

6205 +80

P16-80-601

В.Е.Алейников, В.А.Архипов, М.М.Комочков, М.И.Салацкая, А.П.Череватенко

ДОЗИМЕТРИЯ ИЗЛУЧЕНИЙ И ФИЗИКА ЗАЩИТЫ В ОИЯИ

1. ВВЕДЕНИЕ

В 1979 году исполнилось пятнадцать лет работы Отдела радиационной безопасности и радиационных исследований * /ОРБиРИ/ ОИЯИ. За этот срок сотрудники отдела наряду с регулярным контролем за уровнями ионизирующих излучений, соблюдением правил и норм радиационной безопасности решали научно-методические вопросы по следующим основным направлениям:

- дозиметрия излучений от источников,

- наведенная радиоактивность,

- радиационная защита,

 компонентный и энергетический составы излучений, определяющих радиационную обстановку за защитой,

- адекватность показаний детекторов излучений дозе и спектру частиц,

- радиационная обстановка в окружающей среде.

В направлении дозиметрии излучений источников исследованы энергетические распределения нейтронов в зале синхроциклотрона, вблизи синхрофазотрона, циклотронов многозарядных ионов и импульсных быстрых реакторов /ИБР-30 и ИБР-2/. Глубинные распределения доз в тканеэквивалентных фантомах были измерены на пучках синхроциклотрона и ИБР-30, а также в поле рассеянного излучения в зале синхроциклотрона.

Наведенная радиоактивность изучалась на одном из основных источников этого фактора радиационной вредности – синхроциклотроне. В порядке возрастания степени радиационной опасности наведенная радиоактивность имеет место в воздушной среде, воде, охлаждающей узлы синхроциклотрона, защите и деталях ускорителя. В конструкционных металлах, защитных материалах и воде установлены основные радиоактивные изотопы и их активности.

Исследования по радиационной защите включали измерения параметров функции ослабления флюенса нуклонов различных энергетических групп и доз излучения, разработку феноменологических и аналитических методов расчета прохождения излучений через защиту. Метод случайных испытаний внедрен в практику расчета спектрально-угловых распределений флюенса нуклонов от мишеней и за защитой как наиболее достоверный. Различные

* До 1977 г. - Отдел радиационной безопасности.

методы расчета дозиметрических параметров поля излучения проверялись в полномасштабном эксперименте на синхроциклотроне.

Изучение компонентного и энергетического составов излучений за защитой синхрофазотрона, синхроциклотрона, циклотронов и ИБР показало, что типичным излучением, определяющим радиационную обстановку, являются быстрые нейтроны. Однако в отдельных случаях на этих установках дозу излучений определяют нейтроны высоких энергий /синхроциклотрон, синхрофазотрон/ или гамма-излучение /ИБР/. Нельзя не учитывать протонный компонент за защитой синхроциклотрона и синхрофазотрона при интерпретации показаний дозиметров нейтронов.

Адекватность показаний детекторов излучений дозе и спектру нейтронов устанавливалась путем сличения результатов измерения этих величин проверяемыми средствами с наиболее достоверными данными. Эксперименты, выполненные в полях излучений основных ядерно-физических установок ОИЯИ, показали, что в типичных полях излучений достоверность определения дозы излучений не соответствует рекомендации МКРЕ-30%⁷⁶⁷ для доз излучений, сопоставимых с предельно допустимыми.

Результаты изучения радиационной обстановки в окружающей среде свидетельствуют об отсутствии влияния работы ядерно-физических установок ОИЯИ на загрязненность среды.

В следующих разделах представлена более обстоятельная информация о состоянии работ и достигнутом ими уровне в области дозиметрии и физики защиты в ОИЯИ.

2. ИСТОЧНИКИ ИЗЛУЧЕНИЙ

В ОИЯИ представлен широкий спектр источников ионизирующих излучений: импульсные ядерные реакторы на быстрых нейтронах, ускорители заряженных частиц на высокие энергии, ускорители тяжелых ионов, ускорители электронов, а также радиоактивные вещества, с которыми проводят исследования в радиохимических лабораториях.

Характеристики ядерно-физических установок ОИЯИ как источников излучений приведены в табл.1.

В научно-экспериментальном отделе ядерной спектроскопии и радиохимии Лаборатории ядерных проблем производится химическое разделение и исследование изотопов элементов, получаемых в результате ядерных реакций после облучения мишеней на пучках синхроциклотрона. Работы проводятся в основном с элементами редкоземельной группы. По степени радиотоксичности изучаемые изотопы относятся к группам "Д", "Г" и "В"^{24/} радиоактивных веществ в открытом виде, а по их количеству /активности/ работа с ними относится к III и II классам радиохимических ра-

Характеристика ядерно-физических установок ОИЯИ как источников излучений

#:	Установка	: Copt час-: М : тиц, полу-: н : чаемых : г : на уста-: м : новке : ч :	аксималт ая энер- ия или мпульс астиц	:Средний -: ТОК (МОЩ- : НОСТЕ) : ИЛИ ЧИСЛО : ЧАСТИЦ В : ИМПУЛЬСЕ :	:Частота: :Повторе: :Ния им- :Пульсов :Излуче- :Ния, : С-I	Длитель- :С ность им-:н цульса :л излучения:	ква л- Юсть Из-: Цучения	Эффек-:Кол тивность вывода:ни пучка : ре из ус-:щи корите: з ля, % : т	мпонент: излуче- я, оп- деляю- й дозу а защи- ой	Средний интеграли ный потол нейтронол от уста- новки, нейтр/с	: Измерение ы дозы и к: коэфлимен в: качества : (КК) в : пучке :
:	2	3	4	5	6	7	8	9	10 :	: II	: 12
			Jacopa	TODER DUCC	KKX SHED	гий (ЛВЭ)					
•	Свяхрофазо рон /1-5/	г протоны	ІО ГаВ	3.10 ¹¹	0,1	0,5+500mc	2.10 ⁴ +20	90	нейтрон	ы 3.10 ¹⁰	H2. OT. =)
		дейтроны	4,7 <u>ГаВ</u> НУКА	1,1.10 ^{II}	-"-	-*-	-"-	"	-"	(E,>1,5	n. MaB)/6/
		альфа-част	r"_	1,6.10 ⁹	"	-"-	-"-	-"-	_"	-	
		ядра угле- рода	"-	5.10 ⁵	 *	_*-	-"-	-"-	_"_		
	-	ядра кис- лорода	_"	1:10 ⁵	-"-	_"-	-"	-"-	_"_		
		Л, -К-мезо- ны	1+7 <u>ГаВ</u>	10 ⁴ +10 ⁶	"- -	0, 1+3 mc	10 ⁵ •3.10	0 ³ -	-"-		
		1	Jacor	HER BUCOTEC	DHAR HDO	OICM (IJJII)					
2	. Синкро	/7.8/протоны	680 M:	аВ≈ЗмлА	167	0,16 mg 4 <i>8,5 m</i> g	c 37 ∎2,	,5 I 0+2 0) нейтр	оны 2,5.I (Е _н >20	0 ^{9/9/æ) 800pa MaB) KK=I.8}

1 2	3	4	_5	6	7	8	9	<u> </u>	11	12
	вторичные			167	0,16 и 2	5 37µ2, 5	-	нейтроны	6.1013	60рад/час/12/
•	нучки. <i>м</i> -мезоны, нейтроны	~	5.10 ⁵ c ⁻¹ 2.10 ⁸ c ⁻¹		140				(E _H <20MaB)	КК=3,5/II/ (для нейтрон- ного пучка)
	🖌 -мезоны	~	· 10 ⁷ c ⁻¹				•			
		Jao	оратория з	лерных	реакций (LEP)				
3.Циклотрон у_300/13/	многозаряд- ные ионы с А/д =5+7	5+10 <u>МэВ</u> нукл	о <mark>д</mark> о 5.10 ¹³	3 _c -1 50+150	0,5+5мс	4+5	30	нейтроны	10 ^{I0} /14/	
4.Циклотрон у-200/13/	н многоза- рядные йоны с Аду=2+4,5	Mab 5+10 Hyrn	•10 ¹⁴ +10 ¹	5 _c -I _"_	_" -	-*-	30	_"_	10 ^{II} /I4/ (режим ускорения дейтерия, гелия)	
5.Микротро MT-17/15	он электро- 5/ ны	16 M əB	25 мкА	400 и 50	2,5 мкс	10 ³ +8.10 ³	95	гаіма- излучени	3.10 ¹¹	
		OTI	ел новых	<u>Этодов</u>	ускорения	(OHMY)				
с.силунд _{КУТИ} /16,1	электроны [7/ _ " _)	I,5МәВ що 20 МаВ	200+300 А/имп	0,5 - " -	20 нс	10 ⁸	-	Гамма — Излучен	ие	450 рад/ч волизи уско- рительной
7. JUJ -3000)/I6/ электрон	ч —"—	250А/имп	I	200Hc	5.10 ⁶	-	-"-		трубки /18/

.

٠

٠

.

Таблица 1 /продолжение/

.

2	: 3	: 4	: 5	: 6	: 7	: 8	: 9 : 10	: 11	: I2
		Jacoparon	нейтронн	<u>i Rol</u>	Бизики (.	iHø)			
Реактор ИБР-30 19/	нейтроны	спектр деления	25 кВ (реактор- ный режин	4 .i)	70мкс	3,6.10 ³	нейтроны	8.10 ¹² н/сы ² с на поверхности активной зоны (Е _Н -0,5 МоЗ)	$\begin{array}{c} 670 \underline{\text{Dan}}_{\text{vac}}(\text{dasa} \\ 8,5::) \\ 6 \text{pan/vac} \\ (\text{dasa} 68_{\text{M}}/20/ \\ \text{vm}_{\text{T}} 9/21/ \end{array}$
			8 кВт (бустерный режим)	1 0 0	Зыкс	3,3.10 ³	_"-		
Реє ктор ИБР <u>-2^{/22/}</u>	нейтроны	спектр деления	4 MBT	5	90mrc	2,2.10 ³	~"-	I,75.IC ^{I7} (EH>0,5 MaB)	I,8 <u>nan</u> xxx)/23 HK= 8,3
	2 ИБР-30 Рег ктор ИБР-2/22/	2 : 3 Реактор 19/ нейтроны ИБР-30 Рег ктор нейтроны ИБР-2/22/	2 : 3 : 4 <u>Лаборатот</u> Реактор 19/ нейтроны спектр деления Рег ктор нейтроны спектр иБР-2/22/ деления	2 : 3 : 4 : 5 <u>Наборатория нейтроны</u> Реакторт9/ нейтроны спектр деления 25 кВ (реактор- ный режим 8 кВт (бустерный режим) Рек ктор иБР-2/22/ нейтроны спектр деления 4 ыВт	2 : 3 : 4 : 5 : 6 <u>Лаборатория нейтронной (</u> Реактор 19/ нейтроны спектр деления 25 кВ 4 (реактор- ный режим) Рек ктор нейтроны спектр деления 4 мВт 5	2 : 3 : 4 : 5 : 6 : 7 <u>Лаборатория нейтронной сманики (1</u> Реактор 19/ нейтроны спектр 25 кВ 4 70мкс иБР-30 19/ нейтроны спектр 25 кВ 4 70мкс (реактор- ный режим) 8 кВт 100 3 ыкс (бустерный режим) Реактор нейтроны спектр деления 4 ыВт 5 90мкс	2 3 4 5 6 7 8 Ідборатория нейтронной сизики (ЛНФ) Реактор- ИБР-30 19/ нейтроны спектр деления 25 кВ 4 70мкс 3,6.10 ³ (реактор- ный режим) 8 кВт (бустерний режим) Рес ктор нейтроны спектр деления А кВт (бустерний режим) Рес ктор нейтроны спектр деления 4 кВт 90ыкс 2,2.10 ³	2 3 4 5 6 7 8 : 9: 10 Івборатория нейтронной слихики (ЛНФ) Реактор- иБР-30 ⁷ 19/ нейтроны спектр деления 8 кВт (бустерный режим) 100 3кс 3,3.10 ³ -"- КВт (бустерный режим) Рескитор (бустерный режим) Рескитор (бустерный режим) Рескитор (бустерный режим) Рескитор (бустерный режим) Рескитор (бустерный режим) Рескитор (бустерный режим) 100 3кс 3,3.10 ³ -"-	2 3 4 5 6 7 8 9 10 11 Цаборатория нейтронной слизики (ДНэ) Реактор 19/ нейтроны спектр деления 25 кВ 4 70мкс 3,6.10 ³ нейтроны 8.10 ¹² н/см ² с на поверхность активной зоны ИБР-30 ⁷ 19/ нейтроны спектр деления 25 кВ 4 70мкс 3,6.10 ³ нейтроны 8.10 ¹² н/см ² с на поверхность активной зоны скитивной зон

- х) Выход за защиту ускорителя.
 хх) С июля 1979 г. реконструируется.

xxx) Физический пуск на мощность 300 Вт.

бот ^{/24/} Сразу после облучения на синхроциклотроне активность радиохимической мишени обычно составляет около 1,5 граммэквивалента радия, но в отдельных экспериментах может достигать 10 г-экв. радия. Большинство исследуемых элементов имеют периоды полураспада от нескольких часов до 30 дней. Суммарное содержание радиоактивных изотопов с периодом полураспада более 30 дней в таких мишенях не превышает 50 мКи. В течение года в этом отделе проводится до 150 опытов по облучению и разделению радиоактивных изотопов.

В научно-экспериментальном химическом отделе Лаборатории ядерных реакций кроме химической обработки и исследования облученных на циклотронах У-300 и У-200 веществ, ведется также изготовление мишеней и препаратов из трансурановых и трансплутониевых элементов. Более половины применяемых изотопов стносятся к группе "А" по степени радиотоксичности /особо высокая радиотоксичность/²⁴⁴. В год в этом отделе перерабатывается до 150 мишеней, из них 50 /со средним весом 4-5 мг/ из трансурановых элементов, причем каждая из этих последних в течение года около трех раз регенерируется. По количеству радиоактивных веществ на рабочем месте такие работы относятся к III и II классам работ.

3. МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ

Методы и средства измерений, которыми располагает отдел, позволяют осуществлять контроль уровней практически всех видов ионизирующего излучения, определяющих радиационную обстановку в ОИЯИ. При проведении измерений уровней рентгеновского, а , β , и у-излучений для целей систематического радиационного контроля в основном используются промышленные приборы 25/ Характеристики большинства приборов, используемых для дозиметрии нейтронов, приведены в работе^{/26/}. С целью изучения радиационной обстановки в полях смешанного излучения применяется также дозиметр, детектором которого является рекомбинационная камера REM-2 /27,28/ С помощью этого прибора измеряются поглощенная и эквивалентная дозы, а также коэффициент качества ионизирующего излучения без ограничения по составу и энергии излучения для глубины ткани около 2 г/см². Пределы измерения эквивалентной дозы - 1 мбэр/ч # 30 бэр/ч в поле статистически равномерно распределенного излучения. Для измерения эквивалентной дозы нейтронов из промышленных приборов используется только ДН-А-1 /29/.

Широкий диапазон энергий нуклонов в полях излучения за защитой ускорителей и импульсного быстрого реактора, импульсный характер излучений большинства базовых ядерно-физических установок ОИЯИ потребовали дальнейшего развития методов измерения

6

доз и энергетических спектров нуклонов. Основные методы измерения уровней нейтронного поля основаны на регистрации медленных и тепловых нейтронов сцинтилляционным, ионизационным или активационным детекторами в замедлителях разных размеров и конфигурации.

Для контроля радиационной обстановки в ОИЯИ эффективно используются так называемые интеграторы мощности дозы излучения. Они представляют собой устройства с активными детекторами /газоразрядными, сцинтилляционными/, позволяющие в любой момент времени получать информацию о накопленной поглощенной или эквивалентной дозе в определенном месте. Интеграторы мощности дозы излучения используются, в частности, для группового контроля облучения персонала, не охваченного индивидуальным дозиметрическим контролем, и отдельных лиц из населения.

Для более точного измерения эквивалентной дозы нейтронов применяется многошаровая методика $^{/30/}$ с использованием в качестве детектора медленных и тепловых нейтронов сцинтилляционных детекторов 6 LiJ(Eu) или ZnS(B), а также индиевого активационного детектора. Методы измерения спектров нуклонов широкого диапазона энергий были развиты в связи с исследованием энергетических спектров нуклонов в полях излучения базовых ядерно-физических установок ОИЯИ с целью установления закономерностей в формировании поля нейтронов, определения адекватности показаний дозиметров эквивалентной дозе в таких полях, а также экспериментальной проверки способов расчета защиты от излучений ускорителей протонов.

В полях излучения за защитой ускорителей протонов для спектрометрии нейтронов используется сцинтилляционный детектор медленных и тепловых нейтронов ${}^{6}LiJ(E_{U})$ с набором шаровых полиэтиленовых замедлителей ${}^{/3L/}$ и углеродсодержащий активационный детектор 327. Энергетические спектры нейтронов восстанавливались методом "жесткой" априорной информации о величинах потоков нейтронов разных энергетических групп / 33/ и методом статистической регуляризации ^{/34,35/}. Последний используется также при восстановлении спектров нейтронов по наведенной радиоактивности детекторов из индия в шаровых полиэтиленовых замедлителях 1361, по показаниям пороговых активационных детекторов /37/, а также по показаниям системы активационных детекторов / 38/ /тепловых, резонансных, пороговых и индиевых детекторов в замедлителях/. Упомянутые выше методы позволяют определять энергетические спектры нейтронов в диапазоне энергий от 10⁻⁸ эВ до 1 ГэВ. С целью уточнения функций чувствительности детектора медленных нейтронов в шаровых замедлителях была измерена /39/ зависимость от энергии нейтронов чувствительности детектора ⁶LiJ(Eu) в шаровых полиэтиленовых замедлителях с диаметрами

5,08 см /2 дюйма/, 7,62 см /3 дюйма/, 12,7 см /5 дюймов/

7

и 25,4 см /10 дюймов/ в интервале энергий от 0,01 эВ до 10^3 эВ методом спектрометрирования энергии нейтронов от импульсного быстрого реактора по времени пролета. Значение чувствительности сцинтилляционного детектора ⁶ LiJ(Eu) в шаровых замедлителях и дозиметра ДН-А-1 ^{/29}/к нейтронам с энергией около 30 кэВ было измерено^{/40/} также с использованием нейтронов, образованных в реакциях ⁶Li(p,n)⁷ Ве, при превышении энергии протонов над порогом реакции на 10 кэВ.

Для измерений энергетических спектров и спектрально-угловых распределений протонов высокой энергии за защитой ускорителей используется сцинтилляционный спектрометр ^{/41,42/}. Идентификация протонов по энергии осуществляется путем измерения потерь энергии частицы в тонком сцинтилляторе. Протоны, идущие в заданном направлении, выделяются телескопом сцинтилляционных счетчиков. В диапазоне энергий протонов от 55 до 500 МэВ амплитудное разрешение составляет соответственно 11% и 27%. Для зосстановления энергетических спектров протонов по амплитудным распределениям используется метод статистической регуляризации.

Спектрометрия у -излучения при измерении радиоактивности активационных детекторов и образцов внешней среды выполняется с помощью сцинтилляционных спектрометров с кристаллами NaJ(Tl) и полупроводникового Ge(Li)-спектрометра.

Для определения индивидуальных доз, получаемых сотрудниками ОИЯИ при работе вблизи ядерно-физических установок, используются стандартные кассеты ИФК-2,3/43/ с рентгеновской пленкой типа ORWO RD3-4, позволяющие измерять дозу жесткого и мягкого гаммаизлучения, а также дозу бета-излучения; доза нейтронов определяется по числу треков и звезд в ядерной эмульсии типа К толщиной 20 мкм, помещенной вместе с корректирующим пакетиком в свободную полость кассеты ИФК-2,3 /ИФК_н/^{/44-46/}При проведении ремонтных работ в зонах специального допуска сотрудники дополнительно получают индивидуальные дозиметры КИД-2 и ДК-02. Для контроля дозы при аварийных или случайных облучениях сотрудникам, работающим в зонах, периодически становящимися зонами запрета. В кассеты вставляются вкладыши с термолюминесцентными детекторами на основе порошка LiF $^{/47/}$. Персонал. непосредственно занятый на проведении аварийно-опасных работ на реакторах, обеспечивается индивидуальными дозиметрами типа ИКС-А, "Гнейс" /48/.

Единство средств измерения обеспечивается поверкой и градуировкой дозиметров и радиометров. Поверка и градуировка производятся в специальном помещении 5,17x10,76x4,5 м³ на поверочных дозиметрических установках, аттестованных по второму разряду и оснащенных образцовыми источниками гамма-излучения (60 Co, 187 Cs) перього и второго разрядов и образцовыми источниками нейтронов (Pu + Be), 252 Cf второго разряда. Для градуировки радиометров по тепловым нейтронам используется Pu + Be источник нейтронов в стандартной парафиновой сфере диаметром 15 см. Градуировка альфа- и бета-радиометров производится, соответственно, с помощью образцовых, 2÷3 разряда, источников 239 Pu и 90 Sr + 90 Y.

4. РАДИАЦИОННАЯ ОБСТАНОВКА

При работе ускорителей и реактора радиационная обстановка на рабочих местах за защитой определяєтся, как уже отмечалось выше, в основном, нейтронным компонентом поля излучения. Типичные распределения эквивалентной дозы по энергетическим группам для двух крайних случаев в отношении спектров нейтронов -"жесткого" и "мягкого" - представлены в табл.2. Энергетические группы выбраны в соответствии с характерными границами функций чувствительности средств дозиметрического контроля. В первом случае вклад в эквивалентную дозу верхнего энергетического интеряала нейтронов является решающим. Относительный вклад нейтронов с энергией, большей заданной, в эквивалентную дозу в местах пребывания персонала на ядерно-физических установках ОИЯИ, приведен на <u>рис.1</u>. Более подробную информацию об энергетических распределениях можно найти в работах ^{/9,49,50,58}.

В типичных полях излучений за защитой действующих ускорителей вклад в эквивалентную дозу других видов излучений, в частности, гамма-квантов, не превышает нескольких процентов от дозы нейтронов. За защитой реактора ИБР-30 доза гамма-излучения составляет в среднем около 60% от дозы нейтронов /минимум - 20%, максимум - 150%/. Уровни излучений на рабочих местах персонала изменяются от долей мбэр/ч до десятков мбэр/ч. Глубинные распределения доз в тканеэквивалентных фантомах были измерены в пучках реактора ИБР-30 и синхроциклотрона, а также в поле рассеянного излучения в зале синхроциклотрона ^{/10,11,99-102/}.

Характер распределения дозы H с расстоянием R от ускорителей протонов изучался в работах $^{9,51,52/}$ и приведен на <u>рис.2</u>. Абсолютные значения HR² на рисунке относятся к параметрам ускорителей, приведенным в <u>табл.1</u>, причем синхрофазотрон в режиме, дающем приведенное распределение, работает приблизительно половину года.

При остановленных ядерно-физических установках радиационную обстановку определяет гамма-излучение от наведенной радиоактивности оборудования. Уровни гамма-излучения в местах, где персонал выполняет профилактические и ремонтные работы, приведены

-

Распределение эквивалентной дозы нейтронов по энергетическим группам, %

Установки	: Характер	Энергетические группы нейтронов							
	нейтронов	640,4 aB	E>20 M∋B						
Ускорители/49/	"досткий"	0,2	0,4	I,0	20,4	78			
	"мяі:кий"	7	18	6	67	2			
	"жесткий"	3	4	7	86	-			
Реактор ИБР-30/50/	"мягкий"	13	5.4	13	50	_			

Рис.1. Относительный вклад нейтронов с энергией больше заданной в суммарную эквивалентную дозу η ; 1/ за сплошной защитой синхроциклотрона; 2/ за защитой с проемами синхроциклотрона; 3/ район линейного промежутка синхрофазотрона; 4/ в зале и физкабинетах циклотрона У-300 /режим выведенного пучка ионов/; 5/ за защитой циклотрона У-200 /лабиринт/; 6/ в поле рассеянного излучения на реакторе ИБР-30.

Рис.2. Эквивалентная доза нейтронов H·R 2 /мкбэр.м 2 .с $^{-1}$ / на различных расстояниях R /м/ от геометрического центра ускорителей. 1 - синхрофазотрон 151 , кривая приведена с использованием уточненных коэффициентов перехода от флюенса нейтронов к эквивалентной дозе 154 , 2 - синхроциклотрон 197 .

Место измерения, установка	мР/ч	Время после выключения установки,ч
Зал реактора ИБР-30		
Вход в зал	72	72
Шибер канала №1	200	72
Шибер канала Кб	250	72
Коробка передач ОПЗ	540	72
Защитный экран зоны .	3600	72
Зал синхроциклотрона		
Внутри камеры ускорителя	50000	2
Выводное окно пучков частиц	6000	2
Вариатор частоты	300	2
За ярмом магнита	5	2
Зал экспериментальной аппаратур	ы	
/лаб. №4/		
У коллиматоров пучка протонов	20	5
Средний фон по залу	1	0,01
Зал синхрофазотрона		
Внутри вакуумной камеры, район		
расположения мишеней и систем		
вывода пучков	400	72
Район инжекции пучка		
в синхрофазотрон /цилиндры Фарадея,		
оворотный магнит ПМ-2/	100	72
Залы циклотронов У-200, У-300		
цуанты	600	5
Иишень после облучения	5000	0,2
Зал микротрона МТ-17		
Резонатор	250	5
/рановый конвертор	400	0,2
рафитовый куб	12	5

Уровни гамма-излучения от наведенной радиоактивности ускорителей и реактора

в табл.3. Наведенная гамма-радиоактивность обусловлена в основном долгоживущими изотопами $^{51}\mathrm{Cr}$, $^{54}\mathrm{Mn}$, $^{58}\mathrm{Mn}$, $^{57}\mathrm{Co}$, $^{58}\mathrm{Co}$, $^{59}\mathrm{Fe}$, $^{60}\mathrm{Co}$, $^{64}\mathrm{Cu}'^{53}$, входящими в состав стали и меди, из которых изготовлены узлы ускорителей и реактора. В зале реактора

Charlen (

ИБР-30, кроме перечисленных факторов, значительные уровни создает гамма-излучение продуктов деления.

Радиохимические работы по разделению и исследованию изотопов, обработка и регенерация мишеней после облучения проводятся в защитных боксах под вытяжкой с помощью специальной вентиляции. Радиационная обстановка при выполнении этих работ определяется высокой гамма-радиоактивностью мишеней /до 10 гэкв. Ra / в первые часы после облучения за счет короткоживущих изотопов. На рабочих местах во время опытов мощности доз гамма-излучения достигают 10:15 мР/ч. Вклад в эквивалентную дозу альфа- и бета-излучений за счет загрязнения рабочих поверхностей и воздуха не является сколько-нибудь существенным.

Основными источниками загрязнения рабочих поверхностей и оборудования радиоактивными веществами являются открытые источники и активация пыли, масел и других материалов в главных залах ядерно-физических установок.

В табл.4 приведены типичные уровни загрязнения радиоактивными веществами рабочих поверхностей на установках, где имеет место загрязнение. Из этой таблицы видно, что уровни загрязнения радиоактивными веществами рабочих поверхностей не превышают допустимых.

Уровни излучений в местах пребывания персонала на ускорителях, реакторах и при проведении работ с открытыми и закрытыми источниками изменяются от долей мбэр/ч до нескольких бэр/ч, а в выведенных пучках или главных залах мощность эквивалентной дозы достигает миллионов бэр/ч, поэтому требуется различный подход к организации и мероприятиям по обеспечению безопасных условий труда. В ОИЯИ с 1969 года вокруг любого источника ионизирующих излучений в зависимости от степени существующей или возможной опасности установлены зоны радиационного воздействия. В санитарно-защитной зоне^{(54/}выделяются:

- зона запрета H* > 10 бэр при однократном облучении;
- зона специального допуска H> 5 бэр за год;
- контролируемая зона Н ≥ 0,23 мбэр/ч.

Для каждой радиационной зоны определены границы, организация работ, средства индивидуальной защиты и индивидуальный дозиметрический контроль. Радиационный контроль с применением зональногс деления территории вокруг источников излучений позволяет применять единообразные и конкретные требования при организации безопасных условий труда на различных ядерно-физических установках /ускорители, реакторы, радиохимические лаборатории и др./, повышает самоконтроль персонала.

^{*} Н - эквивалентная доза.

Снимаемое загрязнение радиоактивными веществами рабочих поверхностей /до дезактивации/, част./см²мин

Mec	то измерения, установка	Бета- активные нуклиды	Альфа- активные нуклиды
1.	Зал реактора ИБР-30		
	Пол у входа	50	1
	Пол над зоной	450	1
	Платформа замедлителя	1000	1
2.	Зал синхроциклотрона,		
	район мишени	2000	1
3.	Радиохимические помещения		
	II класса ЛЯП	200	1
4.	Радиохимические помещения		
	Ш класса ЛЯП	20	1
5.	Зал и экспериментальные		
	павильоны синхрофазотрона	10	1
6.	Зал циклотрона У-300,		
	зал циклотрона У-200, внутри		
	камеры циклотрона на дуантах	1000	1
7.	Столы переборки ионных источников		
	и деталей ускорителя ЛЯР	100	1
8.	Комната переборки ионных источников		
	циклотронов ЛЯР	100	1
9.	Зал микротрона ЛЯР	10	1
10.	Радиохимические помещения		
	II класса ЛЯР	40	1
11.	Радиохимические помещения		
	III класса ЛЯР	20	1

С 1971 года в ОИЯИ проводится регулярный контроль радиоактивности в окружающей среде. Контроль включает в себя измерения уровней гамма-излучения и заряженных частиц, бета- и гаммарадиоактивности воды, почвы и растительности. Результаты контроля уровней гамма-излучения и заряженных частиц^{55/},усредненные по всем контрольным точкам, приведены в <u>табл.5</u>, из которой следует, что фон гамма-излучения и заряженных частиц в окружающей ОИЯИ среде ниже среднего фона на земном шаре, равного ~10 мкР/ч^{57/},а вклад в радиоактивность окружающей среды от работы ядерно-физических установок ОИЯИ не наблюдается.

14

Pe	езультаты і	контроля	У	ровней гамм	а-излуч	ения
и	заряженных	к частиц	8	окружающей	среде,	мкР/ч

Годы	мкР/ч вокруг ОИЯИ	мкР/ч, данные ^{/56/}
1971	4,1+0,4	4.5
1972	4,0+0,4	6,0
1973	5,6+0,6	6.0
1974	5,0+0,5	5,4
1975	4,2+0,4	4,8
1976	4,1+0,2	5,6
1977	4,8+0,4	7,6
1978	4,2+0,5	4,2

5. РЕЗУЛЬТАТЫ ИНДИВИДУАЛЬНОГО КОНТРОЛЯ Степени облучения сотрудников

К началу 1979 года на индивидуальном дозиметрическом контроле находилось 2100 сотрудников ОИЯИ. Анализ условий работы вблизи ядерно-физических установок СИЯИ и многолетний опыт дозиметрического контроля свидетельствуют о том, что уровень облучения персонала в среднем остается небольшим. Так. за последнее десятилетие ~90% сотрудников, работающих в условиях, связанных с облучением, получали за год дозы менее 1,5 бэр. На рис. 3 представлены значения средних годовых доз облучения персонала лабораторий и общеинститутских отделов ОИЯИ в течение 1965-78 гг. Из рисунка видно, что наибольшему облучению подвергаются сотрудники отдела эксплуатации синхроциклотрона ЛЯП и сотрудники, участвующие в ремонте узлов этого ускорителя /кривая 2-1/. Получаемая ими доза примерно на 97%, как следует из данных табл.6, обусловлена гамма-излучением наве,енной радиоактивности камеры и отдельных узлов ускорителя. Из этой таблицы также видно, что при работе персонала в смешанных полях гамма-излучения и нейтронов индивидуальная доза, обусловленная нейтронами, составляет от 2,5% (для групп ремонта и эксплуатации синхроциклотрона ЛЯП) до 38% (для сотрудников ЛВЭ) от полной эквивалентной дозы.

Многолетний контроль за облучением сотрудников ОИЯИ показал, что доза облучения персонала, обусловленная бета-излучением и мягким гамма-излучением, ничтожно мала для персонала всех лабораторий, кроме Лаборатории ядерных реакций, где небольшое число сотрудников /в среднем около 1%/ при работе

Рис.3. Среднегодовые дозы облучения персонала \overline{H} , бэр. 1 - ОИЯИ; 2-I - ремонтная группа и группы эксплуатации синхроциклотрона ЛЯП; 2 - II - научные отделы и вспомогательные группы ЛЯП; 3 - I - ремонтная группа и группы эксплуатации ИБР-30 ЛНФ; 3 - II научные отделы и вспомогательные группы ЛНФ; 4 - ЛВЭ; 5 - ЛЯР; 6 - ОНМУ; 7 - ОРБиРИ.

Вклад нейтронов в коллективные дозы, получаемые персоналом лабораторий ОИЯИ /средние за период 1965-1978 гг, %/

Персонал	ляп	ЛВЭ*	ЛНФ	ляр*
Группы ремонта, эксплуатации	2,5		8,5	
Научные отделы и вспомогательные группы	19		23,5	
Весь персонал лаборатории, работающий в радиационно- вредных условиях	11,5	38	11,5	20

*Контролировался весь персонал лабораторий без разделения его на группы.

с активированными деталями и узлами конструкций камеры ускорителя и мишеней подвергается облучению бета-частицами и гаммаизлучением широкого спектра энергий. При этом в среднем значение дозы, получаемой кожным покровом от бета-излучения, примерно в 10 раз более дозы от гамма-излучения; для хрусталика глаза это отношение составляет 5:1. Следует иметь в виду, однако, что уровень получаемых при этом доз был всегда ниже предельно допустимых.

Данные, приведенные на <u>рис.3</u>, свидетельствуют об общей тенденции уменьшения среднегодовых доз, получаемых персоналом ОИЯИ за период 1965-1978 гг. Среднегодовая доза для персонала ОИЯИ в 1978 году составила 0,33 бэр.

На <u>рис,4</u> приведены значения ежегодных коллективных доз облучения персонала Института и отдельных его лабораторий за период 1965—1978 гг. Во всех подразделениях наблюдается тенденция к уменьшению этих доз.

Приведенные в этой главе результаты индивидуального дозиметрического контроля подтверждают действенность мер, принимаемых для уменьшения степени облучения сотрудников ОИЯИ.

6. АДЕКВАТНОСТЬ МЕТОДОВ И СРЕДСТВ ИЗМЕРЕНИЙ

Большое внимание в работе отдела было уделено проверке адекватности показаний используемых в ОИЯИ методов и средств

Рис.4. Коллективные дозы H_k , бэр.человек, получаемые ежегодно персоналом ОИЯИ в целом и персоналом каждой лаборатории в отдельности. 1 – ОИЯИ, 2 – ЛЯП, 3 – ЛНФ, 4 – ЛВЭ, 5 – ЛЯР, 6 – ОНМУ.

измерения эквивалентной дозе в полях излучения сложного компонентного состава,

Одним из способов проверки адекватности показаний дозиметров эквивалентной дозе является сравнение показаний дозиметров в типичных полях излучения с эквивалентной дозой, измеренной методом, принятым за наиболее достоверный. Сравнительные измерения доз излучения были выполнены в полях за защитой ускорителей протонов ОИЯИ на высокие энергии/28/и ИБР-30^{/50/}, а также в пучке ИБР-30^{/21/}.

В полях излучения, типичных для условий работы персонала на ускорителях, в сравнительных измерениях применялись широко используемые для дозиметрии излучений ускорителей средства: сцинтилляционные, активационные и ионизационные детекторы медленных нейтронов с замедлителями^{(30,59,60/}, сцинтилляционный дозиметр ДН-А-1^{/29/},активационный углеродсодержащий детектор^{/32/} рекомбинационный дозиметр ^{/27,28/}, индивидуальные фотодозиметры^{/44,45,46/}. Измерения выполнялись в условиях максимально "жесткого", "мягкого" и промежуточного спектров нейтронов. За наиболее вероятную эквивалентную дозу нейтронов с энергией менее 20 МэВ принималась доза, полученная с помощью соотношения

20 MəB $H = \int \eta(E) \phi(E) dE,$ 0,01 əB

где $\eta(\mathbf{E})$ - коэффициент перехода от плотности потока моноэнергетических нейтронов, падающих на тканеэквивалентный фантом, к эквивалентной дозе в максимуме глубинного распределения эквивалентной дозы для слектра нейтронов $\phi(E)$, измеренного в месте сравнения показаний приборов. Измерения спектра нейтвыполнялись спектрометром Боннера^{/81/}. За наиболее ронов $\phi(\mathbf{E})$ вероятную полную эквивалентную дозу излучения принималась средняя величина эквивалентной дозы, измеренной рекомбинационным дозиметром и компонентным методом^{(26/}.Сравнение результатов измерений эквивалентной дозы с помощью приборов, широко используемых для оперативного контроля радиационной обстановки за защитой ускорителей и, в частности, за защитой ускорителей протонов ОИЯИ с наиболее вероятной величиной эквивалентной дозы, показало, что эти приборы воспроизводят эквивалентную дозу нейтронов и полную эквивалентную дозу излучения с точностью коэффициента 2. Как правило, это приводит к переоценке наиболее вероятной величины. Эквивалентная доза.олределенная ПО ПОКАЗАНИЯМ ДОЗИМЕТРОВ С ДЕТЕКТОРАМИ, РЕГИСТРИРУЮЩИМИ НЕЙТроны по протонам отдачи, может значительно превышать наиболее вероятную дозу. Завышение обусловлено большим вкладом в показания дозиметров протонов, выходящих из защиты ускорителя и с высокой эффективностью регистрируемых детектором. Это, в частности, относится к индивидуальному дозиметру нейтронов /ИФК_и/, если его показания не корректируются ^{/26/}.

/6.1/

В полях рассеянного излучения ИБР-30 выполнялись исследования ^{/50/} адекватности показаний фотоэмульсионных и сцинтилляционных детекторов эквивалентной дозе нейтронов. За наиболее вероятную эквивалентную дозу нейтронов в полях рассеянного излучения ИБР-30 принималась величина, установленная на основе спектра нейтронов. Переход от плотности потока к мощности эквивалентной дозы выполнялся на основании рекомендаций МКРЕ ^{/81/}, аппроксимированных в работе^{/62/}.Восстановление спектров нейтронов выполнялось по программе, использующей метод статистической регуляризации ^{/34/}В программе расчета спектра использовались показания спектрометра Боннера, счетчика СНМ-11 и априорная информация о максимальной энергии нейтронов.

С целью установления степени адекватности показаний различных детекторов, используемых для дозиметрического контроля. эквивалентной и поглощенной дозам, были выполнены сравнительные измерения /21/ в пучке ИБР-30, спектр нейтронов в котором близок к типичному спектру реактора и известен в широком диапазоне энергий 63/ Измерения были выполнены с помощью трековых, термолюминесцентных, активационных, ионизационных, сцинтилляционных и фотодетекторов, используемых и разрабатываемых в ОИЯИ и странах-участницах /ГДР. ПНР. СССР. СРР. ЧССР/ для дозиметрии нейтронов и гамма-излучения. Из рассмотрения данных, полученных в работе^{/21/}.следует, что разброс измеренных значений доз нейтронов и гамма-излучения превышает 30% величину, которую МКРЕ рекомендует /61/ для оценок достаточной точности при измерениях доз, сопоставимых с предельно-допустимыми величинами.

Анализ полученных в работах $^{/50,21/}$ данных позволил сделать вывод о том, что отличие функции чувствительности детектора ИФК_н от идеальной, использование Pu-Be источника для градуировки этого детектора и потери информации при просмотре эмульсии на микроскопе приводят к занижению, в среднем в 1,7 раза, индивидуальных доз облучения персонала, работающего в полях нейтронов ИБР-30. Для устранения этого занижения с 1978 года при определении индивидуальных доз вводится поправочный коэффициент, а с 1979 года для градуировки ИФК_н используется источник 252 Cf, спектр нейтронов которого близок к спектру деления. Завышение показаний сцинтилляционного бэрметра (ZnS(B) в шаровом полиэтиленовом замедлителе диаметром 25,4 см) в 1,6 раза в этих же полях обусловлено относительно высокой дозовой чувствительностью этого дозиметра к промежуточным / E<0,1 МэВ/ нейтронам.

7. ПРОГНОЗИРОВАНИЕ ПОЛЕЙ ИЗЛУЧЕНИЙ

И РАСЧЕТ ЗАЩИТЫ

Отсутствие достаточной информации для решения практических задач радиационной безопасности на ускорителях заряженных частиц определило основное направление работ в области защиты от излучений. Приоритет был отдан исследованиям в области физики защиты ускорителей высоких энергий, которые велись по четырем направлениям:

- получение эмпирических констант для расчетов защиты;

- разработка и совершенствование методов расчета защиты;

- экспериментальная проверка методов расчета;

- выявление закономерностей в формировании энергетических распределений нуклонов за защитой ускорителей протонов.

В серии экспериментов /1964-1968 гг./ изучалось ослабление широкого пучка нейтронов в защитах из железа, бетона и в железо-водной слоистой защите^{/64-69/}. Источником нейтронов явились мишени из ^{Ве} и ^{Си}, которые бомбардировались протона и с энергией 170; 250; 350; 480; 660 МэВ и 10 ГэВ. Исследовались также формирование и ослабление в защите излучения, рассеянного в зале синхроциклотрона на энергию 680 МэВ ^{/70-74/}. Для регистрации излучений в защите использовались активационные детекторы из углерода, фосфора и индия, а также ядерные эмульсии и рентгеновские пленки. Исследовалось ослабление в защите потоков нейтронов высокой энергии, быстрых и резонансных и дозы гамма-излучения. Измеренные в этих экспериментах параметры ослабления потоков нейтронов в совокупности с данными других ядерных центров использовались в дальнейшем при расчетах защиты ускорителей полуэмпирическими методами.

В развитии методов расчета прохождения излучения через защиту можно условно выделить два этала: первый /1963-1968 гг./ попытку получить относительно простые формулы для оценки защиты ускорителей без использования ЭВМ, и второй этап - развитие методов расчета защиты с использованием ЭВМ. На первом этапе решалось уравнение переноса нейтронов /75-79/ с использованием относительно грубых допущений /приближений прямовперед и квазиупругого рассеяния/. Расчеты, выполненные такими способами, позволяли рассчитывать ослабление потока нейтронов и оценивать энергетические спектры нуклонов в защите для плоского мононаправленного источника нейтронов высокой энергии на границе полубесконечной защиты. Применение ЭВМ позволило существенно сократить количество упрощающих допушений, принимаемых в расчетах, Среди используемых в ОИЯИ программ для расчета полей излучения за защитой ускорителей прежде всего следует отметить программу расчета нуклон-мезонного каскада в веществе методом Монте-Карло /80/. Эта программа позволяет моделировать взаимодействие нуклонов и *т*-мезонов с блоками однокомпонентного вещества следующих конфигураций: цилиндр, слой, бесконечное полупространство. Программа вычисляет следующие характеристики для каждой прослеживаемой частицы: координаты ее местонахождения, направление движения, кинетическую энергию. К недостаткам метода следует отнести экспоненциальный рост времени, необходимого для расчета поля излучения с увеличением толщины защиты.

Для решения задач радиационной защиты ускорителей, которые можно свести к определению функции спектрально-углового распределения плотности потока нейтронов в полубесконечной гомогенной защите с плоским мононаправленным источником релятивистских нейтронов на ее границе, разработан метод /81/ и составлена программа для ЭВМ. Метод основан на решении уравнения переноса нейтронов, полученного при следующих допущениях: а/ вкладом, который вносят заряженные частицы в развитие межъядерного каскада в веществе, можно пренебречь; б/ вероятность образования нейтрона под углом, большим 90° в лабораторной системе, много меньше вероятности вылета нейтрона под малыми углами. Принятые допущения ограничивают интервал энергий нейтронов /20 МэВ < < E <1 ГэВ/, для которых возможно использование этого метода расчета, однако для толщин вещества в несколько сотен г/см2 время расчета функции спектрально-углового распределения потоков нейтронов в защите сокращается в десятки раз по сравнению с временем, необходимым для расчета тех же величин методом Монте-Карло, Для экспрессного расчета защиты ускорителей на основе полуэмпирического метода /82/ составлены номограммы для расчета защиты в типичной геометрии источник-защита, а именно для случая, когда на защиту падает излучение, генерируемое в мишенях протонами с энергией 25-400 МэВ.

В исследованиях по физике защиты электронных ускорителей были систематизированы имеющиеся^{/85/} и получены новые^{/86/} расчетные данные о дифференциальных и дозовых характеристиках тормозного излучения с энергией до 100 МэВ. Рассчитаны также параметры ослабления тормозного излучения в бетоне^{/87/}, выполнены оценки полей излучения на местности вблизи электронных ускорителей ^{/88,89/}.

С целью проверки применимости разных методов расчета поля нейтронов за защитой ускорителей протонов на энергии менее 1 ГэВ несколькими методами ^{/80}~84/ были рассчитаны характеристики поля нейтронов в типичной для ускорителей геометрии "источник-защита". А именно - для случая, когда на бетонную защиту падает излучение, образованное в "толстой" медной мишени протонами с энергией 660 МэВ. В этой же геометрии были измерены ^{/90}/интегральные характеристики /эквивалентная доза и плотность потока нейтронов/ и энергетические спектры нейт-

ронов. Измерения выполнены вблизи внешней поверхности двухметровой защиты из обычного бетона в четырех местах, расположенных так. что угол между импульсом протонов пучка и век~ тором, направленным из центра мишени в точку установки детектора, составлял 0°;30°; 39° и 65° Сравнение измеренных и рас-СЧИТАННЫХ ВЕЛИЧИН ПОЗВОЛИЛО ОЦЕНИТЬ ТОЧНОСТЬ НЕКОТОРЫХ МЕТОДОВ расчета защиты ускорителей. В рассмотренном диалазоне углов и толщин защиты эквивалентные дозы, рассчитанные полуэмпирическими методами, как правило, отличаются от измеренных величин не более, чем в 3 раза; методы решения кинетического уравнения в плоской геометрии с такой же точностью позволяют рассчитывать потоки высокоэнергетичных нейтронов; метод Монте-Карло дает возможность вычислять потоки нейтронов высокой энергии с точностью не хуже +50%. Спектр нейтронов, рассчитанный методом Монте-Карло, правильно описывает форму энергетического распределения нейтронов. Значения потоков разных энергетических групп, рассчитанных этим методом, не отличаются от измеренных более, чем в 2 раза.

С 1969 года в ОИЯИ проводятся исследования энергетических и угловых распределений потоков нуклонов за защитой протонных ускорителей ОИЯИ ^{/91-95,36,96,97,41,98/}. Эти работы выполняются с целью установления закономерностей формирования полей нуклонов за защитой ускорителей и получения экспериментальных данных о дифференциальных характеристиках полей излучения. Установлено, что форма энергетических спектров нейтронов $\phi(E)$ за защитой протонных ускорителей в основном зависит от композиции защиты и геометрии "источник-защита". Функция $E \cdot \phi(E)$ за сплошной защитой имеет максимум в области нейтронов высокой энергии. У наиЗолее "жестких" спектров максимум расположен вблизи 100 МзВ. Проемы в защите приводят к значительному увеличению в спектре нейтронов низких энергий за счет рассеянного излучения, выходящего через эти проемы.

8. ЗАКЛЮЧЕНИЕ

Полученные результаты научно-методических работ и опыт работы по контролю за радиационной обстановкой, выполнением правил и норм показывают, что только их разумное сочетание дает правильную оценку радиационного риска при работе на уникальных ядерно-физических установках и позволяет делать обоснованные рекомендации о целесообразных мерах зъщиты от ионизирующего излучения.

Развитие методов расчета переноса излучения в веществе позволило оперативно определять размеры защитных экранов, оценивать компонентный состав излучений и их пространственноэнергетическое распределение. Разработка и совершенствование методов и средств дозиметрии и спектрометрии излучений обеспечили повышение достоверности измерения уровней и доз излучения в несколько раз.

Изучение радиационной обстановки показало, что основным источником облучения персонала, непосредственно выполняющего работы на ядерно-физических установках, являются детали установок с наведенной радиоактивностью. Для персонала, работающего за защитой ускорителей и ИБР-30, определяющим компонентом излучения являются нейтроны. Средние дозм облучения персонала и населения более чем на порядок ниже предельных величин.

ЛИТЕРАТУРА

- 1. Векслер В.И. и др. АЭ, 1956, 4, с.22.
- Отчет о деятельности Объединенного института ядерных исследований за 1978 г. Ежегодное издание. ОИЯИ, Р-12406, Дубна, 1979.
- 3. Булдаковский В.Н. и др. ОИЯИ, 9-12198, Дубна, 1979.
- 4. Кириллов А.Д. и др. ОИЯИ, 9-9309, Дубна, 1975.
- 5. Гаспарян А.П. и др. ОИЯИ, 1-9111, Дубна, 1975.
- 6. Комочков М.М., Лебедев В.Н. ОИЯИ, Р-2231, Дубна, 1965.
- 7. Дженепов В.П. и др. АЭ, 1956, т.4, с.13.
- 8. Данилов В.И., Розанов Е.И., Смирнов В.И. ОКЯИ, Р9-10080, Дубна, 1976.
- 9. Комочков М.М. и др. ОИЯИ, Р16-12078, Дубна, 1979.
- 10. Зельчинский М. и др. ОИЯИ, Р9-3369, Дубна, 1967.
- 11. Зельчинский М. и др. ОИЯИ, Р16-3587, Дубна, 1967.
- Джелепов В.П. и др. В кн.: Труды III совещания по использованию ядерно-физических методов для решения научно-технических и народнохозяйственных задач. ОИЯИ, Р18-12147, Дубна, 1979, с.271.
- 13. Оганесян Ю.Ц., Фикс М.М. ОИЯИ, 9-4165, Дубна, 1969.
- 14. Алейников В.Е. и др. ОИЯИ, Б1-2759, Дубна, 1966.
- 15. Капица С.П., Милехин В.Н. Микротрон. "Наука", М., 1969.
- 16. Барабаш Л.С. и др. ОИЯИ, Р9-7697, Дубна, 1974.
- 17. Долбилов Г.В. и др. ОИЯИ, Р9-12414, Дубна, 1979.
- 18. Долбилов Г.В., Цовбун В.И. ОИЯИ, Р16-11934, Дубна, 1978.
- 19. Шабалин Е.П. Импульсные реакторы на быстрых нейтронах. Атомиздат, М., 1976.
- 20. Бамблевский В.П., Гречко В.В. ОИЯИ, Б16-12123, Дубна, 1979.
- 21. Алейников В.Е. и др. ОИЯИ, Р16-12122, Дубна, 1979.
- 22. Ананьев В.Д. и др. ОИЯИ, РЗ-10888, Дубна, 1977.
- 23. Архипов В.А. и др. ОИЯИ, Р13-12466, Дубна, 1979.
- 24. Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений /ОСП-72/. Атомиздат, М., 1973.

- 25. Козлов В.Ф. Справочник по радиационной безопасности. Атомиздат, М., 1977.
- 26. Алейников В.Е. и др. ОИЯИ, Р16-6790, Дубна, 1972.
- 27. Зельчинский М., Жарновецкий К. Neutron Monitoring. IAEA, Vienna, 1967, p.125.
- Catalogue 75-76. Nuclear Equipment Establishments "POLON", Warczawa, 1975.
- 29. Голованов Н.А. и др. Труды СНИИП.Атомиздат, 1964, вып.1, с.36.
- Алейников В.Е., Архипов В.А., Комочков М.М. ОИЯИ, P16-4480, Дубна, 1969.
- 31. Bramblett R.L. et al. Nucl.Instr. and Meth., 1960, 9, p.1.
- 32. Лебедев В.Н., Салацкая М.И. В кн.: Дозиметрические и радиометрические методики. Атомиздат, М., 1966, с. 282-291.
- Алейников В.Е., Гердт В.П., Комочков М.М. Neutron Monitoring for Radiation Propection Purposes. IAEA, Vienna, 1973, vol.2, p.31.
- 34. Туровцева Л.С. Решение обратных некорректно поставленных задач методом статистической регуляризации. /Программа 0БР-23/, Препринт ИМП АН СССР, 1975.
- 35. Алейников В.Е., Гердт В.П., Комочков М.М. В трудах IV Всесоюзного совещания по ускорителям заряженных частиц. "Наука", М., 1975, том 2, с.240; ОИЯИ, Р16-8176, Дубна, 1974.
- 36. Алейников В.Е., Бамблевский В.П., Череватенко Е.П. ОИЯИ, P16-9123, Дубна, 1975.
- 37. Алейников В.Е., Бамблевский В.П., Комочков М.М. АЭ, 1977, т.42, вып.2, с.129.
- 38. Бамблевский В.П., Гречко В.В. ОИЯИ, Р16-12069, Дубна, 1978.
- 39. Ветцель Л. и др. В кн.: Дозиметрия излучений и физика защиты ускорителей заряженных частиц. Сборник докладов совещания по дозиметрии и физике защиты на ускорителях. 0ИЯИ, 16-4888, Дубна, 1970, с.201.
- 40. Алейников В.Е. и др. ОИЯИ, Р16-12819, Дубна, 1979.
- 41. Алейников Р.Е., Гердт В.П., Тимошенко Г.Н. АЭ, 1976, т.41, вып.5, с.332; ОИЯИ, Р16-9400, Дубна, 1975.
- 42. Тимошенко Г.Н., Алейников В.Е., Хан Г. Kernenergie, 1978, 21, 6, р.181.
- 43. Козлов В.Ф. Фотографическая дозиметрия ионизирующих излучений. Атомиздат, М., 1964.
- 44. Золин Л.С., Лебедев В.Н., Салацкая М.И. АЗ, 1962, т.13, с.467.
- 45. Комочков М.М., Салацкая М.И. ОИЯИ, Р16-8175, Дубна, 1974.
- 46. Комочков М.М., Салацкая М.И. ОИЯИ, Р16-9780, Дубна, 1976.
- 47. Becker K. Solid State Dosimetry. CRC Press, Clevelend, Ohio, USA, 1973.

- Бочвар И.А. и др. Метод дозиметрии ИКС. Атомиздат, М., 1977.
- 49. Алейников В.Е. и др. ОИЯИ, Р16-9870, Дубна, 1976.
- 50. Архипов В.А. и др. ОИЯИ, 16-11817, Дубна, 1978.
- 51. Лебедев В.Н. ОИЯИ, Р-2446, Дубна, 1965.
- 52. Алейников В.Е., Лебедев В.Н. ОИЯИ, Р9-3393, Дубна, 1967.
- 53. Зайцев Л.Н. и др. Основые защиты ускорителей. Атомиздат, М., 1971.
- 54. Нормы радиационной безопасности /НРБ-76/. Атомиздат, М., 1978.
- 55. Аленицкая С.И. и др. ОИЯИ, 16-10539, Дубна, 1977.
- 56. Harkrog A., Lippert I. Report 265, Riso, 1972; Report 305, Riso, 1974; Report 3230 Riso, 1975.
- 57. Эйзенбад М. Радиоактивность внешней среды. Атомиздат, М., 1967.
- 58. Алейников В.Е. и др. ОИЯИ, Р16-6791, Дубна, 1972.
- 59. Золин Л.С. ОИЯИ, 2252, Дубна, 1965.
- 60. UCRU Report 20, 1971.
- Радиационная безопасность. Величины, единицы, методы и приборы. Пер. с англ. под ред. И.Б.Кеирим-Маркуса. Атомиздат, М., 1974.
- 62. Rindi A. Health Phys., 1974, 27, p.322.
- 63. Голиков В.В. и др. ОИЯИ, 3-5736, Дубна, 1971.
- 64. Зайцев Л.Н. и др. ОИЯИ, Р-2479, Дубна, 1965; АЭ, 1966, т.20, вып.4, с.355.
- 65. Сычев Б.С. и др. ОИЯИ, Р-2359, Дубна, 1965; АЭ, 1966, т.20, вып.4, с.233.
- 66. Алейников В.Е. и др. ОИЯИ, Р9-2933, Дубна, 1966.
- 67. Зайцев Л.Н. и др. АЭ, 1966, т.21, №1, с.56.
- 68. Алейников В.Е. и др. АЭ, 1969, т.26, вып.6, с.541.
- 69. Зайцев Л.Н. и др. АЭ, 1968, т.24, вып.3, с.284.
- 70. Зайцев Л.Н. и др. ОИЯИ, Р9-3435, Дубна, 1967; АЗ, 1968, т.24, вып.2, с.194.
- 71. Кимель Л.Р. и др. ОИЯИ, Р16-3514, Дубна, 1967. АЭ, 1968, т.24, выл.4, с.395.
- 72. Кимель Л.Р. и др. ОИЯИ, Р9-3403, Дубна, 1967.
- 73. Кимель Л.Р. и др. ОИЯИ, Р9-3402, Дубна, 1967.
- 74. Зайцев Л.Н. и др. ОИЯИ, Р16-3591, Дубна, 1967.
- 75. Комочков М.М., Сычев Б.С. АЗ, 1963, т.12, с.325; ОИЯИ, 1167, Дубна, 1963.
- 76. Комочков М.М., Сычев Б.С. ОИЯИ, Р2-3315, Дубна, 1967.
- 77. Сычев Б.С. ОИЯИ, Р16-3593, Дубна, 1967.
- 78. Сычев Б.С. ОИЯИ, Р16-4304, Дубна, 1969.
- 79. Сычев Б.С. ОИЯИ, Р9-3269, Дубна, 1967.
- 80. Соболевский Н.М. ОИЯИ, Б1-2-5458, Дубна, 1970.

- 81. Алейников В.Е., Крючков В.П. ОИЯИ, Р-16-8177, Дубна, 1974.
- 82. Комочков М.М. ОИЯИ, Р16-7335, Дубна, 1973.
- Alsmiller R.G., Jr. et al. Nucl.Instr. and Meth., 1969, 74, p.213.
- 84. Серов А.Я., Сычев Б.С. Труды Радиотехнического института АН СССР, №9, 127, 1971.
- 85. Цовбун В.И. ОИЯИ, 16-7104, Дубна, 1973.
- 86. Цовбун В.И. ОИЯИ, Р16-11132, Дубна, 1977.
- 87. Цовбун В.И. ОИЯИ, Р16-7834, Дубна, 1974.
- 88. Цаппе Д., Цовбун В.И. ОИЯИ, Р16-9481, Дубна, 1976.
- 89. Цовбун В.И. ОИЯИ, Р16-10390, Дубна, 1977.
- 90. Алейников В.Е. и др. Труды IV Всесоюзного совещания по ускорителям заряженных частиц. "Наука", 1975, т.2, с.226. ОИЯИ, Р16-8179, Дубна, 1974.
- 91. Алейников В.Е. и др. АЭ, 1970, т.28, вып.5, с.438; ОИЯИ, Р16-4727, Дубна, 1969.
- 92. Alejnikov V.E., Komochkov M.M., Tsovboon V.I. Internat. Congress on Protection Against Accelerator and Space Radiation. IAEA, Vienna, 1973, vol.1, p.31.
- 93. Алейников В.Е. и др. Neutron Monitoring for Radiation Protection Purposes. IAEA, Vienna, 1973, vol.1, p.31.
- 94. Алейников В.Е., Гердт В.П., Комочков М.М. Труды IV Всесоюзного совещания по ускорителям заряженных частиц. "Наука", М., 1975, т.2, с.240; ОИЯИ, Р16-8176, Дубна, 1974.
- 95. Алейников В.Е., Гердт В.П., Комочков М.М. АЭ, 1977, т.42, вып.4, с.305; ОИЯИ, Р16-9870, Дубна, 1976.
- 96. Alejnikov V.E., Gerdt V.P., Komochkov M.M. In: Proc. of IVth Int. Congress IRPA, Paris, 24-30 Aprile, 1977, p.823.
- 97. Алейников В.Е. и др. ОИЯИ, Р16-11891, Дубна, 1978.
- 98. Алейников В.Е. и др. ОИЯИ, 16-8583, Дубна, 1975.
- Measurement and Calculation of Neutron Spectra for Irradiation of a Phantom. Technische Universitat Dresden, 05-4-77.
- 100. Pszona S. Experimental Determination of Dose-Equivalent and Quality Factor in a Cylindrical Phantom Irradiated with Reactor Neutrons. IAEA, Vienna, 1973.
- 101. Зельчинский М. и др. ОИЯИ, Р16-5383, Дубна, 1970.
- 102. Головачик В.Г. и др. В сб.: Вопросы дозиметрии и защиты от излучений. Атомиздат, М., 1969, вып.9, с.116.