

(•rw) gogorrosog. ${ }^{\circ} \cdot \mathrm{H}$
GG6II - LId

 Рассматривается вывод обшего кинетического уравнения для элект-
рон-фононной системь. Развивается метод, основанный на использовании
Кинетическое уравнение динамнческой системы,
взаимодействующей с фононным полем
('யw) *H•H םogorvosog
0
-3
\vdots
\square
G
G

но обозначим нонным полем \sum. Обозначим через X_{s} совокупность аргументов

 Торнберга ${ }^{/ 3 /}$.
 цией, из него следует, например, точное уравнение Больцмана для

 с кинетическим уравнением, выведенны II. І. Боголюбовым /I/.

переменных с помощью упорядоченных Т-произведений. Т-произведений. В нем существенную роль играет исключение фононньх

обозначает оператор, действупиий как на перөменные X_{S}, так и

$\mathscr{L}\left(t, S, \sum\right)$

Здесь, разумеетая,
$H(\Sigma)=\sum_{(k)} t \omega_{k} b_{k}^{*} b_{k}$
сгужить и собственный гамильтониан фононного поля мутирует со всеми \boldsymbol{b}_{k} и \mathfrak{b}_{k}. Примером одератора типа (3) может ции, они коммутируют медду собой. В частности, $F(t, S)$ ком$G(t, \Sigma)$ деиствуют на различные переменние в волновой буни$\cdots b_{K} \cdot . b_{k}^{+}$. Существенно подчеркнуть, что поскольку $F(t, S)$, от X_{Σ}. таними одераторами являются, например, бозе-амплитуди будем обозначать операторы, действупиие на $2 / /$ как фуннции $\left(?^{\prime} 7\right) 0$ вупние на ψ тольно как бункции от X_{S}. Символами вида оператори, вообще могущие явно зависеть от времени t, дейст-

условимся обозначать сипволами вида $\left(5^{17}\right)=1$ (I) $\left.\cdot{ }^{3} X^{5} X\right) \pi=s h$

циями типа
стояния системы (S, Σ) можно характеризовать волновнми фуунк-- совокупность чисел заполнения поля \sum. Тогда динамические со-

проводятан по обычному квазидискретному спектру. симметричнне пууции волновото вектора \vec{K}. Суммирования по (K) $\vec{\imath}, \vec{p}$ - положение и имтлльс электрона, $\mathcal{Z}(\dot{k}), \omega_{k}$ - радиально11
 EHOdBrol हxdozil I

Примеры систем \mathcal{S} и Σ. щий член в (I,I) с суммой по (K) - гамильтониан взаимодействия Вдесь $\Gamma(t, S)$ - собственний гамильтониан системи S, следую-

- ehodurore tibdee-z

$\left(\varepsilon^{\prime} I\right)$ ($(x){ }^{\circ}=(x)>^{\infty}$ $(2 \cdot I) \quad(7) 30$ $H_{t}=(k)+H(\Sigma)$
$\varepsilon(t)$.
$\begin{aligned} \Gamma(t, s) & =\frac{p^{2}}{2 m}+e^{\varepsilon t} \\ C_{k}(t, s) & =\frac{e^{\varepsilon t}}{} \tau(k)\end{aligned}$

Поскольку фермионы вообще могут обладать спином，здесь $\begin{aligned} \Gamma(t, s) & =\sum_{(f)^{\varepsilon t}} \Lambda(f) a_{f}^{+} a_{f}, \\ C_{k}(t, s) & =\frac{e^{\varepsilon t}}{\sqrt{V}} L_{k} \sum_{(t)}^{+} a_{f+k}^{+} a_{f}, \\ C_{k}^{*}(t, s) & =\frac{e^{\varepsilon t}}{\sqrt{V}} L_{k}^{*} \sum_{(f)}^{+} a_{f}^{+} a_{f+k}=\frac{e^{\varepsilon t}}{\sqrt{V}} L_{k}^{*} \sum_{(t)} a_{f-k}^{+} a_{f}, \\ L_{k}, L_{k}^{*}-" C^{\prime} & - \text { величинн＂．}\end{aligned}$骨
買

Тогда вместо（ 1,2 ）будем иметь：
 Заметим，наконец，что в ряде случаев вместо вырахения $\frac{p}{2 m}$ $f(p) l$

$$
(d) f
$$

$$
\begin{aligned}
& \left(L^{\prime} I\right) \\
& \left(9^{\prime} I\right)
\end{aligned}
$$

（ s ） \int wodowbdano вде его с динамической системой S ，характеризуемой статистичесим статистического равновесия й в эточ момент＂вклічено＂взаимодейст－
 Как видно，принятое начальное условие соответствует тому положении，

$$
\frac{7 \ell}{7!}
$$

（G‘I）

 с виешними поляни．

$$
\left(25^{\prime} 7\right) H^{7} C-{ }^{7} C
$$

$$
{ }^{7} C\left(Z^{\prime} 5^{\prime} 7\right) H=
$$

 ＂あ＂o дут любне номбинации из ф̆ерми－амплитуд $. . a_{q} . ., q_{q} \ldots$ ，не со－

(II'I)	
(OI'I)	
	$\left(q^{\prime} 07\right) n_{+}$
(8'I)	$\text { '07'7) } \cap\left(T^{\prime} \mathrm{S}^{\prime}\right.$
\neq	
$T=(Z))^{(z)} d S \cdot(S)^{(s)} d S=7 \theta^{(3 / 5)}$	

${ }^{\prime}\left(s^{\prime} 7\right) \pm=$	$\partial\left(s^{\prime}\right)=1 \quad 2$
$7(3) H$ \%	(3) $H^{\frac{*}{4}}$ OH

 $\Gamma(\xi, S), C_{k}(\xi, S), C_{k}^{+}(\xi, S)$ определенное выражение данной ситуации временная переменная не только дает операторам чение во времени идет с ростом времени справа налево. Поәтому в Здесь T- обичное хронологжческое произведение, где упорядо$\widetilde{b_{k}}(\xi)=b_{x} e^{-i \omega_{k} \xi} ; \quad \tilde{b}_{k}^{+}(\xi)=b_{n} l$.

вдесь 07 Перейем к введению Т-произведениі.
из $(I, 20)^{*}$ следует:
$W\left(t, t_{0}\right)=T\left\{\exp \frac{1}{i \hbar} \int_{t_{0}}^{t}\left(\Gamma(\xi, S)+H_{\text {int }}(\xi, S, \Sigma)\right) d \xi\right\}$.

Поәтому ($I, 23$), (1,24) погут бить записаны в виде
 I
in
O

O-1

$\left(9 Z^{\prime} I\right)$: whinfrou

11
($0 \varepsilon^{\prime} \mathrm{I}$)

 вилимм, что
 Поскольку из ($I, 20$) следует
$\widetilde{b}_{k}^{+}(\xi)$.
 ваны временной переменной, входящей в (1,28) в 员орме $b_{k}(\xi)$, - ㅍ. результате можно положить $\Gamma(\xi, S)=\Gamma(S), C_{k}(\xi, S)=C_{k}(S)$
 InM /4/. \# печения правильного порядна следования одного оператора за друвремени ξ, необхолиио формально ввести такую зависимость для обес-

 (I, 3I)
$\left.=T\left\{G(\tau, s) e^{* \int_{t_{0}}}\right\}(\xi)\right\}$.
$\dot{W}\left(r, t_{0}\right) G(\tau, S) \dot{W}(t, r)=\stackrel{(a)}{T}\left\{e^{\frac{1}{t} \int_{0}} H^{(\xi) d \xi}\right\} G(\tau, S) T\left\{e^{*} \varepsilon^{H(\xi) d 今}\right\}=$
б
воспользоваться формулой (V) §З (см. стр. 35), положив в (IV')

причем

Тодда из ($I, 32$) няйдем
 $B(\xi)=\frac{i}{\hbar} H_{M M}^{(L)}(\xi) \quad, A(\xi)=-\frac{i}{\hbar} H_{t M}^{(R)}(\xi)$,

 ($\left.\left(s^{\prime}\right)^{x}\right)^{7} \frac{7}{7}=(s)^{x}$
($\varepsilon \varepsilon^{‘} \mathrm{I}$)
$\left(\nabla \varepsilon^{6} I\right)$

20

(0ヵ' I)	
(0才T)	
-тедї ежяви	

[^0]
$$
\left.\int_{(s)}^{s p} \rho(s)\right)_{s, s, s}^{T}\{\Delta(L, R) e
$$
\[

$$
\begin{aligned}
& =S_{(s, z)} \stackrel{C}{k}_{+}^{C_{k}}\left(\tau, S_{\tau}\right) F_{o, k}\left(t, S_{t}\right) D_{t} . \\
& \delta_{(s)} \rho(s) T_{s, s, k}^{\beta}\left\{\Delta (L , k) e ^ { \phi (t , t) } \left[C_{k}^{2}(t, s) P(s)\right.\right.
\end{aligned}
$$
\]

$$
0 \quad 11
$$

$$
-\delta_{\left(s, S_{\Sigma}\right.} F_{0, k}\left(t, S_{t}\right) C_{k}^{+}\left(\tau, S_{\tau}\right) Q_{t_{0}}
$$

шәв표 (IS'I) и

$$
z(k)=z^{*}(k)=z(-k)
$$

$$
\left.-f\left(S_{t}\right) C_{k}\left(t, S_{t}\right)\right) C_{-k}\left(t, S_{\tau}\right) D_{t o}
$$

Итак, возьмем случай, когда условия ($I, 47$), ($I, 48$) выполнены.
Заменим тогда в первой сумме по. кв правой части ($I, 46$) $\vec{k} \rightarrow-\vec{K}$.

условие ($I, 48$) выполннетая тривиально ввиду того, что квази-

а) Введем систему \sum с гамильтонианом:
$H\left(\sum\right)=\sum_{(k)} \hbar \omega_{k} b_{k}^{+} b_{k}$,
$\ldots b_{k}^{+} \ldots b_{k}^{+} \ldots$ - бозе-амплитуды.
пусть $A(\xi), B(\xi)$ - линейные формы из бозе-амплитуд.
отспда аледует, что коммутаторы
$[A(\xi) ; A(\tau)],[A(\xi), N(\tau)],[\mathcal{B}(\xi), \mathbb{N}(\tau)]$ - с-числа.
 средних от хронологических й антихронологических упорждоченннх с помощью T -произведений. Будут построены полезные формулы для

Исклшчение фононньх переменнвх с помощью T-произведений әинәнгоцоп! 'z § (Н. Н. Боголюбов. EI7-II822, Дубна, I978).

※

N

$B(\tau)=\sum_{k}\left\{D_{m_{k}}(T) b_{k} e^{-i \omega_{k} \tau}+\mathcal{M}_{H_{k}^{\prime}}^{\prime}(\tau) b_{n}^{*} e^{\left.i \omega_{k} \tau\right\}}\right.$.
 б) पуств (.II)
(2) $d \cdot(\xi) d \leq \sum_{2} \int_{2}^{7} 2 p \int_{7}^{07} 2$

что ${ }^{\left({ }_{\mathrm{a}}^{\mathrm{T}}\{ \right.}\{B(\tau) . B(\xi)\}, \mathrm{T}\{A(\tau) . A(\xi)\}$
a) Возможна и другал форма записи для $\not \subset$ (II). Нетрудно заметить,

- bitor 8L6I wdobuyo zi

3. Thornber K.K., Feynman R.P. Phys.Rev., 1970, Bl, p. 4099.

4. Bogolubov N.N. JINR, E17-11822, Dubna, 1978.

*T6*d $9 \angle 6$ ' ${ }^{\circ}$ ssexd unuetd •spftos uf

(A)

[^0]: $=\frac{\partial}{\partial t} S_{(S, z)} f\left(S_{t}\right) \cdot D_{t_{0}}+\frac{i}{\hbar_{t}} \operatorname{sp}_{(, \Sigma)}\left\{f\left(S_{t}\right) \Gamma\left(t, S_{t}\right)-\Gamma\left(t, s_{t}\right) f\left(S_{t}\right)\right\} D_{t_{0}}$

