Ph.-Lecture Notes in Physics, 257, (Proceedings, Groningen 1985). p. 234-256, Springer-Verlag. Heidelberg. 1986.
- 6. Papoyan Vl. V., Zagrebnov V.A.-Phys. Lett., 1985, 113A, p. 8.
- 7. de Smedt Ph.-J. Stat .Phys., 1986, 45, 201.
- 8. Lebowitz J., Penroze 0.-J. Math. Phys., 1966, 7, p. 98.
- 9. Lieb E.-J. Math. Phys., 1966, 7, p. 1016.
- IO. Robinson D.W. The Thermodynamic Pressure in Quantum Statistical Mechanics: Lecture Notes in Physics 9, Springer-Verlag, Heidelberg, 1971.
- II. Van den Berg M., Lewis J.T., de Smedt Ph.-J. Stat Phys., 1984, 37, p. 697.
- I2. Lewis J.T., Pulè J.V., de Smedt Ph.-J. Stat. Phys., 1984, 35, p. 381.
- 13. Ziff R.M., Uhlenbeck G.E., Kac M.-Phys. Rep., 1977, 320, p.169.
- 14. Lewis J.T., Pulè J.V. Lecture Notes in Mathematics, 1095,

p. 25, Springer-Verlag, Heidelberg, 1984,

Рукопись поступила в издательский отдел 24 апреля 1987 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 p. 30 ĸ.
A3,4-82-704	Труды IV Неждународной школы по нейтронной физике. Дубна, 1982.	5 р. 00 к.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р. 55 к.
A2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 p. 00 ĸ.
Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава,	
	Чехословакия, 1983.	4 р. 50 к.
д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 p. 30 ĸ.
Д1,2-84-599	Труды VII Международного семинара по проблемам Физики высоких энергий. Дубна, 1984.	5 р. 50 к.
Д17-84-850	Труды Ш Международного синпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 P. 75 K.
Д10,11-84-818	Труды V Международного совещания по про- бленам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
Д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.
Д 11-85-79 1	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 p.
Д13-85-793	Труды XII Международного симпозиума по ядерной электронике. Дубна 1985.	4 р. 80 к.
ДЗ,4,17-86-747	Труды У Международной школы по нейтронной Физике. Алушта,1986.	4 р. 50 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного ниститута ядерных исследований

Загребнов В.А., де Смедт Ф. P17-87-286 Ван-дер-ваальсовский предел для неидеального бозе-газа в слабом внешнем поле

Исследовано влияние парного взаимодействия на термодинамические свойства идеального бозе-газа, помещенного в слабое внешнее поле. Показано, что в ван-дер-ваальсовском пределе термодинамическое давление является С [∞]-функцией плотности для размерностей $\nu = 1,2$, а для $d \ge 3$ это не так. Фазовый переход, связанный с появлением бозе-конденсата, изучается в этом последнем случае на примере локальной плотнос ти. Показано также, что свойства неидеального бозе-газа в ван-дер-ваальсовском пределе существенно отличаются от свойств соответствующей модели среднего поля.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1987

Перевод авторов

Zagrebnov V.A., de Smedt F. P17-87-286 The Van der Waals Limit of an Interacting Bose Gas in a Weak External Field We study how the introduction of a two-body interaction changes the thermodynamic properties of the free Bose gas in a weak (scaled) external field. We show that, in the Van der Waals limit, the thermodynamic pressure always is a C^o-function of the density in one and two dimensions,while this is not so in higher dimensions. The phase transition to the superfluid phase in the latter case is discussed in more detail by looking at the local densities. We also show that the Van der Waals limit for this system does not correspond to the usual mean field approximation. The investigation has been performed at the Laboratory

of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987