

1770 2-80

21/4-80 P17 - 1296

1979

В.Л.Аксенов, Д.Баатар, Н.М.Плакида, С.Стаменкович*

ОПИСАНИЕ СТРУКТУРНОГО ФАЗОВОГО ПЕРЕХОДА В ПРИБЛИЖЕНИИ РАЗДЕЛЕНИЯ КООРДИНАТЫ

* Институт ядерных наук им. Б.Кидрича, Белград, СФРЮ.

1. ВВЕДЕНИЕ

· · · ·

При описании структурных фазовых переходов /ФП/ в кристаллах весьма эффективным оказалось представление локальной нормальной координаты ^{/1/}. Простейший гамильтониан, описывающий структурный переход в этом представлении, имеет вид:

$$H = \sum_{i} \left(-\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial s_{i}^{2}} - \frac{A}{2} s_{i}^{2} + \frac{B}{4} s_{i}^{4} \right) - \frac{1}{2} \sum_{ij} \Phi_{ij} s_{i} s_{j}, \qquad /1/$$

где s_i - локальная нормальная координата, p_i - импульс, m - эффективная масса. Точно решить задачу с гамильтонианом /1/ не представляется возможным даже в одномерном случае, поэтому обычно рассматривают два предельных случая. Предел слабого ангармонизма / А < 0 - фазовый переход типа смещения ^{/2/} / и предел сильного ангармонизма (Фо<<A, A>0), когда в одночастичном потенциале в /1/ достаточно учесть только нижний дважды вырожденный уровень /фазовый переход типа порядок-беспорядок /3/ /. В первом случае гамильтониан /1/ описывает систему достаточно хорошо определенных фононов, а во втором - движение диффузионного типа /которое при учете туннелирования имеет вид коллективизированных перескоков в двухъямном потенциале/. Однако в общем случае эти два типа движения не являются независимыми. Результаты исследования классического аналога системы /1/ показывают *, что имеется два типа возбуждений: фононные, с малой амплитудой колебаний, и возбуждения солитонного типа, описывающие движение границы кластеров. В формировании последней главную роль играет перескок частиц в одночастичном потенциале.

Чтобы учесть оба типа движений: медленные - перескок частиц в одночастичном потенциале и быстрые - колебания с малой амплитудой, нами ранее^{/5,6/} было введено представление координаты s_i в виде

> объедования столания вистема столания Бибалито ГЕКА

121

 $s_i = r_i + u_i$,

1. 1. 1 - - FU F IT

где г_i соответствует положению равновесия, которое может меняться с малой частотой Ω , а u_i - смещение частицы относительно равновесного положения с характерной частотой $\omega_0 >> \Omega$. Проблема разделения движения частицы в системе /1/ на медленное и быстрое обсуждалась также в работе^{/7/}. На основе представления /2/ в работе^{/8/} предложена квантовая модель, в которой спектр системы /1/ представлен в виде связанных самосогласованных низколежащих сильноангармонических возбуждений, обусловленных туннелированием, и высоколежащих возбуждений фононного типа.

В настоящей работе на основе численных расчетов описан фазовый переход в этой модели и исследованы условия применимости приближения /2/ в зависимости от параметров гамильтониана /1/.

2. САМОСОГЛАСОВАННАЯ СИСТЕМА УРАВНЕНИЙ ДЛЯ ПАРАМЕТРА ПОРЯДКА

Как показано в работе⁷⁸⁷, в приближении разделения координаты /2/ гамильтониан /1/ можно аппроксимировать суммой независимых гамильтонианов для конфигурационной и фононной частей:

$$H_0 = H_s + H_{ph}$$
 (3/

Эта аппроксимация производится в смысле вариационного принципа Боголюбова для свободной энергии: F \leq F_0 + <H-H_0 $>_0$.F - свободная энергия с полным гамильтонианом /1/, а F_0 - свободная энергия с гамильтонианом /3/. Гамильтониан конфигурационной /сильноангармонической/ части имеет вид

$$H_{s} = \sum_{i} \left[-\frac{\lambda_{0}^{c}}{2} \frac{\partial^{c}}{\partial x_{i}^{2}} - \frac{A}{2} x_{i}^{2} + \frac{1}{4} x_{i}^{4} \right] - \frac{1}{2} \sum_{ij} \phi_{ij} x_{i} x_{j} .$$
 (4)

В /4/ введены безразмерные переменные

$$x_i = \sqrt{\frac{B}{A}} r_i$$
, $\phi_{ij} = \frac{\Phi_{ij}}{A}$, $\lambda_0 = \frac{\hbar\sqrt{A/m}}{A^2/B}$, /5/

а параметр одночастичного потенциала

$$\tilde{A} = 1 - 3y$$
, $y = \frac{B}{A} < u_i^2 > /6/$

зависит от состояния фононной системы, определяемого средним квадратом "быстрых" смещений у. Угловые скобки здесь и далее означают термодинамические средние с гамильтонианом /3/. Аппроксимация /4/ предполагает, что два нижних уровня, определяемых решениями уравнения на собственные значения

$$\left[-\frac{\lambda_0^2}{2}\frac{\partial^2}{\partial x_i^2}-\frac{\tilde{A}}{2}x_i^2+\frac{1}{4}x_i^4\right]\psi_{s,a}(\bar{x})=\epsilon_{s,a}\psi_{s,a}(\bar{x}), \qquad /7/$$

лежат значительно ниже потенциального барьера, как показано на <u>рис.</u> 2 сплошной линией. При этом следующие уровни в одночастичном потенциале могут быть учтены с помощью гамильтониана H_{ph} . При рассмотрении системы H_{s} удобно перейти к энергетическому представлению с помощью волновых функций симметричного и антисимметричного состояний $\psi_{s,a}$ в /7/, в котором гамильтониан /4/ принимает вид^{/9/}:

$$H_{g} = -g \sum_{i} \sigma_{i}^{x} - \frac{1}{2} \sum_{ij} j_{ij} \sigma_{i}^{z} \sigma_{j}^{z} + E_{0} , \qquad (8/)$$

где σ^{X} , σ^{Z} - матрицы Паули,

$$2g = \epsilon_a - \epsilon_s, \quad j_{ij} = \phi_{ij} (x_{sa})^2, \quad x_{sa} = \int_{-\infty}^{\infty} \psi_s^* \cdot x \cdot \psi_a \, dx. \qquad /9/$$

Равновесные положения атомов < x_i > играют в системе роль параметра порядка Р, который в представлении /7/ имеет вид:

$$P = \langle x_i \rangle = x_{sa} \langle \sigma_i^z \rangle$$
, /10/

и в случае сегнетоэлектрического ФП определяет поляризацию. Средняя заселенность частиц в одном из минимумов одночастичного потенциала определяется $<\sigma_{\rm l}^{\rm Z}>$, и в приближении среднего поля имеет вид

$$\sigma_{z} \equiv \langle \sigma_{i}^{z} \rangle = \frac{h_{z}}{h} \operatorname{th} \frac{h}{T}, \quad \sigma_{x} \equiv \langle \sigma_{i}^{x} \rangle = \frac{g}{h} \operatorname{th} \frac{h}{T}, \qquad /11/$$

где

$$h_z = \sum_i j_{ij} \sigma_z$$
, $h_z^2 = h_z^2 + g^2$, $T = k_B \theta / (A^2 / B)$.

В отличие от обычной модели де Жена^{/9/} параметры гамильтониана /8/ зависят от температуры, благодаря учету фононных состояний в /6/, /7/. Поскольку фононная часть гамильтониана /1/ описывает высоковозбужденные состояния, ангармонизм которых мал, гамильтониан фононов H_{ph} выберем в псевдогармоническом приближении ^{/8/}:

$$H_{ph} = \sum_{i} \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial u_i^2} + A \cdot \frac{\Delta}{2} u_i^2 \right) - \frac{1}{2} \sum_{ij} \Phi_{ij} u_i u_j , \qquad /12/$$

в котором энергия фонона имеет вид:

$$m\omega_{q}^{2} = A\Delta - \Phi_{q}, \quad \Delta = -1 + 3(y + \langle x_{i}^{2} \rangle). \quad (13)$$

Как видно, фононный спектр зависит от среднего квадрата "медленных" смещений <x $^2_{\rm i}$ >, который в представлении /7/ имеет вид

$$\langle x_{i}^{2} \rangle = x_{+}^{2} - x_{-}^{2} \sigma_{x}$$
, (14/

где

$$x_{+}^{2} = \frac{1}{2} (x_{aa}^{2} + x_{ss}^{2}), \qquad x_{-}^{2} = \frac{1}{2} (x_{aa}^{2} - x_{ss}^{2}),$$

$$x_{ss}^{2} = \int_{aa}^{\infty} \psi_{s}^{*} (x) \cdot x^{2} \cdot \psi_{s}^{*} (x) dx.$$
/14a/

Система уравнений замыкается определением среднего квадрата быстрых флуктуаций в виде:

$$y = \frac{1}{N} \frac{B}{A} \sum_{a} \frac{1}{2\omega_{q}} \operatorname{cth} \frac{\omega_{q}}{2T} = \lambda_{0} \int_{-1}^{1} \frac{d\nu \rho(\nu)}{2\sqrt{\Delta - \phi_{0}\nu}} \operatorname{cth} \frac{\lambda_{0}\sqrt{\Delta - \phi_{0}\nu}}{2T}, \quad /15/$$

где $\phi_0 = \sum_j \phi_{ij}$, а $\rho(\nu) = (1/N) \sum_q \delta(\nu - \frac{\phi_q}{\phi_0})$ - функция распределения частот фононов, которую мы в дальнейшем выберем приближенно в виде

$$\rho(\nu) = \frac{2}{\pi} \sqrt{1 - \nu^2} .$$
 /16/

Фазовый переход в модели определяется температурным поведением параметра порядка Р /10/, для которого мы имеем самосогласованную систему уравнений /4/-/15/ в приближении типа хаотических фаз ^{/10/}.

3. ФАЗОВЫЙ ПЕРЕХОД В МОДЕЛИ

Описанная в предыдущем разделе модель является по-существу обобщением модели де Жена, которое заключается в учете зависимости потенциала от температуры T и квантовых свойств системы $(\lambda_0^2 \sim \hbar^2/m)$. Основное приближение состоит в том, что полный спектр можно разделить на две части - низколежащий дважды расщепленный за счет туннелирования уровень и возбужденные высоколежащие состояния. Причем эти две части взаимно влияют друг на друга. Параметры псевдоспинового гамильтониана g и j_{ij} /8/ существенно зависят от состояния фононной подсистемы /заселения высших уровней/, определяемого эффективным одночастичным потенциалом /6/. В то же время и состояние фононной системы зависит от состояния псевдоспиновой, поскольку частота фононов /13/ зависит от среднеквадратичных смещений < x_i^2 > равновесного положения осциллятора. Для того, чтобы получить описание фазового перехода в системе, необходимо решить систему уравнения /4/-/15/.

3.1. Приближение гармонического осциллятора

В качестве пробных функций в уравнении /7/ выберем комбинации функций левого /-/ и правого /+/ состояний гармонического осциллятора

$$\psi_{\rm g}({\rm x}) = \frac{1}{\sqrt{2(1\pm\rho)}} \left[\psi_0^+({\rm x}) \pm \psi_0^-({\rm x})\right], \qquad /17/$$

где

$$\psi_0^{\pm}(\mathbf{x}) = \psi_0(\mathbf{x} \pm \mathbf{x}_0), \quad \psi_0(\mathbf{x}) = \frac{1}{(\sigma\sqrt{\pi})^{1/2}} e^{-\frac{\mathbf{x}^2}{2\sigma^2}}, \quad /17a/$$

 $\rho = \int \psi (\mathbf{x} + \mathbf{x}_0) \psi (\mathbf{x} - \mathbf{x}_0) d\mathbf{x}$ – перекрытие волновых функций. Параметры волновой функции основного состояния осциллятора /17а/ определяются из уравнения

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \tilde{A}x^2\right)\psi_0(x) = \epsilon_0\psi(x), \quad \epsilon_0 = \frac{\hbar}{2}\sqrt{\frac{2\tilde{A}}{m}}.$$
 (18/

Таким образом, получаем

$$g = \rho \frac{3+\lambda}{4} \frac{(1-3y)^2}{1-\rho^2}, \quad j_0 = \phi_0 \frac{1-3y}{1-\rho^2}, \quad /19/$$

где перекрытие волновых функций

$$\rho = e^{-\frac{1}{\lambda}}, \quad \lambda = \frac{\lambda_0}{\sqrt{2} (1 - 3y)^{3/2}}, \quad (20)$$

Средний квадрат "медленных" смещений /14/:

$$\langle x_{i}^{2} \rangle = \frac{1-3y}{1-\rho^{2}} \left[1 + \frac{\lambda(1-\rho^{2})}{2} - \rho\sigma_{x} \right],$$
 /21/

4

5

среднее смещение /10/:

$$\langle x_{i} \rangle = \frac{1 - 3y}{1 - \rho^{2}} \sigma_{z} = x_{sa} \sigma_{z} \equiv P.$$
 (22)

Используя уравнения /19/-/20/, можно исследовать поведение системы.

Рассмотрим случай нулевой температуры T = 0. Уравнения для σ_z /11/ и для у /15/ принимают вид

$$\sigma_{z} \approx \frac{1}{j_{0}} \sqrt{j_{0}^{2} - g^{2}}; \quad y = \lambda_{0} \int_{-1}^{1} \frac{d\nu \sqrt{1 - \nu^{2}}}{\pi \sqrt{\Delta - \phi_{0} \nu}}.$$
 (23)

Как видно, $\sigma_z \ge 0$ при условии $g^2 \le j_0^2$. Это условие нарушается при достаточно большой энергии нулевых колебаний, когда $\lambda > \lambda_0^c$. При $\lambda = \lambda_0^c$, $\sigma_z = 0$ и, согласно /22/, P =0. Анализ уравнений /23/ показывает, что $\lambda_0^c \approx (\ln 3/4 \phi_0)^{-1}$. P /22/ может обратиться в ноль при Т=0 и за счет обращения в ноль параметра х ва . Используя /22/, /23/ и /13/, получаем $\lambda_0^{\Phi} = \pi \sqrt{\phi_0} / 3 \int_0^1 d\nu \sqrt{1 + \nu} \approx 2 \sqrt{\phi_0}$. Сравнивая λ_0^c и λ_0^{Φ} , видим, что при малых ϕ_0 переход в неупорядоченное состояние (P=0) происходит за счет флуктуаций в спиновой подсистеме, а при больших ϕ_0 - за счет флуктуаций в фононной подсистеме. Иными словами, Р обращается в ноль за счет той подсистемы, в которой меньше критическое значение λ_0 . На рис. 1 приведена зависимость параметра перекрытия волновых функций правого и левого состояний $\rho/20/$ от λ_0 при $\phi_0 = 0, 1$ и 0,6, полученная численным решением уравнений /19/-/22/ при Т=0.001. Расчеты показывают, что при $\phi_0 = 0,1$ $\sigma_z = 0$ при $\lambda_0 = 0,37,$ а $x_{o} = 0$ при $\lambda_0 = 0,45$. При $\phi_0 = 0,6$ $\sigma_z = 0$ при $\lambda_0 = 1,1,ax_{sa} = 0$ при $\lambda_0 = 0,5$. Как видно из рис. 1, в случае $\phi_0=0,6$ еще до фазового перехода перекрытие волновых функций становится большим, когда приближение разделения спектра теряет физический смысл. Полученные результаты носят качественный характер ввиду приближения /17/. Более детальное описание можно получить с помощью решения полного уравнения /7/.

Рис. 1. Зависимость от параметра λ_0 перекрытия волновых функций левого и правого состояний /17а/ ρ и параметра порядка Р. ρ_1 , P_1 при $\phi_0 = 0, 1, \rho_2$, P_2 при $\phi_0 = 0, 6$, T = 0,001.

3.2. <u>Решение самосогласованной системы уравнений</u> для параметра порядка

Уравнение на собственные значения /7/ решалось численно с помощью непрерывного аналога метода Ньютона, развитого в ЛВТА ОИЯИ ^{/11,12/}. Эта задача решалась самосогласованным образом в системе уравнений /4/-/15/. Результаты представлены на <u>рис. 2,3</u> и в табл. 1-3.

Рис. 2. Одночастичный потенциал и волновые функции симметричного и антисимметричного состояний при $\phi_0 = 0,1$, $\lambda_0 = 0,1$ /сплошная линия/ и $\phi_0 = 0,1, \lambda_0 = 0,3$ /пунктирная линия/.

На рис. 2 показан вид эффективного одночастичного потенциала и волновых функций двух нижних уровней при значениях параметров $\phi_0 = 0.1$, $\lambda_0 = 0.1$ /сплошные кривые/ и $\lambda_0 = 0.3$

7

/пунктирные кривые/. В первом случае имеется потенциал с двумя близкорасположенными уровнями (g << (Д) ниже потенциального барьера. Вырождение основного состояния снимается квантовым туннелированием частицы. Во втором случае кинетическая энергия частицы настолько велика, что уровни энергии расположены выше потенциального барьера. Очевидно, что в этом случае аппроксимация /3/ теряет смысл. В табл. 1 показано, как меняются параметры задачи в зависимости от λ_0 при разных ϕ_0 и T=0,001. Таким образом, при каждом фиксированном ϕ_0 можно определить критическое значение λ_0^k , выше которого уровни поднимаются выше потенциального барьера, и аппроксимация /3/ неприменима.

Рассмотрим случай, когда при низких температурах реализуется аппроксимация /3/. В табл. 2,3 представлены результаты вычисления температурной зависимости параметров задачи при различных ϕ_0 . Как видно, с увеличением ϕ_0 меняется метханизм фазового перехода. При малых ϕ_0 ($\phi_0 \leq 0,1$) фазовый пет реход происходит за счет разупорядоченности в системе. При больших ϕ_0 ($\phi_0 \ge 0.5$) частицы все "закреплены" в положении равновесия в одном из минимумов, и с ростом температуры происходит фазовый переход типа смещения в симметричное состояние *. При промежуточных ϕ_0 важны оба механизма, т.е. происходит фазовый переход смешанного типа. На рис. 3 показана зависимость параметра порядка от температуры при $\lambda_0 = 0,1$ и $\phi_0 = 0,1; 0,6$.

4. ЗАКЛЮЧЕНИЕ

Приближение /3/ означает разделение полной системы на две подсистемы, связанные самосогласованным образом. Энергия одночастичных возбуждений в одной из них обусловлена квантовым туннелированием частицы в двухъямном потенциале в двухуровневом приближении, и определяется величиной $2g = \epsilon_s - \epsilon_s$ (9). Энергия одночастичных возбуждений в другой подсистеме обусловлена малыми колебаниями частицы в потенциале гармонического типа и определяется величиной $\Delta /13/.$ Применение такого приближения физически обосновано при условии g «Д.

,0001 E иди y0 Зависимость параметров модели от

Таблица

0.1 0.2 0.3	a -0.12956 0.05769 0.20884 0.36756 0.36756 0.36756 0.54596 0.54596 0.512881 0.01167	 6 -0.12994 -0.004517 0.04517 0.05099 0.04527 	g/ j ₀ 0.0025 1.00685 3.0752 4.8416 6.5458 0.0005 0.1087 0.5096	σ _x 0.0025 1.0000 1.0000 1.0000 1.0000 0.0005 0.1105 0.1105	σ _z 0.9999 0.1 10 ⁻⁶ 0.1 10 ⁻⁶ 0.1 10 ⁻⁶ 0.1 10 ⁻⁶ 0.9999 0.9939	x sa 0.8664 0.5403 0.5328 0.5328 0.5530 0.5530 0.6216 0.6216	<pre>< x²₁></pre>	y 0.0407. 0.1632. 0.2207. 0.2544 0.2544 0.2544 0.2544 0.2544
•••	0.38255	0.09892	I .0283	1.0000	9-0I I.O	0.5251	0.2770	0.2694
0.5	0.55630	I794I.0	I.3490	I.0000	0°I I0-6	0.5490	0.3026	0.2938
I*0	-0.12658	-0.12699	0.0003	0.0003	6666*0	0.8615	0.7858	0.0432
1.0 2.0	0.56247	0.15226	0.6862	0.6861	0.7275	0.5467	0.3673	0.2994

Заметим, что реальный переход типа смещения реализуется в модели /1/ при другом выборе знака A: A < 0 и $\Phi_0 > \Phi_0 - |A|$.

	Т	e a	€ s	(g/j_)-10	σ _x	σz	x _{sa}	< x ² _i >	У
	0.0200	-0.12956	-0.12994	2.53	0.0025	0.9989	0.8664	0.7939	0.0407
	0.0400	-0.12437	-0.12481	2.99	0.0030	0.9387	0.8579	0.7798	0.0451
d =0.1	0.0600	-0.11212	-0.11275	4.57	0.0045	0.6167	0.8368	0.7455	0.0557
$\phi_0 = 0.1$	0.0625	-0.1101	-0.11068	4.89	0.0048	0,5234	0.8329	0.7394	0.0576
∧ ₀ = 0,1	0.0650	-0.10792	-0.10863	5.24	0.0052	0.3952	0.8291	0.7334	0.0594
	0.0675	-0.10584	-0.10660	5.58	0.0056	0.1622	0.8252	0.7273	0.0613
	0.0695	-0.10447	-0.10526	5.76	0.0057	0.I I0-6	0.8226	0.7232	0.0626
	0.0700	-0.10379	-0.10459	5.93	0.0057	0.1 10-6	0.8213	0.7212	0.0632
	0.0800	-0.09440	-0.09544	8.23	0.0066	0.I 10-6	0.8028	0.6926	0.0719
	0.0900	-0.08342	-0.08488	12.03	0.0081	0.1 10-6	0.7794	0.6578	0.0826
	0.1000	-0.06878	-0.07103	19.86	0.0113	0.1 10-6	0.7444	0.6083	0.0976
	0.1100	-0.03977	-0.04506	59.77	0.0240	0.1 10-6	0.6593	0.5001	0.1307

Таблица 2

Зависимость параметров модели от температуры при $\lambda_0=0,1$, $\phi_0=0,1$.

Таблица 3 Зависимость параметров модели от температуры при $\lambda_0=0,1, \phi_0=0,6;1,0.$

	т	€ 8.	€ 8	(g/j _o)-10 ⁸	σ _x .10 ⁸	σz	X sa	<x<sup>2_i></x<sup>	у
	0.02	-0.128069	-0.128468	0.447	0.45	0.99995	0.8640	0.7898	0.0419
	0.04	-0.122687	-0.122641	0.548	0.54	0.99995	0.8542	0.7737	0.0469
φ ₀ =0.8.	0.06	-0.108615	-0.109313	0.846	0.84	0.99995	0.8304	0.7353	0.0588
$\lambda_0 = 0.1;$	0.08	-0.088515	-0.089770	I.68	I.7	0.99985	0.7905	0.6741	0.0776
	0.09	-0.072351	-0.074376	2.94	3.0	0.99890	0.7534	0.6205	0.0938
$\lambda_{0}=0.1; \phi_{0}=1.0$	0.02	-0.125843	-0,126268	0.288	0.29	0.9999	0.8603	0.7838	0.0438
	0.04	-0.117819	-0.118354	0.372	0.37	0.9999	0.8468	0.7616	0.0507
	0.06	-0.099040	-0.099960	0.699	0.69	0.9999	0.8122	0.7068	0.0676

Рис. 3. Зависимость параметра порядка Р от температуры при $\lambda_0 = 0,1$ и $\phi_0 = 0,1$; 0,6.

=

Возможность применения того или иного приближения при описании модели /1/ определяется двумя параметрами: параметром квантовости $\lambda_0^2 = (\hbar^2 A/m)/(A^2/B)$ и параметром связи частиц $\phi_0 = \sum \phi_{ij}$ /A. Как видно из предыдущего рассмотрения, условие $g << \Delta$ достаточно хорошо выполняется при значениях $\lambda_0 \le \lambda_0^k$ ($\epsilon_a \le 0$) при T = 0.

При повышении температуры Δ уменьшается, а g увеличивается и, таким образом, в области фазового перехода предложенная модель имеет интерполяционный характер. Именно в этом смысле она позволяет описывать не только предельные случаи малых и больших ϕ_0 , но и промежуточные случаи.

В заключение авторы выражают благодарность И.В.Пузынину и Ф.Вукайловичу за обсуждения.

ЛИТЕРАТУРА

- Thomas H. In: Structural Phase Transition and Soft Modes, ed. by F.Samuelsen, E.Anderson, J.Feder. Universitetforlaget, Oslo, 1971, p.15.
- Gillis N.S. In: Dynamical Properties of Solids, ed. G.K.Horton, A.A.Maradudin. North-Holland, Amsterdam, 1975, v.2, p.107.
- 3. Moore M.A., Williams H. J.Phys. C., 1972, 5, p.3168.
- Krumhansl J.A., Schriefer J.R. Phys.Rev. B., 1975, 11, p.3535.
- 5. Стаменкович С. и др. ОИЯИ, Р17-9226, Дубна, 1975; Phys.Rev. B., 1976, 14, р.5080.
- 6. Аксенов В.Л. и др. ФТТ, 1976, 18, с.2921.
- 7. Beck H. J.Phys. C., 1976, 9, p.33.
- 8. Стаменкович С. и др. ОИЯИ, Р17-11856, Дубна, 1978; Fizika, 1978, v.10, suppl. 2, p.122.
- Вакс В.Г. Введение в микроскопическую теорию сегнетоэлектриков. "Наука", М., 1973.
- 10. Аксенов В.Л., Шрайбер Ю. Phys.Lett. A., 1978, 69, р.56.
- 11. Жидков Е.П., Макаренко Г.И., Пузынин И.В. ЭЧАЯ, 1973, т.4. в.1. с.127.
- 12. Пузынин И.В., Пузынина Т.П. КГКІ-74-34, Будапешт, 1974.

Рукопись поступила в издательский отдел 28 ноября 1979 года.

12