C 349B

Объединенный институт ядерных исследований дубна

P16-82-432

Экз. чит. ЗАЛА

М.М.Комочков

АППРОКСИМАЦИЯ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ ВЗАИМОДЕЙСТВИЯ РЕЛЯТИВИСТСКИХ ЯДЕР С ЯДРАМИ С ЦЕЛЬЮ ОЦЕНКИ РАДИАЦИОННОЙ ОБСТАНОВКИ И ЗАЩИТЫ

Направлено на VIII Всесоюзное совещание по ускорителям заряженных частиц /Протвино, октябрь 1982 г./

1982

Решение вопросов защиты от излучений, возникающих при взаимодействии релятивистских ядер, предлагается в настоящей работе искать с использованием накопленной информации о параметрах полей излучений, образующихся при взаимодействии протонов с ядрами:

$$\xi_{\rm A} = N \xi_{\rm p}$$

где $\xi_{\rm A}$ и $\xi_{\rm p}$ - величины параметра полей излучения /например, флюенс, доза/, образующихся при одном неупругом взаимодействии ядра-снаряда с ядром-мишенью, и одного неупругого взаимодействия протона с тем же ядром, N - коэффициент, который будем называть числом эквивалентных протонов. Основанием для /1/ является определенное подобие дифференциальных сечений образования различных продуктов реакций, которое нашло, в частности, отражение в факторизационной гипотезе /1/.

Зависимость N от атомного веса ядра-снаряда A с и атомного веса ядра-мишени А_м будем искать на основе данных работ /2-4/ о выходе каскадных нейтронов при одном неупругом взаимодействии протонов энергии 150 и 350 МэВ - $\xi_{\rm p}$, альфа-частиц энергии 177 МэВ/нуклон и ядер неона энергии 337 МэВ/нуклон с мишенями из углерода, алюминия, железа, меди, свинца и урана. Найденные отношения $\left(\frac{\xi_{A}}{\xi_{p}}=N\right)$ описываются следующими формула-

ми:

Ν

$$N = 0.47 A_{C}^{\frac{1}{2}} (1+0.29 \ln A_{M}), \quad \theta = 0 \div \pi , \qquad /2/$$

$$N = 0.51 A_{C}^{\frac{1}{2}} (1+0.29 \ln A_{M}), \quad \theta = 0 \div \frac{\pi}{2} , \qquad /3/$$

2

N = 0.09 A^{1/2}_c (1 + 1.2 ln A_M),
$$\theta = \frac{\pi}{2} \div \pi$$
, /4/

где *θ* - угол вылета нейтронов по отношению к направлению движения ядра-снаряда. При определении отношений ξ_A/ξ_n энергия протонов выбиралась приблизительно равной энергии ядерснарядов на один нуклон. На рис.1 демонстрируется степень согласия рассчитанных на основе формул /1/ и /3/ /расчет по методу эквивалентных протонов/ дифференциальных сечений образоваd~σν с измеренными значениями 14; там же для ния нейтронов $dE_n d \Omega$

/1/

Рис.1. Дифференциальные поперечные сечения образования нейтронов $\frac{d^2 \sigma v}{dE_n d\Omega}$ в зависимости от их энергии E_n и угла вылета θ при бомбардировке тонких мишеней меди и урана ионами неона энергии 337 МэВ/нуклон: $\Box - \theta=30^\circ$; $\Delta - \theta =$ = 45°; ----- расчет по методу эквивалентных протонов, $\theta = 30^\circ$; 60°; $\Phi - \theta = 60^\circ$; $\nabla - \theta = 90^\circ$; ----- расчет по модели "файерстрик", $\theta = 30^\circ$.

Рис.2. Сечение образования отдельных ядер при взаимодействии "Не и ¹² С энергии 400 МэВ/нуклон с ядрами ⁴⁰ Са:

расчет по модели эквивалентных протонов.

сравнения приведены результаты расчета по модели "файерстрик"/4/ Рабочей формулой расчета была

∆⁴He

$$\left(\frac{d^{2}\sigma v}{dE_{n} d\Omega}\right)_{Ne \to A_{M}} = \frac{N\sigma \left(\frac{d^{2}n}{dE_{n} d\Omega}\right)_{p \to A_{M}}}{(dE_{n} d\Omega)_{p \to A_{M}}},$$
(5)

где σ - сечение неупругого взаимодействия ядра-снаряда /здесь неона/ с ядром мишени, $(\frac{d^2n}{dE_nd\Omega})_{p\to A_M}$ - число нейтронов на единичный интервал энергии, летящих в единицу телесного угла после одного неупругого взаимодействия протона с ядром мишени /2/ / ξ_p в формуле /1//. Следует иметь в виду, что

$$\int_{0}^{\infty} dE_n \int_{4\pi} \frac{d^2 \sigma \nu}{dE_n d\Omega} d\Omega = \nu \sigma, \qquad (6/$$

Где *v* - число нейтронов, образующихся при одном неупругом взаимодействии ядра неона с ядром мишени.

На <u>рис.2</u> сравниваются результаты расчета по методу эквивалентных протонов сечения образования некоторых ядер при взаимодействии ⁴ Не и ¹² С с⁴⁰ Са с данными эксперимента^{/5/}. Рабочей формулой расчета была

 $\sigma (\mathbf{Z}_{i}, \mathbf{A}_{i}) = N \sigma_{\mathrm{D}} (\mathbf{Z}_{i} \mathbf{A}_{i}), \qquad /7/$

где $\sigma_p(Z_i, A_j)$ - сечение образования ядра Z_i, A_j при взаимодействии протона энергии 400 МэВ с ядром ⁴⁰Са, которое рассчитывалось по модифицированной формуле Рудстама ⁷⁶⁷, а N вычислялось с помощью формулы /2/.

Результаты сравнения расчетов на рис.1 и 2 свидетельствуют о возможности расчета параметров поля излучений по методу эквивалентных протонов; для установления диапазона применения метода по энергии ядер-снарядов и атомному весу необходима дополнительная экспериментальная информация.

При прохождении ядер в толстой мишени /поглотителе/, когда их ионизационный пробег R сравним с пробегом для неупругого взаимодействия $\lambda = 1/\mu$ или больше него, необходимо учитывать фрагментацию ядер-снарядов при расчете величин параметров поля излучений. Пользуясь основными закономерностями фрагментации ядер^{77-10/}, можно поток ядер-снарядов $\Phi(Z,x)$ в толстой мишени на глубине x<R, аппроксимировать следующим выражением:

$$Z,x) = \Phi_0 \left\{ e^{-\mu x} \delta_{ZZ_0} + e^{-\mu_3 x} \mu_3 x \frac{\nu_3}{Z_3} \times \frac{I_1(2\sqrt{\mu_3 x \nu_3 \ln Z_0/Z})}{\sqrt{\mu_3 x} \nu_3 \ln Z_0/Z} \right\},$$

/8/

Φ(

где Φ_0 - поток первичных ядер-снарядов, δ_{ZZ_0} - символ Кронекера; Z, Z₀ - порядковые номера ядра-фрагмента и первоначального ядра-снаряда соответственно, $\mu = \sigma_{Z_0} n$, $\mu_3 = \sigma_3 n$, n - чис $ло ядер мишени в единице объема, <math>\nu_3$ - эффективное число фрагментов на одно неупругое взаимодействие ядра-снаряда, I_1 функция Бесселя первого порядка мнимого аргумента,

$$\sigma_{3} = \sigma_{Z} + (\sigma_{Z_{0}} - \sigma_{Z})e^{-\sigma_{Z_{0}}n_{X}},$$
 /9/

$$Z_{9}=Z + (Z_{0}-Z)e^{\sigma_{Z_{0}}nx}$$
 /10/

При установлении зависимости ν_3 от атомного веса ядер-снарядов A и ядер-мишени будем опираться на результаты работ /7-10/. Этим данным удовлетворяет, в частности, следующая зависимость:

$$\nu_{3} = 2(1 - e^{-\frac{1}{A}}), A' = 115(1 - e^{-\frac{1}{20}}).$$
 /11/

Для описания распределения фрагментов по изотопам $\Phi(x,Z,A)$ сделаем допущение о возможности его представления в факторизованной форме:

$$\Phi(\mathbf{x}, \mathbf{Z}, \mathbf{A}) = \Phi(\mathbf{Z}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{A}).$$
 (12/

Некоторым основанием такого представления являются данные о сечении фрагментации $\sigma_{\rm Z,A}$ в работе^{/8,9/}, согласно которым

$$\sigma_{Z,A} \simeq \sigma_Z f_Z(A).$$
 (13)

Имея в виду, что $\sigma_{\rm Z}$ есть сумма сечений образования всех изотопов с данным Z, можно получить усредненную функцию распределения по элементам:

$$f(A) = \frac{\sum_{i=1}^{2m} \sigma_{Z,A} / \sigma_{Z}}{m}$$
 /14/

Результаты работы⁷⁸⁷ показывают, что $f_Z(A)$ и f(A) существенно асимметричны относительно значения A_{Makc} , которое соответствует максимальной величине $\sigma_{Z,A} \rightarrow \sigma_{Z,A_{Makc}}$; A_{Makc} , как правило, совпадает с атомным весом наиболее распространенных изотопов на Земле с данным Z. В <u>таблице</u> представлены значения f(A) в зависимости от разности $A - A_{Makc}$, вычисленные с помощью /14/ на основе экспериментальных данных ⁷⁸⁷ при фрагментации ⁴⁰ Ar энергии 213 МэВ/нуклон в соударениях с углеродом.

Таблица

Распределение по изотопам

					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
А-А _{макс} 0		-1	+1	-2	+2	-3	+3
f(A)	0,395	0,21	0,23	0,054	0,104	0,0066	0,0234
3Σ	-	0,1	0,1	0,040	0,042	0,0047	0,0134
			<u> </u>			<u></u>	

 Σ^2 - дисперсия f(A).

7 -

Зная распределение потока ядер-снарядов с их фрагментами /12/ и зависимость числа эквивалентных протонов от А/2/ получим формулу для расчета числа эквивалентных протонов на различной глубине х в мишени, состоящей из одного изотопа:

 $N(x) = \sum_{j}^{Z_0} \sum_{i}^{A_0} N \Phi(Z_{j}, A_{i}, x).$ (15/

Рис.3. Зависимость числа остановок ядер-фрагментов кремния в одной фольге от ее номера: •∮- эксперимент; → - расчет методом Монте-Карло; ----- - полуаналитический расчет.

Параметр поля вне мишени ξ_{A_0} /спектр, флюенс, доза/ при бомбардировке мишени толщиной d ядрами в соответствии с /1/ будет:

$$\xi_{A_0} \simeq \int_0^d \xi_p(\mathbf{x}) \mathbf{N}(\mathbf{x}) \sigma_3 \, \mathbf{n} \, \mathrm{d}\mathbf{x} \,. \tag{16}$$

Рис.3 иллюстрирует степень согласия рассчитанных на основе формулы /12/ данных с результатами экспериментов/11/.

Результаты полуаналитического расчета, полученные на основе /12/, нормированы на экспериментальные данные для сотого номера фольги; результаты, полученные методом Монте-Карло^{/11/}, нормированы на общее число остановок ядер-фрагментов.

В заключение автор выражает благодарность Л.Г.Бескровной и Хо Ки Хону за помощь при выполнении расчетов.

ЛИТЕРАТУРА

- `1. Goldhaber A.S., Heckman H.H. Annu.Rev.Nucl.Part.Sci., 1978, 28, p.161.
- 2. Alsmiller R.G. et al. ORNL-4046 UC-34-Physics, Oak Ridge, 1967.
- 3. Cecil R.A. et al. Phys.Rev., 1980, C21, p.2471.

4

- 4. Cecil R.A. et al. Phys.Rev., 1981, C24, p.2013.
- 5. Shibata T. et al. Nucl.Phys., 1978, A308, p.513.
- 6. Shilberberg R., Tsao C.H. The Astrophys.Journ.Suppl.Ser., 1973, 25, No.220(1), p.315.
- 7. Greener D.E. et al. Phys.Rev.Lett., 1975, 35, p.152. 8. Vigogi G.D. et al. Phys.Rev.Lett., 1979, 42, p.33.
- 9. Westfall G.D. et al. Phys.Rev., 1979, C19, p.1309. 10. Morrissey D.J. et al. Phys.Rev., 1980, C21, p.1783.
- 11. Heinrich W. et al. Nucl.Instr. and Meth., 1981, 190, p.369.

Рукопись поступила в издательский отдел 9 июня 1982 года.