ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3-177

18/11-25 P16 - 8871

Л.Н.Зайцев

3028/2-75

ИНЖЕНЕРНЫЙ СПОСОБ РАСЧЕТА ЗАЩИТЫ ПРОТОННЫХ И ЭЛЕКТРОННЫХ УСКОРИТЕЛЕЙ ВЫСОКИХ ЭНЕРГИЙ

P16 - 8871

Л.Н.Зайцев*

*

ИНЖЕНЕРНЫЙ СПОСОБ РАСЧЕТА ЗАЩИТЫ ПРОТОННЫХ И ЭЛЕКТРОННЫХ УСКОРИТЕЛЕЙ ВЫСОКИХ ЭНЕРГИЙ

Направлено в сб. "Материалы и конструкции защит ядерных установок"

Московский инженерно-физический институт

Современный ускоритель частиц представляет собой сложный комплекс физической аппаратуры, оборудования и защиты. При разработке инженерного способа расчёта необходимо прежде всего внести систематизацию в геометрию "источник-защита". На рис. La показана типичная для синхротронов геометрия источника первичных частиц (потерь) - S (E'_0 , Z), где E'_0 - переменная энергия^{/1}; Z -текущая координата в направлении движения пучка.

Разделим криволинейный источник на 2 п участков по Ψ_0 и будем считать, что на участке ΔZ_i -равномернораспределённые потери, распространяющиеся линейно к $\pm \infty$. Средняя величина потерь в пределах участка $L_i \simeq SE'_0$, ГъВ на см в сек, где S число первичных частиц на см в сек. Аналогично можно разделить линейный источник по тракту выведенного или вторичных пучков.

В результате взаимодействия первичных частиц с ядрами мишеней, конструкционных материалов и защиты возникают источники вторичных частиц, поэтому кольцо и тракты пучков заключены в защиту, как показано, например, на рис. I б, в. Любую реальную защиту можно приближённо представить суперпозицией элементов цилиндрических слоёв (рис. I г), разделив сечение защиты на каждом ΔZ_i на 2 m участков по Ψ /2/.

^{*} Разделять на чётное число участков удобно (см. /2/, но не обязательно.

кольца и тракте пример заидднидии б) пример Геометрия "источник-зацита" пучка на участки ДЗ: щиты кольца (разрез) (план) а) схема разделения 3 8. LUNTH Рис. I

ческий элемент защиты

JKBWEA

тельное распределение потерь;

распределение потерь, лентное действительному

2

Теперь рассмотрим основную физическую гипотезу, заложенную в модель расчёта. Будем считать, что форма спектра нейтронов за защитой, состоящей из цилиндрических слоёв, от анизотропного источника вторичных адронов с распределением $d^2N/dE dQ$ (рис.2а)эквивалентна форме спектра нейтронов за плоской защитой от мононаправленного источника адронов со спектром dN/dE при $\theta \sim \Im/2$ (рис.20).

Тогла можно решить уравнение переноса адронов в одномерной геометрии и определить ослабление мощности дозы D от 🗴 , причём вычисления надо выполнить только один раз: для одного элемента защиты (при разных x) и для одного спектра dN/dE , поскольку при $\theta \sim \pi/2$ он слабо зависит от $E_0^{1/3/}$. Результаты, полученные для одного элемента, достаточны, чтобы рассчитать боковур (верхнор) защиту синхротронов, которая обычно составляет более 90% от общего объёма защиты ускорителей (кроме ловушек).

Впервые эта идея была высказана К.О'Брайном'4', который решил уравнение переноса нейтронов в Р. -приближении и получил:

> E = 500 MaB $D(x) = 2\pi \alpha \int \kappa(E) f(E, x, \mu) dE,$ (!)

где M -косинус угла в нормали относительно оси пучка; $f(E, x, \mu)$ - число нейтронов за плоской защитой толщиной 🕱 в направлении на единицу энергии на стерадиан в секунду; К (Е) - функ-M ция перевода плотности потока нейтронов в мощность эквивалентной дозы. На рис. З приведены зависимости D (x) для железа и бетонов (грунта) с различным содержанием воды. Для гетерогенной защиты из железа + бетон (не менее 50 см) можно пользоваться кривыми для бетонов.

Однако эти результати были применены только к сплошной цилиндрической защите с постоянным радиусом Q > 2 м и равномернорастределённым потерям по Z в диапазоне энергий от 0,8 до 500 ГэВ^{/5/}. При неравномерных потерях (рис.2в) возможно искажение спектра в точке А за счёт "подпитки" высокоэнергетическими нейтронами с соседних участков источника. По этой причине, по-видимому, считали задачи (рис.2а, б) не эхвивалентными.

Мы провели серию проверочных расчётов защиты при различных параметрах E_0 , L_i , ΔZ , ∞ , R_0 , α и др. В расчётах использовался как метод Монте-Карло^{/6/}, так и метод "лучевого анализа"^{7,8/}. Распределения $d^2N / dEd\Omega$ при больших углах Θ , закладываемые в расчёты из разных работ^{/9,10,11/}, предварительно сравнивались между собой. Путём анализа полученных результатов и сравнения их с данными экспериментов^{/12-15/} удалось подтвердить справедливость указанной выше гипотезы для более общего случая.

Во-первых, ограничения в способе расчёта из-за кривизны источника наступают при радиусах R_o < R_o^{min}, указанных в табл. I.

Ε ΄ ,	Гэв	Ι	IO	50	100	300	600	I000
R ₀ ^{min} ,	м	IO	30	70	90	I20	I 70	200

Таблина І

Во-вторых, анизотропия источника не сильно сказывается на абсолютном значении потока в точке A (рис.2) при перепадах в потерях: на предыдущих участках не более, чем в 5 раз, а на последующих – не более, чем в IO раз. При любых E'_0 длина участка ΔZ_i не должна быть меньше 2 м.

6

7

На рис.4, для примера, представлены результаты одного из проверочных расчётов для наихудшего расположения элементов защиты (рис. 2а) и максимально возможных в практике перепадах потерь/I4-I6/ между участками (рис. 2в).

В третьих, ход кривых (рис.3) проверялся сравнением с данными работ^{/18,19} и с вычислениями их по программе HAMLET^{/20/}. Было получено хорошее согласие, однако наблюдалось некоторое различие в абсолютных значениях **D** (\mathfrak{x}) в зависимости от \mathbf{E}'_{0} . Этот недостаток молно устранить введением в расчёт коэффициента $\mathfrak{E}_{p}(\mathbf{E}'_{0})$ (табл.2), который одновременно учитывает некоторое изменение спектра **dN**/**dE** при $\Theta \sim \mathfrak{K}/2$ от \mathbf{E}'_{0} , вклад в развитие межядерного каскада протонов и \mathfrak{N} -мезонов, вклад в дозу за защитой заряженных частиц и **š**-квантов – т.е. факторы, неучтённые в работе^{/4/}.

Таблица 2

Значение $\mathbf{E}_{\mathbf{p}}(\mathbf{E}_{0}')$ для протонных ускорителей

Е _о , ГэВ	I+5	5 + I0	I0+30	30 + I00	100+300	300+600	600+2000
$\epsilon_{p}(E'_{0})^{*}$	1.2	I.0	0.6	0.4	0.2	0.14	0.08
*) E _P (E ₀ ') =	<u>D (</u> D (x) - k	.0'Brien			

Не вдаваясь больше в детали физических рассуждений (это является предметом отдельной статьи), кратко изложим суть метода расчёта. Мощность эквивалентной дозы за элементом защиты толщиной **С** и с радиусом **С** определяется следующим выражением^{/5/}:

$$\widetilde{D}(\mathbf{x}, \mathbf{a}) = \frac{v_{\star}}{2\pi \mathbf{a}} \cdot \mathbf{S} \cdot \mathbf{D}(\mathbf{x}), [\overline{\mathbf{d}} \mathbf{s} \mathbf{p}/\mathbf{c} \mathbf{e} \mathbf{k}]$$
⁽²⁾

где S – число потерянных частиц на участке ΔZ_i , см⁻¹. сек⁻¹;

У_н - числс неупругих взаимодействий, отнесённых к элементу защиты с радиусом **Q**, см.

Число неупругих взаимодействий в железе можно определить $^{/5/}$: а) для протонных ускорителей $V_{\star} \simeq 2 E'_{0}$; (3) б) для электронных ускорителей $V_{\star} \simeq 2,34 \cdot 10^{-3} E'_{0} \log(5E'_{0}),(4)$ Выполнение условия: \tilde{D} (x, a) = D (допустимая) означает решение поставленной задачи.

Приведём формулы, удобные для практических расчётов зациты. Подставив (3) и (4) в выражение (2) и сделав простые преобразования с учётом других размерностей, запишем:

а) для протонных ускорителей -

$$D(x) = 7 \times 10^{-7} \frac{\alpha \cdot \varepsilon_{P} \cdot D_{\partial on}}{L_o} [M \delta_{P}/(\Gamma_{\partial B} \cdot c_{M}^{-2})]; \qquad (5)$$

б) для электронных ускорителей -

$$D(x) = 4 \times 10^{-4} \frac{\alpha \cdot \epsilon_{\beta} \cdot D_{aon}}{L_o \log (5E'_o)} [M\bar{d}_{3p}/(\Gamma_{3B} \cdot c_{M}^{-2})] .$$
(6)

В формулах (5) и (6): потери $L_0 = I/2$ ($L_{i+} L_{i-1}$), в соответствии с рис.4; D_{don} - предельно допустимая мощность дозы на наружной поверхности данного элемента защиты, моэр/час, \mathcal{E}_{β} при оценках можно принять равным I.

По значениям **D** (**x**) с помощью графиков, приведённых на рис.3, определяется толщина защиты **X** для каждого элемента.

В таблице 3 результаты расчёта настоящим способом сравниваются с результатами расчёта другими методами $^{/4,17,19/}$, причём, по $^{/19/}$ расчёты были выполнены двояко: а) по лучам в зависимости от угла Θ (рис.2) для толстой медной мишени (рис.5); б) по заданным потерям Loi в районе мишени. Во всех случаях согласие вполне удовлетворительное. Для оценки дозного поля вокруг ускорителя надо знать выход нейтронов с поверхности ΔS элемента защиты: $q = \Im \Delta S$, где $\Im - ток$ нейтронов через поверхность, зависящий от их углового распределения. В работе^{/3/} обсуждается подход к определению углового распределения поверхностных и эквивалентных им точечных источников нейтронов. Делается вывод, что вид углового распределения нейтронов на поверхности типичных защит не существенно влияет на величины D_{ij} (см. рис.Ia).

Будем считать, что каждый участок ΔZ_i , состоящий из 2 m элементов, есть точечный изотропный источник нейтронов со спектром f(E, x, H).

Тогда выход равен:

$$\mathbf{q}_{i} \simeq \mathbf{4}_{5} \sum_{j=1}^{2^{2}} \mathbf{D}_{\text{don}}^{ij} \Delta \mathbf{S}_{ij}, \text{Heump.cek}^{-1}$$
(7)

где коэффициент 4,5 = (3,5 x 0,5)/0,4 учитывает полное число нейтронов (3,5) в спектре f (Е, \mathfrak{x} , \mathcal{M}), вид источника (0,5) и дозовый эквивалент (0,4), (мбэр.час^{-I})/нейтр.см⁻²сек^{/I7,I9/}; $\Delta S = \Delta Z \Delta \Psi$ ($\Omega + \mathfrak{X}$) - площадь наружной поверхности защиты, см² ($\Delta \Psi$ - в радианах, \mathfrak{X} - в см.). Поскольку после компоновки защиты и оборудования D_{dOI}^{\dagger} обычно не соответствует дозе $\widetilde{D}_{ij}(\mathfrak{X}, \Omega)$, последныю целесообразно вычислять из формул (5), (6) по действительным значениям и подставлять в (7) вместо D_{non}^{\dagger} .

Мощность дозы в любой точке поля определяется из выражения:

$$D_{ij} = \sum_{i=1}^{j=2n} q_i D(r_i), [M\delta_{3p}/vac]$$
(8)

где D (γ_i), (мбэр/час⁻¹) / (нейтр.сек⁻¹), вычислена методом Монте-Карло^{/2I/} с учётом границы раздела "земля-воздух" в предположении постоянного спектра нейтронов f (E, χ = const.) для лобого элемента защиты (рис.6).

<u> Υ</u> ς κοράτε η Έ		Исходные л	анные				Результаты	расчёта	α, r/cm ²
lichep yyacrka	10 14		Loi,	ά,	, O	Daon	По данной работе	Tto pace ab	там других торов
(cond)	Гэв	CM.CeK.	CM.CCK.	C.M.	rpan	4 <u>6</u> C			
A=4:								8 ^{/19/}	0/12/
177 P	F-4	1.0.10 ⁷	6,0.10 ⁶	200	130	6 ° 0	ROC	046	820
45	TO Xe	1,6.10 ⁸	4,9.I0 ⁷	TO Xe	011	0,6	1080	0601	1040
н	=	I,6.I0 ⁹	8,8.10 ^R	F	70	0,2	1500	I460	I 500
Everep 2	£	I.4.I0 ⁸	8,7.10 ⁸	F	01	0,6	1380	1150	1 400
(nnoekr)3	:	8,3.IO ⁷	1,1.10 ⁸	F	20	2,5	1000	790	1000
	E	I.0.I0 ⁷	4,5.I0 ⁷	F	10	4 , 2	BED	ł	880
ŝ	z	6,2.I0 ⁶	8,0.10 ⁶	ŧ	0	5,7	650	1	640
64-9	F	2,2.IO ⁶	i	200	96	5,7	500	ı	480
	ער גער ג	701.8 T		000	G	α. Ο	1000	1085* 1085*	171 1085
נית מו		9.0.IO	•		TO Xe	9 9	1150	I 240	1240
	25,5	9,0.10 ⁸	ı	200	E	0,8	1420	I455	I470
НАЛ	200	9,2.I0 ⁸	ł	400	2	0,25	I 560	I 600	I 590
ЦЕРН (проект)	300	2,4.I0 ⁹	ł	580	E	0,8	I 560	I 585	I 570

ж -экспериментальная величина

Таблица 3

Цифрами обозначены номера участков $\Delta \vec{z}_i$ и $\Delta \phi_i$. • -точки, в которих принимался дсиустимый оквивалент Пример защиты бустера на I ГэВ. мощности дози Ś PMC.

нсй дозы от расстояния (изотроп-

ный источник)

ŗ ŝ

13

12

В случае разных спектров нейтронов за элементами защиты и более корректном учёте их углового распределения расчёт D_{ij} следует проводить методом^{/2/} по программе RAZGON для ЭВМ БЭСМ-6. <u>Пример расчёта</u>. Требуется определить защиту бустера на I Гэв с ралиусом $\overline{R}_0 = 14,3$ м, работающего в режиме медленного вывода пучка с эффективностью 90%. Внутренние размеры туннеля 4х4 м². Материал защиты бетон плотностью 2,35 г/см², с содержанием воды ~4% по весу. Остальные исходные данные приведены в табл.3.

I. Проверяем по табл. I условие $\bar{R}_{o} > R_{o}^{min}$ и делим кольцо на 45 участков ($\Delta Z_{i} = 2$ м), а сечение туннеля-на 5 секторов ($\Delta \Psi \simeq 0.4$ радиан), как показано на рис.5.

2. Пересчитываем заданные квазипотери Li вблизи мищени, например, для участка i = I:

$$\begin{split} \mathbf{L}_{0,1} &= \frac{I}{2} \quad (\mathbf{L}_{1} + \mathbf{L}_{45}) = \frac{I}{2} \quad (\mathbf{I}, 6 \cdot 10^{9} + \mathbf{I}, 6 \cdot 10^{8}) = 8, 8 \cdot 10^{8} \Gamma_{3B} / \mathrm{cm} \ \mathrm{cek.} \\ 3. \ \mathbf{B}_{H} \mathsf{uucnsem} \ \mathbf{D}_{1} \ (\mathbf{x}) \ \mathrm{nu} \ \phi_{0} \mathsf{pmyne} \ (5) \ \mathrm{npw} \ \mathbf{A}_{1,1} = 200 \ \mathrm{cm} \ , \\ \mathbf{D}_{don}^{1,1} &= 0, 2 \ \mathrm{mdyp} / \mathrm{vac} \ (\mathrm{rad} \pi.3) \ \mathrm{u} \ \mathbf{E}_{p} = \mathbf{I}, 2 \ (\mathrm{rad} \pi.2): \\ \mathbf{D}_{4} (\mathbf{x}) = 7 \mathrm{xI} 0^{-7} \ \frac{\mathbf{a}_{1} \cdot \mathbf{E}_{P} \cdot \mathbf{D}_{don}^{4}}{\mathbf{L}_{0,1}} = 7 \mathrm{xI} 0^{-7} \ \frac{200 \cdot \mathbf{I}, 2 \cdot 0, 2}{8, 8 \cdot 10^{8}} \simeq 4 \cdot 10^{-14} \\ 4. \ \mathrm{Onpedensem} \ \mathrm{no} \ \mathrm{rpaduky} \ (\mathrm{kpubas} - 4\% \ \mathrm{H}_{2}0, \ \mathrm{puc}.3) \ \mathrm{npu} \\ \mathbf{D}_{4} (\mathbf{x}) = 4 \cdot 10^{-14} \ \mathrm{shavehue} \ \mathbf{x}_{4} = 1500 \ \mathrm{r/cm}^{2}, \ \mathrm{vtc} \ \mathrm{cotrbetctbyet} \end{split}$$

толщине защиты 1500:2,35 = 640 см (6,4 м).

В заключение автор выражает благодарность В.В.Фролову за поддержку настоящей работы, В.Б.Хвостову и Н.В.Мохову за выполнение

некоторых расчётов, а также Б.С.Сычёву за полезные консультации.

J. Л.Н.Зайцев и др. СИЯМ, PI6-6059, Дубна, 1971 2. Л.Н.Зайцев и др. СМЯМ. PI6-6185. Дубна, 1972 Э. Л.Н.Зайцев, В.Б.Хвостов. Сб. "Вопросы дозиметрии и защиты от излучений". Вып. 14.М., Атомиздат, 1975, стр. 48 4. K.O'Brien and I.E. McLaughlin. Nucl.Instr. & Meth.60, I29(1968) 5. K.O'Brien. Rep.HASL-203, New York, 1968 6. В.А.Григорьев и др. Сб. "Вопросы дозиметрии и защиты от излучений", Вып. 13.М., Атомиздат 1973, стр.38 7. Б.С.Сычёв. Атомная энергия, 32, 155 (1972) 8. Б.С.Сычёв. Сб. "Вопросы дозиметрии и защиты от излучений", Вып.14, М., Атомиздат, 1975, стр.41 9. J.Ranft, Rep. CERN-LABII-RA/73-2, 1973 10. А.Я.Серов, Б.С.Сычёв. "Труды Радиотехнического института AH CCCP, #14, 1973, crp.173 II. Л. Р. Кимель, Н.В. Мохов. Сб. "Вопросы дозиметрии и защиты от излучений, Вып. 14, М. Атомиздат, 1975, стр.14 12. L.Hoffman and A.H.Sillivan. Nucl.Instr.Meth. 32, 63 (1965) 13. W.R.Casey et.al, Nucl.Instr.Meth., 55, 253 (1967) I4. W.S.Gilbert et.al. Rep. UCRL-17941, 1968 15. Г.И. Бритвич и др. ИФВЭ, ОРЗ 72-47, Серпухов, 1972 I6. V.Ya.Gvozdev et.al. Particle Accelerators, 4, I29 (I973) I7. I.T.Routti and R.H.Thomas, Nucl.Instr.Meth., 76, I57 (1969) [8. R.G.Alsmiller et.al. Nucl.Instr.Meth., 72, 213 (1969) 19. Б.В.Манько, Б.С.Сычев. Труды Радиотехнического института AH CCCP, M9, 1971, ctp.117

20. Г.И.Бритвич и др. ИФВЭ ОРЗ 74-86, Серпухов, 1974 21. Л.Р.Кимель и др. ОИЯИ, PI6-6182, Дусна, 1972

> Рукопись поступила в издательский отдел 13 мая 1975 г.