83-190

Объединенный институт ядерных исследований дубна

3399/83

P16-83-190

1983

М.М.Комочков

ОЦЕНКА

1

РАДИАЦИОННОЙ ОБСТАНОВКИ И ЗАЩИТЫ ПРИ ВЗАИМОДЕЙСТВИИ РЕЛЯТИВИСТСКИХ ЯДЕР С ВЕЩЕСТВОМ

Направлено на XV Международный симпозиум "Физика радиационной защиты" /Дрезден, ГДР, 7-11 марта 1983 г./ В работе^{/1/} показана возможность оценки радиационной обстановки и защиты при взаимодействии релятивистских ядер с веществом с использованием накопленной информации о параметрах полей излучений, образующихся при взаимодействии протонов с ядрами. В настоящей работе проводится дальнейшее обоснование и совершенствование метода эквивалентных протонов^{/1/}, исходным уравнением для которого является

白细 医前侧下侧桡下 医口口病 网络白白白

2

44.

$$\xi_{\rm A} = {\rm N}\xi_{\rm D}, \qquad /1/$$

где ξ_A и ξ_p - значения параметра полей излучения /например, флюенс, доза/, образующихся при одном неупругом взаимодействии ядра-снаряда с ядром-мишенью, и одного неупругого взаимодействия протона с тем же ядром соответственно. Уточненная на настоящей стадии развития метода эквивалентных протонов формула для числа эквивалентных протонов /в телесном угле 4π / может быть представлена в виде

$$N = A_{c}^{1/4} + (A_{c} - 1)^{0.6} 0,078 [\ln A_{m} - 1,85], \qquad /2/$$

где A_c и A_m - атомные веса ядра-снаряда и ядра-мишени соответственно. Формула /2/ в предельном случае $A_c = 1$ дает ожидаемую величину N = 1, тогда как аналогичную формулу из работы /1/ нельзя было применить при A_c <4; кроме того, доступные нам экспериментальные результаты лучше описываются формулой /2/ настоящей работы. Результаты экспериментов /см., например, /2/ / свидетельствуют об отсутствии сколько-нибудь существенной зависимости N от энергии ядра-снаряда. При этом следует иметь в виде, что если параметр ξ_A определяется квазиупругим или каскадным процессами /флюенс, доза каскадных частиц/, то энергия ядра-снаряда на один нуклон, а если ξ_A определяется испарительным процессом /сечения образования остаточных ядер/, то энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия протонов при вычислении ξ_p принимается равной или близкой энергия нергии ядра-снаряда.

Зависимость N от угла наблюдения каскадных частиц, видимо, имеет место $^{/1/}$, однако данных и эксперимента, и расчета недостаточно для установления этой зависимости в явном виде.

Сравнение дифференциальных поперечных сечений образования нейтронов при взаимодействии неона с ядрами, рассчитанных с помощью /1/, с измеренными показывает/1/ удовлетворительное согласие в области энергий нейтронов Е ниже энергии на один нуклон налетающего ядра - снаряда E_0 и заметное занижение результатов расчета при $E > E_0$. Последнее не сказывается существенно на результатах оценки радиационной обстановки до защиты при расчете для углов θ более 30° к направлению ядер-снарядов, однако с увеличением толщины защиты недооценка величины флюенса нейтронов и дозы, особенно под малыми углами, становится весьма существенной, как это будет показано в дальнейшем.

С целью улучшения достоверности оценки радиационной обстановки по сравнению с^{/1/} до защиты под малыми углами, а за защитой во всем диапазоне углов θ в настоящей работе предлагается дифференциальные поперечные сечения образования нуклонов описать в следующей форме:

$$\frac{d^{2}\sigma_{\nu}A_{c} + A_{m}}{dE d\Omega} = N\sigma \frac{d^{2}\nu_{p} + A_{m}}{dE d\Omega} + N\sigma \frac{d^{2}\nu_{k}}{dE d\Omega}.$$
(3)

Здесь первый член суммы определяется по методу эквивалентных протонов в соответствии с /1/, а второй член представляет собой поправку, связанную с кумулятивным эффектом ^{/.3/}; σ - сечение не-упругого взаимодействия ядра-снаряда A_c с ядром-мишенью A_m ; $\nu_{A_c \rightarrow A_m}$, $\nu_{p \rightarrow A_m}$ - число нуклонов на одно неупругое взаимодействия ядра-снаряда A_c с ядром-мишенью A_m и протона с ядром-мишенью соответственно; ν_k - число нуклонов, связанных с кумулятивным эффектом, на один эквивалентный провзаимодействовавший протон ядра-снаряда с ядром-мишенью; Е - энергия нуклонов; Ω - телесный угол. Очевидно, что

$$A_{c} \rightarrow A_{m}^{=} N_{\nu_{p}} \rightarrow A_{m}^{+} N_{\nu_{k}}$$
 (4/

Дифференциальное распределение нуклонов по энергии и углу $\frac{d^2 \nu_{p \to A_m}}{dE \ d\Omega}$ определяется на основе результатов экспериментов или расчетов /например, /4-7/ /. Дифференциальное распределение $\frac{d^2 \nu_k}{dE \ d\Omega}$ представим в виде $[E'(\theta, F_0) - E]^2$

где $r^2(\theta, \mathbf{E}_0)$ – дисперсия энергетического распределения нуклонов, аппроксимированного гауссианом; θ – угол наблюдения нуклонов;

E' - энергия, соответствующая максимуму распределения $\frac{d^2 \nu_k}{dE dC}$

по энергии; E_0 – энергия ядра-снаряда на нуклон; c_1 , c_2 , c_3 , c_4 – константы этого распределения. Некоторым основанием для написания /5/ являются результаты измерений дифференциальных сечений

> Остериновани институ. Влерных воследования БЫБ иристоли с

3

образования легких фрагментов с энергиями порядка энергии на один нуклон налетающего ядра-снаряда и более /см., например, $^{/8/}$; нуклоны, образующиеся в результате ядро-ядерного взаимодействия и связанные с кумулятивным эффектом, можно рассматривать как частный случай наиболее легких фрагментов, энергетическое распределение которых близко к гауссиану. В основу определения параметров $E'(\theta, E_0)$ и $r(\theta, E_0)$, а также констант c_1 , c_2 , c_3 , c_4 положены результаты экспериментов $^{/9/}$ по исследованию дифференциальных распределений нейтронов с энергией $E_n \ge E_0$; нейтроны выбраны в данном случае как компонент, определяющий радиационную обстановку и защиту на ускорителях с энергиями частиц на нуклон порядка 1 ГэВ и ниже. Из условия согласия результатов расчета на основе /5/ с результатами эксперимента $^{/9/}$ при $E_n \ge E_0$ получили

$$E' = 50 + (E_0 - 50) \cos 0.9\theta$$
, M₂B,

 $\tau = \left(\frac{E_0}{337}\right)^m (50 + 40 \cos 0.83\theta), \text{ M3B},$ /7/

/6/

 $c_1 = 0, 1 \sqrt{2\pi} = 0,25$ частиц/ср, $c_2 = 20,4^\circ$, $c_3 = 10,4$, $c_4 = 7,87^\circ$. Величину m в /7/ определили из условия согласия зависимости диф-ференциального поперечного сечения образования протонов $B^{12}C + ^{12}C$ взаимодействии при энергии ^{12}C , равной 1,03 ГэВ, и угле наблюдения 32° от энергии протонов $E_p > 100$ МэВ, найденной в эксперименте/10/, с рассчитанной на основе /7/; m оказалась равной 0,5.

Рис.1 иллюстрирует качество воспроизведения результатов измерений дифференциальных поперечных сечений образования нейтро-

нов $\frac{d^2 \sigma \nu}{dE_n d\Omega}$ в соударениях Ne + C и Ne → Cu c помощью формул /3/,/5/, /6/ и /7/ при использовании данных расчета $\frac{d^2 \nu_{p} + A_m}{dE_n d\Omega}$ по методу,

описанному в работе $^{/5/}$. Из рис.1 видно, насколько существенна поправка N $_{\sigma} \frac{d^2 \nu_k}{dE \, d\Omega}$, обусловленная кумулятивным эффектом.

На рис.2 сравниваются результаты расчета дифференциальных поперечных сечений образования протонов в ^{12}C $_{+}$ ^{12}C $_{-}$ ^{12}C $_{-}$ ^{64}Cu соударениях согласно /3/, /5/, /6/ и /7/ с результатами эксперимента / 10/. При расчете согласно /3/ в качестве $\frac{d^2\nu_{p \to A_m}}{dE_p \, d\Omega}$ принимали $\frac{d^2\nu_{p \to A_m}}{dE_n \, d\Omega}$, а последнее вычисляли по методу, описанному в рабо-

те/5/. Это означает, что согласно предлагаемому методу описания дифференциальных сечений образования нуклонов в ядро-ядерных соударениях различие между вылетающими протонами и нейтронами не учитывается.

Описываемый здесь метод был применен для оценки радиационной обстановки до и после защиты, образующейся в результате бомбардировки толстой /3,2 г/см²/ железной мишени ядрами углерода с энергией 86 МэВ/нуклон; оценка была выполнена с целью сравнения с экспериментом/11/В эксперименте были, в частности, измерены с помощью углеродсодержащих детекторов зависимости потоков нейтронов с энергией более 20 МэВ в единицу телесного угла $d_{\gamma}/d\Omega$ от угла вылета θ и от толщины защиты из бетона **x** при $\theta=0$. Оценку $\frac{d_{\gamma}}{d\Omega}$ производили с помощью следующей формулы:

4

5

+ 0,25n J R N
$$\sigma_{3} \int \frac{d^{2} \nu_{p \rightarrow Fe}}{dE_{n} d\Omega} dE_{n} = \frac{d\gamma_{k}}{d\Omega} (\theta) + \frac{d\gamma_{p \rightarrow Fe}}{d\Omega} (\theta),$$
 /8/
E_n = 20 M3B

где п – число ядер в 1 г Fe; R – пробег /в г/см²/ ионов ¹²С в железе; J – поток ядер углерода, падающих на мишень; $\sigma_{,9}$ – эффективная величина поперечного сечения неупругого взаимодействия ядер углерода с ядрами железа в энергетическом интервале от кулоновского барьера до 86 МэВ/нуклон, принятая на основании работ^{/8,12}/ равной 2,3·10⁻²⁴ см²; эффективная энергия E₀, которой соответствует $\sigma_{,9}$, принята равной 70 МэВ/нуклон. При получении рабочей части формулы /8/, имея в виду /6/, использовали свойство

$$\frac{1}{\tau(\theta, E_0) \sqrt{2\pi}} \int_{n=20}^{\infty} \frac{\left[\frac{E'(\theta, E_0) - E\right]^2}{2\tau^2(\theta, E_0)}}{dE_{\infty}} \frac{dE_{\infty}}{\tau(\theta, E_0) \sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\left[\frac{E'(\theta, F_0) - E\right]^2}{2\tau^2(\theta, E_0)}}{dE_{\infty}} dE_{\infty} = 1.$$

Дифференциальное распределение нейтронов $\frac{d^{2}\nu_{p,+}F}{dE_{-}d\Omega}$ вычисляли

в соответствии с работой/5/. Результаты расчета $\frac{\mathrm{d}_{V}}{\mathrm{d}\Omega}(\theta)$ при J =

= 10¹¹ с⁻¹ сравниваются на рис.3 с результатами эксперимента; там же приведены результаты расчета^{/11/} по программе HIC-1, в ко-

Рис.2. Дифференциальные поперечные сечения образования d²...

протонов $\frac{d^2 \sigma \nu}{d E_p d \Omega}$ в зависимости от их энергии E_p и угла

вылета θ при бомбардировке тонких мишеней из углерода и меди ионами ¹²C с энергией 1,03 ГэВ: ···· – результаты эксперимента; — – результаты нашего расчета. торой используется метод Монте-Карло для вычисления спектров нейтронов. При сопоставлении данных, представленных на рисунке сплошной ($\frac{dy}{d\Omega}(\theta)$) и пунктирной ($\frac{dy_{p}+F}{d\Omega}(\theta)$) линиями, видно возрастание вклада ($\frac{dy}{d\Omega}(\theta)$) в поток нейтронов с энергиями $\geq E_0$. Результаты расчета по программе HIC-1 и нашего расчета хорошо согласуются с данными эксперимента /11/при $\theta > 30^\circ$, в то время как при $\theta \leq 30^\circ$ данные эксперимента существенно больше результатов расчета, что объясняется авторами работы/11/ вкладом в показания углеродсодержащего детектора заряженных фрагментов.

Рис.3. Зависимость потока нейтронов $\frac{d_{Y}}{d\Omega}(\theta)$ с энергией ≥ 20 МэВ от угла их вылета из толстой /3,2 г/см²/ железной мишени, бомбардируемой ядрами углерода с энергией 86 МэВ/нуклон при J =10¹¹c⁻¹.

На рис.4 сравниваются результаты расчета зависимости потока нейтронов с энергией более 20 МэВ $\frac{d\gamma}{d\Omega}(x)$ от толщины защиты из бетона с объемным весом 3,2 г/см³ с результатами эксперимента / 11/.Расчет потока нейтронов выполняли с помощью следующей формулы:

7

где $\lambda({\bf E}_n)$ – зависимость длины ослабления потока нейтронов от их энергии $^{/13/},\ \lambda({\bf E}_p)$ – зависимость длины ослабления потока нейтронов от энергии протонов, падающих на толстую мишень 13/. Второй

член суммы /9/ обозначен на рис.4 как $\frac{d\gamma_{p \to Fe}}{d\Omega}(\mathbf{x})$.

Результаты, представленные на рис.3 и 4, показывают, что предлагаемый метод оценки радиационной обстановки и защиты удовлетворительно описывает данные эксперимента^{/11/}.формула для расчета дозиметрических параметров поля излучения от толстой мишени /деталей ускорителя/ с учетом фрагментации ядер-снарядов дана в работе^{/1/}.

Помимо нейтронов и заряженных адронов радиационную обстановку определяет также наведенная радиоактивность деталей ускорителя, на которые попадает пучок ускоренных частиц. Уровни наведенной радиоактивности определяются прежде всего поперечными сечениями образования радиоактивных изотопов σ_A . Зависимости относительных величин сечения образования различных изотопов при взаимодействии ядер углерода и протонов с энергией 18,5 ГэВ с ядрами мишени от атомного веса мишеней представлены на рис.5. Расчет по методу эквивалентных протонов производился по формуле

$$\left(\frac{\sigma_{A}}{\sigma}\right)_{12_{C}}: \left(\frac{\sigma_{A}}{\sigma_{12_{C}}}\right)_{p} = \frac{N(\sigma_{A})_{p}}{\sigma_{p}}: \frac{(\sigma_{A})_{p}}{\sigma} = N \frac{\sigma_{p}}{\sigma_{12_{C}}}, \qquad /10/$$

8

Рис.5. Зависимость относительных величин сечения образования различных изотопов при взаимодействии ядер углерода и протонов с энергией 18,5 ГэВ с ядрами мишени от атомного веса мишени A_m • - эксперимент; - - - согласно факторизационной гипотезе; ---- расчет методом эквивалентных протонов.

где $(\sigma_A/\sigma)_{12_C}$ - отношение поперечного сечения образования изотопа с атомным весом А при взаимодействии ядра углерода с ядром мишени к поперечному сечению неупругого взаимодействия ядра углерода с ядром мишени; (σ_{I2_C}) : $(\sigma_A/\sigma)_p$ - аналогичное отношение в случае взаимодействия протона с тем же ядром мишени. Имея в виду, что поперечное сечение неупругого взаимодействия протонов с ядрами σ_p можно представить в виде / 14/

$$\sigma_{\rm p} = 32 A_{\rm m}^{3/4} \ 10^{-27}, \ cm^2, \ /11/$$

а поперечное сечение неупругого взаимодействия ядер углерода с ядрами мишени – в виде $^{/12/}$

получим

$$N \frac{\sigma_{\rm p}}{\sigma_{12}} = 0.46N \frac{A_{\rm m}^{3/4}}{(0.97 + A_{\rm m}^{1/3})^2}, \qquad (13)$$

где N вычисляется согласно /2/.

В заключение автор выражает благодарность Л.Г.Бескровной и А.В.Солодилову за помощь при выполнении расчетов, А.Р.Крылову за полезную дискуссию.

ЛИТЕРАТУРА

- 1. Комочков М.М. ОИЯИ, Р16-82-432, Дубна, 1982.
- 2. Cuming J.B. et al. Phys.Rev., 1978, C17, p.1632.
- 3. Балдин А.М. ОИЯИ, Р7-5808, Дубна, 1971.
- Барашенков В.С., Тонеев В.Д. Взаимодействия высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972.
- 5. Сычев Б.С. и др. Препринт РТИ 799, М., 1979.
- Alsmiller R.G. et al. ORNL-4046 UC-34-Physics, Oak Ridge, 1967.
- 7. Alsmiller R.G., Barish J. ORNL-TM-2277, Oak Ridge, 1968.
- 8. Mougey J. Nucl. Phys., 1982, A38, p.109C.
- 9. Cecil R.A. et al. Phys.Rev., 1981, C24, p.2013.
- 10. Jakobsson B. et al. Phys.Lett., 1981, 102B, p.121.
- Tuyn J.W.N. et al. CERN, HS-RP/TM/80-86, Part 2, Geneva, 1980.
- 12. Ставинский В.С. ОИЯИ, 2-80-66, Дубна, 1980.
- 13. Комочков М.М. ОИЯИ, Р16-7335, Дубна, 1973.
- 14. Зайцев Л.Н. и др. Основы защиты ускорителей. Атомиздат, М., 1971, с.36.

Рукопись поступила в издательский отдел 25 марта 1983 года. Комочков М.М.

Оценка радиационной обстановки

P16-83-190

3

и защиты при взаимодействии релятивистских ядер с веществом

На основе закономерностей дифференциального распределения адронов и фрагментов в ядро-ядерных соударениях при энергиях более 50 МэВ/нуклон ядра-снаряда путем аппроксимации данных экспериментов получены формулы для расчета спектров и угловых распределений нуклонов. Алгоритм решения задачи включает накопленную информацию о протон-ядерном соударении. Достоверность формул для расчета дифференциальных распределений нуклонов проверяется путем их сравнения с экспериментальными данными при энергии ядер углерода ,бомбардирующих различные мишени, 1,03 ГэВ. Удовлетворительное согласие между результатами эксперимента и расчета наблюдается для зависимости потока нейтронов с энергией более 20 МэВ от толщины защиты. Зависимость относительных величин сечения образования радиоактивных изотопов в ядро-ядерных соударениях при энергии ядра-снаряда углерода 18,5 ГэВ от атомного веса ядра-мишени лучше описывается предлагаемым методом, чем на основе факторизационной гипотезы.

Работа выполнена в Отделе радиационной безопасности и радиационных исследований ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1983

Komochkov M.M.		P16-83-190
Estimation of	the Radiation Environment	
and Shielding	at the Relativistic Nuclei-Substances	Interaction

On the base of differential distribution regularity of the hadrons and fragments in nucleus-nucleus interactions with energy more than 50 MeV/nucleon of a nucleus-projectile as the result of approximation, the formu

about mulae with

bardi

exper more

of re

isote

proie

bette

Safe

Пере

10