

344

СООбЩЕНИЯ Объединенного института ядерных исследований дубна

17/1-83

P17-82-700

Г.М.Гавриленко, С.Н.Горшков, В.К.Федянин

УСТАНОВЛЕНИЕ РАВНОВЕСИЯ В ОДНОМЕРНОЙ ГАРМОНИЧЕСКОЙ ЦЕПОЧКЕ, СВЯЗАННОЙ С ТЕРМОСТАТАМИ

В работе^{(1/} Н.Н.Боголюбов, рассматривая проблему обоснования основных принципов статистической механики, подробно изучил вопросы теории установления термодинамического равновесия в системе, слабо связанной с термостатом, имеющим некоторую температуру Т. При этом он исходил из следующей упрощенной модели, в которой уравнения движения частиц системы и термостата могут быть проинтегрированы точно.

В качестве системы S H.H.Боголюбов взял обычный гармонический осциллятор с гамильтонианом

$$H_{s} = \frac{1}{2} (p^{2} + \omega^{2} q^{2}).$$

Термостат он представил совокупностью большого числа невзаимодействующих осцилляторов

$$H_{T} = \frac{1}{2} \sum_{n=1}^{N} \{ P_{n}^{2} + \omega_{n}^{2} Q_{n}^{2} \},$$

а взаимодействие между системой S и термостатом задал в виде

$$H_{B3} = \epsilon q \sum_{n=1}^{N} a_n Q_n,$$

где a_n - некоторые числа, а ϵ - малый параметр.

Далёе Н.Н.Боголюбов предположил, что в начальный момент времени t=0 переменные Q_n , P_n термостата распределены статистически по закону Гиббса, отвечающему температуре T, а координата q и импульс p частицы S имеют некоторые вполне определенные значения. Тогда при t>0 переменные q и P системы будут так же, как и переменные термостата, случайно распределенными величинами, которые можно характеризовать некоторой плотностью вероятности $\rho_N(t,q,p)$.

Интересуясь случаем бесконечно большого термостата и предполагая, что для величин α_n , ω_n , вообще говоря, зависящих от N, выполняется условие перехода к непрерывному спектру

$$\sum_{\substack{0 < \omega_n \leq \nu}} \frac{a_n^2}{\omega_n^2} \to \int_{0}^{\nu} J(\nu) d\nu$$
 при N $\rightarrow \infty$

/где $J(\nu)$ - некоторая неотрицательная функция своего аргумента, характеризующая термостат/, Н.Н.Боголюбов разработал в книге^{/1/} методику нахождения предельной при $N \rightarrow \infty$ плотности вероятности

l

 $\rho(t,q,p) = \lim_{N \to \infty} \rho(t,q,p).$ В частности, в предположении, что

в пределе больших времен $t \to \infty$ устанавливается некоторое предельное распределение $\rho(\infty,q,p)$ координаты q и импульса p системы S, он получил, что в случае слабого взаимодействия $\epsilon \to 0$ системы S с термостатом с необходимостью должно быть

$$(q,p) = C e^{-\frac{p^2 + \omega^2 q^2}{2kT}}$$

·ρ (∞`

/ С - нормировочная постоянная/, т.е. независимо от вида функции $J(\nu)$ в системе S происходит установление термодинамического равновесия, отвечающего температуре T термостата.

В настоящей работе теория, разработанная Н.Н.Боголюбовым в книге^{/1/}, применяется к случаю, когда система S представляет собой не одну, а несколько гармонически связанных частиц и взаимодействует не с одним, а, скажем, с двумя термостатами, имеющими разные темћературы. При такой постановке задачи в системе S в пределе больших времен устанавливается не состояние термодинамического равновесия, как было бы в случае одного термостата, а некоторое неравновесное стационарное состояние, свойства которого мы подробно и изучим. В частности, мы покажем, что эти свойства определяются не только температурами, но и спектральными характеристиками термостатов.

§1

Рассмотрим состоящую из 's частиц гармоническую систему S, которая характеризуется гамильтонианом

$$H_{S} = \frac{1}{2} \sum_{r=1}^{S} p_{r}^{2} + \frac{1}{2} \sum_{i,j=1}^{S} k_{ij} q_{i} q_{j},$$

где ${\bf q}_1,...,{\bf q}_s$ и р $_1,...,{\bf p}_s$ обозначают координаты и импульсы частиц системы, а числа k_{1j} (ж k_{ji}) таковы, что квадратичная форма

$$\frac{1}{2}\sum_{i,j=1}^{s} k_{ij} q_i q_j$$
 положительно определена.

Предположим, что система S связана с двумя термостатами, имеющими соответственно температуры T_1 и T_2 . Гамильтонианы этих термостатов, следуя Н.Н.Боголюбову^{/1/}, запишем в виде

$$\begin{split} H_{T_1} &= \frac{1}{2} \sum_{n=1}^{N} \{ P_n^2 + \omega_n^2 Q_n^2 \}, \\ H_{T_2} &= \frac{1}{2} \sum_{m=1}^{M} \{ P_m^2 + \omega_m^2 Q_m^2 \} \;. \end{split}$$

Здесь индекс n нумерует координаты, импульсы и частоты осцилляторов термостата ${\rm T}_1$, а индекс m относится к соответствующим величинам термостата ${\rm T}_2$.

Взаимодействие системы S _с термостатами возьмем в виде

$$\sum_{n=1}^{N} \alpha_n Q_n q_1 + \mu \sum_{m=1}^{M} \alpha_m Q_m q_{\cdot s},$$

Где a_m , a_n и p - некоторые числа, а ϵ и $\mu = \epsilon$ p - малые пара-,метры.

Переходя от координат q_k частиц системы S к соответствующим нормальным координатам Θ_a по формулам

 $q_{k} = \sum_{\alpha=1}^{8} \Delta_{k\alpha} \Theta_{\alpha} ,$

где Δ_{kα} - элементы некоторой ортогональной матрицы, запишем полный гамильтониан H взаимодействующих системы S и термостатов в виде

$$H = \frac{1}{2} \sum_{\alpha=1}^{s} \left\{ \Lambda_{\alpha}^{2} + \omega_{\alpha}^{2} \Theta_{\alpha}^{2} \right\} +$$

$$+ \frac{1}{2} \sum_{n=1}^{N} \left\{ P_{n}^{2} + \omega_{n}^{2} \Theta_{n}^{2} \right\} + \frac{1}{2} \sum_{m=1}^{M} \left\{ P_{m}^{2} + \omega_{m}^{2} \Theta_{m}^{2} \right\} +$$

$$+ \epsilon \sum_{n=1}^{N} a_{n} \Theta_{n} \left\{ \sum_{\alpha=1}^{s} \Delta_{1\alpha} \Theta_{\alpha} \right\} + \epsilon P \sum_{m=1}^{M} a_{m} \Theta_{m} \left\{ \sum_{\alpha=1}^{s} \Delta_{s\alpha} \Theta_{\alpha} \right\} .$$

$$/ 1 /$$

Здесь Λ_{α} обозначает канонически-сопряженный нормальной координате Θ_{α} импульс, а ω_{α} - частота нормального колебания α .

Из уравнений движения, отвечающих гамильтониану H /1/, мы можем теперь определить зависимость от времени величин Θ_a , Λ_a ; при этом эти величины окажутся зависящими от начальных значений всех переменных Θ_a , Λ_a ; Q_n , P_n ; Q_m , P_m . В силу того, что при t=0 координаты и импульсы термостатов предполагаются распределенными статистически, мы получим, что нормальные координаты Θ_a и соответствующие им импульсы Λ_a системы S, имевшие первоначально определенные значения, при t>0 будут уже случайными величинами, которые могут быть охарактеризованы некоторой плотностью распределения вероятности $\rho_{\rm NM}(t,\Theta_1,...,\Lambda_s)$. В частности, в интересующем нас случае термостатов, содержащих бесконечно большое (N→∞, M→∞) число частиц, распределение величин Θ_a , Λ_a должно описываться функцией плотности вероятности

$$\rho(t, \Theta_1, ..., \Lambda_s) = \lim_{N, M \to \infty} \rho_{NM} (t, \Theta_1, ..., \Lambda_s).$$

Предполагая, что при N→∞,М→∞ справедливы соотношения

$$\sum_{\substack{0 \leq \omega_n \leq \nu}} \frac{a_n^2}{\omega_n^2} \to \int_0^{\nu} J_1(\nu) d\nu \quad при \quad N \to \infty$$
и

в полной аналогии с выклад ками работы $^{/1/}$ можно показать, что плотность $\rho(t, \Theta_1, ..., \Lambda_s)$ совместного распределения величин $\Theta_1, ..., \Lambda_s$ имеет вид

$$\rho(\mathbf{t},\Theta_{1},...,\Lambda_{s}) = C e^{-i\frac{1}{2}\sum_{\alpha,\beta=1}^{2s} (\mathbf{A}^{-1})_{\alpha\beta} \Theta_{\alpha} \Theta_{\beta}}, \qquad /2/$$

где С - нормировочный коэффициент, а импульсы Λ_{α} в правой части формулы /2/ мы обозначили для удобства, как $\Theta_{\alpha+s}$. Под A^{-1} в /2/ понимается, далее, матрица, обратная к матрице А квадратичной формы

$$\sum_{\substack{\alpha,\beta=1\\a,\beta=1}^{2s}} A_{\alpha} \lambda_{\alpha} \lambda_{\beta} = \epsilon^{2} \int_{0}^{\infty} \sum_{a=1}^{s} \{\Delta_{1a}^{2} k T_{1} J_{1}(\nu) + p^{2} \Delta_{sa}^{2} k T_{2} J_{2}(\nu)\} \times$$
$$\times |\int_{0}^{t} \lambda_{a} v_{a}(z) + \lambda_{s+a} v_{a}'(z)\} e^{-i\nu z} dz|^{2} d\nu$$

по переменным $\lambda_{1,...,\lambda_{2s}}$, функции v_{α} в которой удовлетворяют следующей системе с интегродифференциальных уравнений:

$$v_{\alpha}^{\prime\prime} + \omega_{\alpha}^{2} v_{\alpha} = \epsilon^{2} \Delta_{1\alpha} I_{1} \sum_{\beta=1}^{s} \Delta_{1\beta} v_{\beta} + \epsilon^{2} p^{2} \Delta_{s\alpha} I_{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} - \frac{3}{2} \sum_{\beta=1}^{s} \Delta_{1\beta} v_{\beta} + \epsilon^{2} p^{2} \Delta_{s\alpha} I_{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} - \frac{3}{2} \sum_{\beta=1}^{s} \Delta_{1\beta} v_{\beta} + \epsilon^{2} p^{2} \Delta_{s\alpha} I_{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} - \frac{3}{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} + \epsilon^{2} p^{2} \Delta_{s\alpha} I_{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} - \frac{3}{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} + \epsilon^{2} p^{2} \Delta_{s\alpha} I_{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} - \frac{3}{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} + \epsilon^{2} p^{2} \Delta_{s\alpha} I_{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} - \frac{3}{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} + \epsilon^{2} p^{2} \Delta_{s\alpha} I_{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} - \frac{3}{2} \sum_{\beta=1}^{s} \Delta_{s\beta} v_{\beta} + \frac{3}{2} \sum_{\beta=1}^{s} \Delta_{s\beta}$$

с начальными условиями

$$v_a(0) = 0$$
, $v'_a(0) = 1$

/здесь приняты обозначения: $I_1 = \int_{0}^{\infty} J_1(\nu) d\nu$, $I_2 = \int_{0}^{\nu} J_2(\nu) d\nu$, $P_1(t) = \int_{0}^{\infty} J_1(\nu) \cos \nu t d\nu$, $P_2(t) = \int_{0}^{\infty} J_2(\nu) \cos \nu t d\nu$.

Таким образом, мы получаем, что для определения функции $\rho(t,\Theta_1,...,\Lambda_s)$ необходимо решить систему интегродифференциальных уравнений /3/, что в общем случае невозможно сделать. Поэтому ограничимся случаем, когда система S слабо взаимодействует с термостатами T_1 и T_2 , т.е. когда $\epsilon \to 0$. В этом предположении оказывается возможным не только найти приближенное выражение для функций v_{α} , но и вычислить предельные при $t \to \infty$ выражения для коэффициентов $A_{\alpha\beta}$. Тем самым мы найдем также и предельное при $t \to \infty$ выражение для функции $\rho(t,\Theta_1,...,\Lambda_s)$,которое будет описывать устанавливающееся в системе S некоторое неравновесное стационарное состояние. Это неравновесное стационарное состояние. Это неравновесное стационарное состояние, термостатами T_1 и T_2 предполагается слабой.

Отметим, что первым шагом на пути решения системы /3/, содержащей s уравнений второго порядка, является переход к системе 2s уравнений первого порядка путем введения s новых функций:

$$u_a = v'_a$$
.

Затем следует перейти от функций v_{a} , u_{a} к новым функциям ξ_{a} , , ξ_{a} по формулам

$$\mathbf{v}_{a} = \dot{\xi}_{a} e^{i\omega_{a}t} + \dot{\xi}_{a} e^{-i\omega_{a}t} + \epsilon^{2} \sum_{\beta=1}^{s} A_{\alpha\beta} \xi_{\beta} e^{i\omega_{\beta}t} + \epsilon^{2} \sum_{\beta=1}^{s} B_{\alpha\beta} \bar{\xi}_{\beta} e^{-i\omega_{\beta}t} ,$$
$$\mathbf{u}_{a} = i\omega_{a} \xi_{a} e^{-i\omega_{a}t} - i\omega_{a} \bar{\xi}_{a} e^{-i\omega_{a}t} + \epsilon^{2} \sum_{\beta=1}^{s} \Delta_{a\beta} \xi_{\beta} e^{i\omega_{\beta}t} + \epsilon^{2} \sum_{\beta=1}^{s} \bar{\Delta}_{a\beta} \bar{\xi}_{\beta} e^{-i\omega_{\beta}t} ,$$

где $A_{\alpha\beta}$, $B_{\alpha\beta}$, $\Delta_{\alpha\beta}$, $\Delta_{\alpha\beta}$ - некоторые числа, значения которых выбираются в ходе дальнейших выкладок.

Поскольку эти выкладки, хотя и очень громоздкие, аналогичны выкладкам работы^{/1/}, в которой Н.Н.Боголюбов рассматривал случай слабого взаимодействия одной частицы с термостатом, приведем лишь окончательный результат: в случае слабого взаимодействия $\epsilon \to 0$ в пределе больших времен функция $\rho(t, \Theta_1, ..., \Lambda_s)$ принимает вид

$$C \prod_{a=1}^{8} e^{-\frac{\Lambda_a^2 + \omega_a^2 \Theta_a^2}{2kT_a}}$$
 /4/

/ С - нормировочная постоянная/, где кинетическая температура T_a , отвечающая нормальному колебанию a, есть

$$\mathbf{T}_{a} \equiv \mathbf{T}(\omega_{a}) = \frac{\Delta_{1a}^{2} \mathbf{T}_{1} \mathbf{J}_{1}(\omega_{a}) + p^{2} \Delta_{sa}^{2} \mathbf{T}_{2} \mathbf{J}_{2}(\omega_{a})}{\Delta_{1a}^{2} \mathbf{J}_{1}(\omega_{a}) + \Delta_{sa}^{2} \mathbf{J}_{2}(\omega_{a})},$$
 /5/

так что если температуры обоих термостатов одинаковы, $T_1 = T_2 \equiv T$,

то температуры T_a все окажутся также равными T и формула /4/ будет означать распределение нормальных координат и импульсов по закону Гиббса.

Принимая для определенности, что температуры T_1 и T_2 термостатов связаны соотношением $T_1 \leq T_2$, мы можем на основании формулы /5/ написать:

$$\mathbf{T}_{a} = \mathbf{T}_{1} + \frac{\mathbf{p}^{2} \Delta_{sa}^{2} (\mathbf{T}_{2} - \mathbf{T}_{1}) \mathbf{J}_{2}(\omega_{a})}{\Delta_{1a}^{2} \mathbf{J}_{1}(\omega_{a}) + \Delta_{sa}^{2} \mathbf{J}_{2}(\omega_{a})} \geq \mathbf{T}_{1}$$

И

1

$$T_{a} = T_{2} + \frac{p^{2} \Delta_{4a}^{2} (T_{1} - T_{2}) J_{1} (\omega_{a})}{\Delta_{4a}^{2} J_{1} (\omega_{a}) + \Delta_{sa}^{2} J_{2} (\omega_{a})} \leq T_{2},$$

так что кинетические температуры T_{α} нормальных колебаний изучаемой системы оказываются подчиненными естественному неравенству $T_1 \leq T_{\alpha} \leq T_2$. Отметим, что за счет подходящего выбора термостатов, т.е. задавая различным образом функции $J_1(\nu)$ и $J_2(\nu)$ /меняя их значения, в частности, на частотах ω_{α} /, мы можем добиться того, что температуры T_{α} нормальных колебаний примут произвольные наперед заданные значения в интервале между T_1 и T_2 .

Для определения предельной при t — с плотности вероятности $\rho \; (\sim , q_1, \ldots, p_s)$ распределения координат и импульсов q_1, \ldots, p_s частиц системы S рассмотрим соответствующую характеристическую функцию

$$f(t_1,...,t_s, \pi_1,...,\pi_s) = \int e^{i \int_{s=1}^{s} t_{\ell} q_{\ell} + \int_{\ell=1}^{s} \pi_{\ell} p_{\ell}} \times \rho(\infty, q_1,...,p_s) dq_1 \dots dp_s.$$

Учтем, что,коль скоро $\Delta_{\mathbf{k}\alpha}$ суть элементы некоторой оротогональной матрицы, преобразование переменных интегрирования по формулам

$$q_{k} = \sum_{\alpha=1}^{s} \Delta_{k\alpha} \Theta_{\alpha} ,$$
$$p_{k} = \sum_{\alpha=1}^{s} \Delta_{k\alpha} \Lambda_{\alpha}$$

сохраняет фазовый объем dq1... dps. Поэтому можно написать

$$f(t_1,...,\pi_s) = \int e^{i\sum_{\substack{\alpha=1\\ \alpha=1}}^{s} \Theta_{\alpha} \sum_{\substack{\ell=1\\ \beta=1}}^{s} t_{\ell} \Delta_{\ell_{\alpha}} + i\sum_{\substack{\alpha=1\\ \alpha=1}}^{s} \Lambda_{\alpha} \sum_{\substack{\ell=1\\ \beta=1}}^{s} \pi_{\ell} \Delta_{\ell_{\alpha}}} \times e^{-\sum_{\substack{\alpha=1\\ \alpha=1}}^{s} \frac{\Lambda_{\alpha}^2 + \omega_{\alpha}^2 \Theta_{\alpha}^2}{2kT_{\alpha}}} d\Theta_1 \dots d\Lambda_s,$$

откуда следует, что

$$f(t_1,\ldots,\pi_s) = e^{-\frac{1}{2}k\sum_{a=1}^s T_a \left\{\sum_{\ell=1}^s \pi_\ell \Delta_{\ell_a}^2\right\}} \cdot e^{-\frac{1}{2}k\sum_{a=1}^s \frac{T_a}{\omega_a^2} \left(\sum_{\ell=1}^s t_\ell \Delta_{\ell_a}^2\right)} \cdot e^{-\frac{1}{2}k\sum_{\ell=1}^s \frac{T_a}{$$

Ограничимся рассмотрением распределения только импульса одной частицы. Тогда n-й частице системы S будет отвечать характеристическая функция

$$f(...,0,\pi_{n},0,...) = e^{-\frac{1}{2}k\pi_{n}\sum_{\alpha=1}^{S}T_{\alpha}\Delta_{n\alpha}^{2}}.$$
 (6/

Находя теперь из /6/ плотность вероятности распределения импульса n-й частицы, мы получим, что ее кинетическая температура T(n) окажется равной

$$\Gamma(n) = \sum_{\alpha=1}^{s} T_{\alpha} \Delta_{n\alpha}^{2} . \qquad (7/$$

Отсюда следует, что температуры T(n) частиц системы S подчиняются тому же естественному ограничению $T_1 \leq T(n) \leq T_2$,что и температуры T_a ; действительно, в силу условий ортогональности

$$\sum_{\alpha=1}^{s} \Delta_{n\alpha}^{2} = 1$$
 для величин $\Delta_{n\alpha}$ можно написать, например,
 $T(n) = \sum_{\alpha=1}^{s} T_{\alpha} \Delta_{n\alpha}^{2} \leq T_{2} \sum_{\alpha=1}^{s} \Delta_{n\alpha}^{2} = T_{2}$.

Предполагая далее, что матрица, составленная из чисел $\Delta_{n\alpha}^2$, является невырожденной, так что формулы /7/, связывающие температуры T(n) с температурами T_a, могут быть обращены, мы видим, что соответствующим заданием термостатов кинетические температуры T(n) частиц системы S могут быть сделаны произвольными числами, заключенными в интервале температур между T₁ и T₂, коль скоро при изменении функций J₁(ν) и J₂(ν) величины T_a могут принимать произвольные значения между T₁ и T₂.

Таким образом, мы можем сделать вывод, что свойства неравновесного стационарного состояния гармонической системы, слабо связанной с двумя термостатами T_1 и $T_2(T_1 \not\in T_2)$, определяются не только температурами T_1 и T_2 термостатов, но и существенно зависят от их "внутреннего" строения. В качестве примера применим полученные выше результаты к случаю, когда система S, заключенная между двумя термостатами T_1 и T_g представляет собой гармоническую цепочку, т.е. характеризуется гамильтонианом вида

$$H_{s} = \frac{1}{2} \sum_{r=1}^{s} (p_{r}^{2} + \omega_{r}^{2} q_{r}^{2}) + \frac{1}{2} k_{1,2} (q_{1} - q_{2})^{2} + \dots$$

...+ $\frac{1}{2} k_{s-1,s} (q_{s-1} - q_{s})^{2}$,

где величины $k'_{i,i+1}$ определяют силу связи соседних частиц в цепочке. Отметим, что если $k_{i,i+1} \equiv k \equiv \text{const}$, $\omega_i \equiv \omega \equiv \text{const, то}$ мы имеем однородную цепочку, для которой, таким образом, можно написать:

$$H_{s} = \frac{1}{2} \sum_{r=1}^{s} \{ p_{r}^{2} + (\omega^{2} + 2k) q_{r}^{2} \} - \frac{1}{2} k (q_{1}^{2} + q_{s}^{2}) - k(q_{1}q_{2} + \dots + q_{s-1}q_{s}).$$

Рассмотрим гармоническую цепочку с гамилитонианом

$$H_{s} = \frac{1}{2} \sum_{r=1}^{s} \left\{ p_{r}^{2} + \omega^{2} q_{r}^{2} \right\} - k(q_{1}q_{2} + \dots + q_{s-1}q_{s}), \qquad /8/$$

для которой хорошо известен спектр частот ω_a ее нормальных колебаний Θ_a /2/.

$$\omega_a^2 = \omega^2 + 2k \cos \frac{\pi a}{s+1} \qquad (a = 1, ..., s), \qquad /9/$$

и формулы перехода,

$$q_{r} = \sum_{\alpha=1}^{s} \Delta_{r\alpha} \Theta_{\alpha} ,$$

$$\Delta_{r\alpha} = \sqrt{\frac{2}{s}} \sin \frac{\pi r \alpha}{s+1} , \quad r, \alpha = 1, ..., s ,$$

к этим нормальным колебаниям. Физически такая цепочка может быть представлена как однородная цепочка из s + 2 частиц, концы которой закреплены.

Легко видеть, что для коэффициентов $\Delta_{ra} = \sqrt{\frac{2}{s}} \sin \frac{\pi ra}{s+1}$ справедливы соотношения

$$\Delta_{i,a}^2 = \Delta_{s+1-i,a}^2$$

выполняющиеся при любых а и і.

Поэтому на основании формулы /7/ для кинетической температуры п-й частицы цепочки мы найдем, что окажутся одинаковыми соответственно кинетические температуры первой и s-й, второй и s-1-й и т.д. частиц. В остальном же распределение температуры в цепочке ничем не ограничено и, в частности, путем соответствующего подбора термостатов может быть сделано произвольным с тем лишь условием, чтобы температуры частиц лежали в интервале между T_1 и T_2 .

Имея в виду теперь рассмотреть случай очень длинной цепочки, перепишем выражение /7/ для кинетической температуры частицы і цепочки в виде _

$$T(i) = \sum_{\alpha=1}^{s} \Delta_{i\alpha}^{2} T(\omega_{\alpha}) = \frac{2}{s} \sum_{\alpha=1}^{s} \sin^{2} \frac{\pi i \alpha}{s+1} T(\omega_{\alpha}) =$$
$$= \frac{2}{s} \sum_{\alpha=1}^{s} \sin^{2} \frac{\pi i \alpha}{s+1} T(\omega_{\alpha}) \Delta_{\alpha},$$

где $\Delta a \equiv 1$ означает изменение величины индекса суммирования а при переходе к следующему члену в сумме. Вспомним, что согласно формуле /9/ значения индекса а связаны с частотами ω_{α} нормальных колебаний цепочки /8/ соотношением

$$a = \frac{s+1}{\pi} \arccos \frac{\omega_a^2 - \omega^2}{2k}$$

и, следовательно,

$$T(i) = \frac{2}{\pi} \sum_{\alpha=1}^{s} \sin^{2} i \arccos \frac{\omega_{\alpha}^{2} - \omega^{2}}{2k} T(\omega_{\alpha}) \frac{-s+1}{s} \Delta \left(\arccos \frac{\omega_{\alpha}^{2} - \omega^{2}}{2k}\right).$$

Переходя к пределу s $\rightarrow \infty$ и учитывая, что при этом спектр частот ω_a^2 будет все плотнее заполнять промежуток ($\omega^2 - 2k$, $\omega^2 + 2k$), мы можем заменить написанную выше интегральную сумму соответствующим интегралом. В итоге получим

T(i) =
$$\frac{2}{\pi} \int_{0}^{\pi} \sin^{2} \{ix\} T(\sqrt{\omega^{2} + 2k\cos x}) dx$$
,

8

9

или

$$T(i) = \frac{1}{\pi} \int_{0}^{\pi} T(\sqrt{\omega^{2} + 2k\cos x}) dx - \frac{1}{\pi} \int_{0}^{\pi} \cos \{2ix\} T(\sqrt{\omega^{2} + 2k\cos x}) dx.$$
 /10/

Точно так же можно было бы показать, что кинетическая температура $i - \ddot{n}$ частицы, отсчитываемой от другого конца цепочки, при $s \rightarrow \infty$ характеризуется тем же выражением /10/.

Заметим теперь, что по основной лемме теории интегралов Фурье второй из интегралов в формуле /10/ стремится к нулю с ростом номера i. Это значит, что вдали от концов цепочки кинетическая температура T(i) частиц будет одинаковой для всех частиц и равной

$$T(i) = \frac{1}{\pi} \int_{0}^{\pi} T(\sqrt{\omega^{2} + 2k \cos x}) dx.$$

Этот вывод о постоянстве кинетической температуры частиц в глубине длинной гармонической цепочки /8/, заключенной между двумя термостатами T_1 и T_2 и находящейся в неравновесном стационарном состоянии, был получен также в работах ^{/3,4/}, в которых воздействие каждого термостата на цепочку описывалось случайной силой со спектром типа белого шума и не предполагалось, вообще говоря, слабым.

ЛИТЕРАТУРА

- 1. Боголюбов Н.Н. О некоторых статистических методах в математической физике. Изд-во АН УССР, Киев, 1945.
- Гантмахер Ф.Р., Крейн М.Г. Осцилляционные матрицы и ядра и малые колебания механических систем. ГИТТЛ, М.-Л., 1950.
- Rieder Z., Lebowitz J.L., Lieb E. J.Math.Phys., 1967, 8, p.1073.
- 4. Casati G. Nuovo Cim., 1979, 52B, p.257.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	p.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	p.	00	к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
ДЗ-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1, 2- 12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
ДII - 80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2,	р.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.

Рукопись поступила в издательский отдел 18 октября 1982 года.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

10

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика	
1.	Экспериментальная физика высоких энергий	
2.	Теоретическая физика высоких энергий	
3.	Экспериментальная нейтронная физика	
4.	Теоретическая физика низких энергий	
5.	Математика	
6.	Ядерная спектроскопия и радиохимия	
7.	Физика тяжелых ионов	
8.	Криогеника	
9.	Ускорители	
10.	Автоматизация обработки экспериментальных данных	
11.	Вычислительная математика и техника	
12.	Химия	
13.	Техника физического эксперимента	
14.	Исследования твердых тел и жидкостей ядерными методами	
15.	Экспериментальная физика ядерных реакций при низких энергиях	
16.	Дозиметрия и физика защиты	
17.	Теория конденсированного состояния	
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	
19.	Биофизика	

Гавриленко Г.М., Горшков С.Н., Федянин В.К. Р17-82-700 Установление равновесия в одномерной гармонической цепочке, связанной с термостатами

Исследуется установление равновесия в линейной цепочке гармонических осцилляторов, слабо связанной на концах с термостатами с температурой T_1 , T_2 . Термостаты рассматриваются как большая совокупность гармонических осцилляторов, имеющих распределение Гиббса. Показано, что вдали от концов такой цепочки температура постоянна.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982

Gavrilenko G.M., Gorshkov S.N., Fedyanin V.K. P17-82-700 The Evolution of Linear Chain of Harmonic Osciliators to the Equilibrium State

The evolution of linear chain of harmonic osciliators to the equilibrium state is studied. The chain is weakly coupled with two heat bathes at T_1 and T_2 temperatures. The heat bathes are considered as large sets of harmonic oscillators obeying the Gibbs distribution. It is shown that far from the ends of this chain the temperature is constant.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982