

ОБЪЕДИНЕННЫЙ Институт Ядерных Исследований

Дубна

P16-98-59

Л.Н.Зайцев

ЗАВИСИМОСТЬ РАДИАЦИОННОГО РЕСУРСА ДЕТЕКТОРОВ ОТ РЕЖИМА РАБОТЫ КОЛЛАЙДЕРА

Направлено: the 17th International Conference on High Energy Accelerators, 7—12 September 1998, JINR, Dubna, Russia

Необходимость исследований облученных полимерных и полупроводниковых материалов вызвана созданием для LHC ЦЕРН крупных установок, доступ к которым практически закрыт на весь срок службы порядка 5—10 лет. В этих установках наибольшие радиационные нагрузки приходятся на области вершинных и трековых детекторов, передних адронных и электромагнитных калориметров. При максимальной светимости 10^{34} см⁻² · c⁻¹ они могут достигать 50 + 100 кГр в год.

Априори очевидно, что сцинтилляторы и спектросмещающие волокна (WLS) не могут выдержать таких нагрузок при жестких требованиях светопотерь ~10%. Поэтому задачи, поставленные в [1], оказались не реализованными. Все тесты для 13 лучших сцинтилляторов [2], показанные на рис.1, проведены ускоренно, т.е. при очень больших мощностях доз D (Гр · ч⁻¹). Провести тесты в области нагрузок LHC (рис.1) и повысить на 3 порядка предельную дозу $D_{\rm lim}$ (ξ) — невозможно. Большие затруднения возникают также и при использовании полупроводниковых детекторов вблизи области взаимодействия пучков.

Поэтому в последнее время развиваются два новых альтернативных направления:

a) радиационные исследования жидких сцинтилляторов (ж.с.) в капиллярных волокнах с периодическим обновлением ж.с. [2,3];

б) изучение радиорезистентности твердых сцинтилляторов (т.с.) с новыми добавками, которые способствуют быстрому и полному (на ~100%) спонтанному восстановлению [4,5]. Оба направления, в принципе, могут существенно увеличить ресурс, но требуются поисковые работы не менее трудные, чем в [1].

Ресурс непрерывного облучения, определяющий длительность сеанса: $t_r = k_3(D_{\lim}/D)$, где k_3 — коэффициент неопределенности (запаса). Ресурс облучения с перерывами, определяющий срок службы:

$$t_R = f(D_{\lim}, \dot{D}, T, \tau, \delta, \xi ...),$$

где т, δ соответственно время и степень восстановления; T — температура; ξ — определяющий параметр (световыход — L; длина ослабления — l; оптическая плотность — d; число фотоэлектронов и т.п.).

В настоящей работе в соответствии с методологией [6] проводились наблюдения за фоторадиационным старением т.с. в течение двух лет. Образцы

Рис.1. Зависимость предельной дозы от радиационной нагрузки лучших сцинтилляторов (мелкие точки [2]) и образцы ПС1 (см. текст):

О — наши измерения; ● — ZDC (реальный калориметр [5]); + --расчетные значения на основе экспериментальных данных)

т.с. диаметром 25 мм и толщиной 2,5 мм вырезались из пластин т.с. размером 150х150 мм². Повышенное содержание добавок: 3% pTP + 0,04% POPOP обеспечивало минимальное временное разрешение [7] и способствовало защите от деградации матрицы [8]. В некоторые пластины вводилась фотостабилизирующая и антиокислительная добавка типа ССВ [9]. Она практически не изменяла первоначальные характеристики т.с. Все пластины изготавливались методом литья под давлением из гранулированного полистирола марки ПСМ-115.

Источник ¹³⁷Cs низкой активности помещался в центре между образцами ПС1 (без добавки ССВ) и ПС2 (с добавкой 1% ССВ), как показано на рис.1. Между образцами находились два цветовых пленочных дозиметра: ЦДП-4-1 толщиной 150 мкм, плотностью 1,2 г·см⁻²; ЦДП-Ф-2 толщиной 75 мкм, плотностью 1,35 г·см⁻². Первый дозиметр работает в диапазоне доз 10 + 2·10² Гр,

второй — в диапазоне доз $10^3 \div 5 \cdot 10^5$ Гр. Дозиметры были тщательно отградуированы на α -, β - и γ -источниках, а также в смешанном поле на ускорителе, так как раньше использовались в эксперименте WA-98 (ЦЕРН) при 158 А-ГэВ (Pb—Pb) в калориметре ZDC [10] (см. рис.1). Было рассчитано распределение дозы в образцах по спектрам всех частиц, испушенных ¹³⁷Cs (табл.1). В результате получили: $D_{max} = 1,2 \div 0,14$ Гр·ч⁻¹ в т.с., что на 20% ниже чем в дозиметрах.

Таблица	1.	Частнцы,	испущенные	¹⁵⁷ Cs
---------	----	----------	------------	-------------------

Частица	Энерги	я, МэВ	_	%%	
_	первичн.	вторичн.			
β	1,174	_		5,4	
β	0,512			94.6	
			Итого:	100%	
Конверс.	·····	0,624		7.80	
β	_	0,656		4,37	9.5
		0,661		0.37	
γ	—	0,662		84,1	

Предполагая быстрое восстановление образцов после облучения, были организованы экспрессные измерения. Низкая активность источника позволяла его снимать с образцов вручную. Использовались два спектрофотометра СФ-26 — для измерения $d(\lambda)$ -дозиметров и СФ-20 с двойным монохроматором для измерения спектров поглощения и $d(\lambda)$ -образцов. Контейнер с облучаемыми образцами находился рядом со спектрофотометрами. В контейнере поддерживалась заданная температура. Восстановление всегда происходило при комнатной температуре (298 К). После каждого шикла облучения дозиметры ЦДП заменялись новыми.

Таким образом, измерялась только одна величина $d(\lambda)$. Удобство использования величины оптической плотности — очевидно. Она количественно характеризует свет, поглощенный образцом, вне зависимости от того, по каким каналам идет диссипация возбуждения. Эффект, наблюдаемый в изменении $d(\lambda)$ после облучения, должен ярче проявиться в характере эмиссионных спектров $E(\lambda)$ [11]. Погрешность измерения оптической плотности была менее 0,2%.

1

На рис.2 показан эмиссионный спектр (1), измеренный по методике [8] в специальном (5 мкм) образце состава ПС2. Для возбуждения флуоресценции

Рис.2. Спектры флуоресценции (1, 1') и пропускания (2, 2'), соответственно, до и после облучения дозой 2,4 кГр при T = 328 К в «терминах оптической плотности» для образца ПС2; после восстановления спектр совпадает с (1)

использовалась ртутная лампа. Вероятность поглощения излучения первой добавки (pTP) второй добавкой (POPOP) мала в том случае, если толщина образца составляет несколько мкм [12,13]. При экспрессных измерениях $d(\lambda_{\max}) \rightarrow (a+b)$, где $\lambda_{\max} = 425$ нм, не разделяются эффекты испускания и пропускания света, но при этом возможно проводить относительные сравнения. При малых дозах (до 4 кГр) сдвига λ_{\max} , как правило, не происходит, а изменяется только величина $d(\lambda_{\max})$, причем a >> b при T = 298 K.

На рис.3 и в табл.2 представлены результаты длительных экспериментальных наблюдений. Видно, что стандартный образец ПС1 хорошо восстанавливается при 298 К (1-й цикл), но сильно деградирует с увеличением *T*, несмотря на существенное уменьшение дозы (II—IV циклы). Образец ПС2 с антиоксидантом ССВ, как и ожидалось, значительно полнее и быстрее восстанавливается. Причем стабильность сохраняется после 3-разового повышения температуры. Этот эффект объясняется преобладанием в ПС2 обратимых процессов. Образец ПС1 после V цикла был заменен новым, чтобы в последующих циклах определить величины т и δ . Облучение в настоящее время продолжается. Предполагается еще 8—10 циклов, но только при 298 К.

5

Температурная зависимость d/d_0 в трех циклах была необходима, поскольку только таким способом можно определить $D_{\rm lim}(\dot{D})$ при $10^{-4} \div 10^{-2}$. Ясно, что для прямых измерений потребовалось бы 10^6 часов на один цикл.

	137	-1.	
ToSauna 2 Hanametris obtivite	иид ¹²⁷ Се (Д = 1.2. Гі	п∙ч)и восстаної	вления образцов полиса

№№ циклов	t _{обл} , ч	<i>T</i> , K	D, кГр	ξ [*] , %	т, ч	δ, %
I	3,7· 10 ³	298	4,4	91/94	24/6	100/104
11	$2,0.10^3$	328	2,4	86/90	32/10	98/100
ш	0,7·10 ³	348	0,84	81/88	40/16	95/99,6
ı٧	9,4·10 ³	378	0,48	77/85	49/20	89/99,4
v	3,5·10 ³	298	4,2	82/81	52/8	88/99,5
vi	3,3 10 ³	298	4,0	93**/92	20**/7	100**/99,3
VII	3,0 · 10 ³	298	3,6	92**/92	22**/7	100**/99,3

* $\xi = d(\lambda) / d_0(\lambda)$; при $\lambda = 425$ нм

**Новый, необлученный образец ПС1

По методике, описанной в [6], вычислялся коэффициент смещения

$$\dot{a} = \exp\left[E/R(T_{a}^{-1} - T^{-1})\right],$$
(1)

٤

4

5

где R — газовая постоянная; T_3 — температура эксплуатации (298 K); T — температура облучения; E — энергия активации фоторадиационного процесса: $E = E_1 + E_2$.

Энергия E₁ при малых дозах облучения обычно близка к энергии активации продолжения цепи превращений макрорадикалов [9]. Энергия, вносимая активными радикалами в фоторадиационные процессы за счет поглощения видимого света, равна

$$E_2 = \Im(G \cdot D \cdot \tau_R) \times I \varepsilon, \tag{2}$$

где э — коэффициент экстинции; G — радиационно-химический выход радикалов; τ_R — время жизни радикалов; I — интенсивность света; ε — средняя энергия фотонов; x — толщина образца. Результаты «D-t-T» — суперпозиции показаны на рис.1. Впервые спрогнозированы величины D_{\lim} при очень низких D, характерных для LHC. При $D = 10^5$ Гр ч⁻¹ (рис.1) первая экспериментальная точка получена в 1986 г. на ЛУЭ (г.Харьков) при $E_{_{37}} = 1,2$ ГэВ и флюенсе 10^{11} эл см⁻² с⁻¹. Время облучения ~10 ч. Вторая точка при $D = 10^3$ Гр ч⁻¹ измерена в 1992 г. в ОИЯИ на ⁶⁰Со. Следует заметить, что эти образцы имели размеры 150х150 мм² и несколько отличались по составу от ПС1, хотя изготавливались по одинаковой технологии (добавки 1,5% рТР + 0,03% РОРОР + 1% (антирады)). Для ориентировочных оценок в табл.3 даны коэффициенты k_3 , входящие в формулу ресурса непрерывного облучения. Рекомендуется их применять для всех типов т.с. и WLS, кроме ж.с.

Таблица 3. Ориентировочные коэффициенты k, для сцинтилляторов

Ď, Гр∙ч ^{−1}	104	103	10 ²	101	100	10-1	10 ⁻²	10-3	10-4
<i>k</i> ,	1,05	1,02	1	0,15	0,07	0.02	0,006	0.001	0.0007

Жидкие сцинтилляторы должны быть исследованы в аналогичных циклических условиях. Известно, что контакт ж.с. с воздухом даже при больших *D* приводил к значительной деградации люминесцентных и оптических характеристик, которые не восстанавливаются даже через 6 месяцев [2].

В заключение следует отметить, что уменьшение времени полного восстановления т.с. и WLS с взаимоувязкой сеансов облучения и перерывов — наиболее эффективный путь увеличения ресурса t_R -детекторов. Что касается ж.с. в капиллярах, то они, по-видимому, могут работать только в вакууме или нейтральной среде [2,3], что существенно усложняет конструкцию детекторов.

На срок службы в обоих случаях влияет режим работы коллайдера: длительность и частота перерывов; функциональная зависимость светимости от времени; время закачки и циркуляции пучков. Конструктивные особенности коллайдера могут также влиять на величины радиационных нагрузок: расположение скреперов и коллиматоров вблизи детектора; размеры и конфигурацию вакуумной камеры на участках внутри установки и др. Эти вопросы определят стратегию будущей работы коллайдера и установок.

Автор считает своим долгом поблагодарить А.И.Малахова, А.Д.Коваленко, Ю.С.Анисимова, П.И.Зарубина — за поддержку работы, А.А.Астанова, И.А.Сергеева, В.А.Краснова, С.Л.Зайцева, И.В.Немченка, А.В.Белоусова за большую помощь при измерениях и обработке экспериментальных результатов, а также З.И.Санько — за оформление работы.

ЛИТЕРАТУРА

- 1. Бритвич Г.И., Васильченко В.Г., Лапшин В.Г. ПТЭ, 1994, № 1, с.75.
- 2. Васильченко В.Г. и др. ПТЭ, 1996, № 3, с.58.
- 3. Васильченко В.Г. и др. ПТЭ, 1997, № 2, с.3.
- 4. Зайцев Л.Н. Новости ОИЯИ, № 4, с.25.
- 5. Astapov A.A., Zaitsev L.N. JINR Rapid Commun., No.5[79]-96, p.35.
- 6.Зайцев Л.Н. ОИЯИ Р14-95-114, Дубна, 1995.
- 7. Афанасьев С.В. и др. ОИЯИ Краткие сообщения, 1997, № 7[81]-97, с.45.
- 8. Шафранов М.Д. ОИЯИ Д13-97-120, Дубна, 1997.
- Радиационная стойкость органических материалов. Справочник (под редакцией В.К.Милинчука). М.: Энергоатомиздат, 1986.
- 10. Astapov A.A., et al. JINR Rapid Commun., No.3[77], p.47.
- 11.Дацко В.С. ПТЭ, 1996, № 3, с.43.
- 12. Матвеева Е.Н. и др. ПТЭ, 1970, № 65, с.76.
- Жильцова Л.Я. и др. Журнал прикладной спектроскопии, 1971, т.ХV, № 12, с.255.