

P17-86-704

Т.М.Мишонов

ПОПРАВКА К ПОВЕРХНОСТНОМУ НАТЯЖЕНИЮ НА ГРАНИЦЕ СВЕРХПРОВОДЯЩЕЙ И НОРМАЛЬНОЙ ФАЗ И ФАЗОВАЯ ДИАГРАММА СВЕРХПРОВОДИМОСТИ ПЛОСКОСТИ ДВОЙНИКОВАНИЯ

Направлено в журнал "Письма в ЖЭТФ"

1986

Как известно еще со времени плонерской работи ГЛ/I/, точность аппроксимации энергии поверхностного натяжения предельным значением при $\mathcal{H} = 0$ сравнительно невелика. Возникает поправка порядка энергии переходной области, ширина которой $\sim \mathcal{H} \xi(T)$ ($\xi(T)$ – корреляционный радиус параметра порядка⁽²⁾). Такие границы возникают в промежуточном состоянии сверхпроводников первого рода. Сверхпроводящая фаза в этом случае граничит с нормальной фазой с критическим магнитным полем, $\mathcal{H}_{c}(T)$, параллельным границе. Цель настоящей работы- получение этой корневой поправки к поверхностному натяжению.

Та же самая поправка оказывается существенной в теории сверхпроводимости плоскости двойникования (СПД), где узкий сверхпроводящий слой волизи ПД граничит с нормальным металлом^{/3/}.

Мы нашли первые члены разложения поверхностного натяжения в ряд по степеням \mathcal{X} , который можно записать в форме:

$$\alpha(\tau) = \left(\xi(\tau) + \frac{1}{c}(\tau) / 8\pi\right) \left[A^* - \mathcal{X}^{1/2} \left(B^* + \mathcal{X} C^* + O(\mathcal{Y}^2) \right) \right].$$

Здесь

$$A^{*} = 2^{3/2} \int (\psi^{4} - 2\psi^{2} + 1)^{1/2} d\psi = 1,89. \qquad /I,2/$$

Константа

$$B^{*}=2^{9/4}\int_{-\infty}A^{\prime}(x)(1-A^{\prime}(x))dx=2,06$$

выражается через решение уравнения для безразмерного вектор – потенциала $A(\infty)$, подчиняющегося следующему уравнению и граничным условиям:

$$A''(x) - A^{2}(-x)A(x) = 0, \quad A(-\infty) = 0, \quad A'(+\infty) = 1$$

(штрих обозначает дифференцирование по \mathfrak{X}).

• ~~

объеденееный вистетут часовная исследования БИС пистена

1

Величину (*=0,26можно оценить, приравнивая ком значении $\mathcal{H} = 1/2^{4/2} = 0,707$. На рисунке показан график в указанном приближении.

- Зависимость поверхностного натяжения сверхпроводников как функция параметра ЭС. Отметим приемлемую точность для простих металлов даже первой поправки, пропорциональной ЭС^{1/2}.

Отметим удовлетворительную точность даже первой поправки для чистых металлов.

СПД возникает при температуре T_{S} , незначительно превышающей температуру объемного фазового перехода T_{c} , например, для S R: $(T_{S} - T_{c})/T_{c} = 0, 04 \text{ k/3}, 72 \text{ k}^{3/}$. Введем безразмерную температуру $t = (T - T_{c})/(T_{S} - T_{c})$. Пусть $H_{S} = H_{c}$ (t = -1), $\xi_{s} = \xi$ (t = -1) ($H_{c}(T)$ - критическое магнитное поле /2/). Введем еще, следуя /4/, безразмерное магнитное поле $h = H/H_{S}$. В этих безразмерных переменных термодинамический потенциал СПД на единицу площади, в магнитном поле, параллельном ПД, принимает вид:

$$\begin{split} \mathsf{G} &= 2\left(\xi_{s} + t_{s}^{2} / 8\pi\right) \left[2^{3/2} \int_{0}^{\sqrt{n}A} (\psi^{4} + 2t\psi^{2} + h^{2})^{1/2} d\psi \\ &- 2\psi_{nA}^{2} - \mathsf{B}^{*} \partial e^{1/2} h^{3/2} - \mathsf{C}^{*} \partial e^{3/2} h^{1/2} t + O(\partial e^{5/2}) \right], \\ \psi_{nA}^{2} &= (1-t) + \left[(1-t)^{2} - h^{2} \right]^{1/2}. \end{split}$$

Теплоемкость, магнитный момент и теплоту перехода можно найти элементарным дифференцированием G. Фазовая диаграмма (критическое поле СПД $h_s(t)$) получается из условия термодинамической выгодности СПД $G(t,h) \leq 0$.

гле

Для сверхпроводников первого рода СПД существует только в узком температурном интервале волизи T_c . Точка $\tilde{h} = (-\tilde{t})$, где критические поля СПД $h_S(t)$ и объемной сверхпроводимости пересекаются, можно использовать для определения \mathcal{H} как подгоночный параметр теории. Например, экспериментальные данные для $Sn / 5 / \tilde{h} = 7$ дают $\mathcal{H} = 0, I3$. Это значение прекрасно согласуется с результатами исследования для объемной сверхпроводимости. Таким образом, высокая точность измерения фазовой диаграммы СПД дает новый метод измерения \mathcal{H} .

Полученная здесь аналитическая формула для термодинамического потенциала СПД дает фазовув диаграмму, совпадающую с результатами диамагнитных ^{/5/} и численных ^{/4/} экспериментов. Это согласие представляет сильный аргумент в пользу известной модели ГЛ с температурно независимой экстрацоляционной длиной ^{/6/}, применявшейся в проблеме СПД в работах ^{/7,4,5/}.

Автор благодарен В.Л. Покровскому за стимулирующие дискуссии и И.Н. Хлюстикову за разъяснения экспериментальной ситуации.

Литература

I.Ландау Л.Д., Гинзбург В.Л. ЖЭТФ, 1950, 20, 1064.

2.Лифпин Е.М., Питаевский Л.П. Статистическая физика, ч.2, М.: Наука, 1978, §46.

З.Хлюстиков И.Н., Хайкин М.С. Письма в ЖЭТФ, 1982, 36, 132.

4.Буздин А.И., Хвориков Н.А. ЖЭТФ, 1985, 89, 1857.

5.Буздин А.И., Хлюстиков И.Н. Шисьма в ЖЭТФ, 1984, 40, 140.

6. Уайт Р., Джебелл Т. Дальний порядок в твердых телах. М.: Мир, 1982, с. 388.

7. Аверин В.В., Буздин А.И. Булаевский Л.Н. ЖЭТФ, 1983, 84, 737.

Рукопись поступила в издательский отдел З ноября 1986 года.

3

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы	можете	пол	учит	ь п	о поч	те перечио	сленны е	ниже	книги,	
	e	сли	они	не	были	заказаны	ранее.			

- - -

- -

Д2-82-568	Труды совещания по исследованиям в соласти релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтрониой физике. Дубна, 1982.	5 p. 00 x .
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубиа, 1982.	2 р. 50 к.
д7-83-644	Труды Международной школы-семинара по физике гяжелых ионов. Алушта, 1983.	6 p. 55 ĸ.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных ∎олн. Дубиа, 1983.	2 р. 00 к.
Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
д2-84-366	Труды 7 Международного совещания по проблемам квантовой теорим поля. Алушта, 1984.	4 р. 30 к.
£1.2-84-599	Труды VII Международного семинара по проблемам Физики высоких энергий. Дубна, 1984.	5 p. 50 ĸ.
Д17-84-850	Труды Ш Международного симпозиума по избраиным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 ĸ.
Д10,11-84-81 8	Труды V Международного совещания по про- блемам математического коделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
Д4-85-851	Труды Международной школы по структура ядра, Алушта, 1985.	3 р. 75 к.
д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 p.
д13-85-793	Труды .XN Международного симпозиума по ядерной электронике. Дубна 1985.	4 р. 80 к.
 Зан Издате	казы на упомянутые книги могут быть направлен 101000 Москва, Главпочтамт, п/я ельский отдел Объединенного института ядерных	м по адресу: 79 исследований

Мишонов Т.М. Р17-86-704
Поправка к поверхностному натяжению на границе сверхпроводящей и нормальной фаз
и фазовая диаграмма сверхпроводимости плоскости двойникования
Найдена поправка к поверхностному натяжению в сверхпроводни- ках первого рода, пропорциональная квадратному корню из парамет- ра Гинзбурга — Ландау (ГЛ) к. Эта поправка существенна для термо- динамического потенциала сверхпроводящего слоя вблизи плоскости двойникования.
Работа выполнена в Лаборатории теоретической физики ОИЯИ.
Препринт Объединенного института ядерных исследований. Дубна 1986
······································
Перевод О.С.Виноградовой
Mishonov T.M. P17-86-704
Correction to the Surface Tension of the Boundary of Superconductivity and Normal Phase and Phase Diagram of Twining Plane Superconductivity
A correction is found to the surface tension in first-kind superconductors, proportional to a square root of the Ginsburg — Landau (GL) parameter κ . This correction is essential for the thermodynamic potential of a narrow superconductivity layer near the twining plane.
The investigation has been performed at the Laboratory of Theore-

Preprint of the Joint Institute for Nuclear Research. Dubna 1986

tical Physics, JINR.

•