ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ отдел радиационной безопасности

3496

4-76

2437/2-74

P16 - 7834

THIT. 3MAN

В.И.Цовбун

БЕТОННАЯ ЗАЩИТА ЭЛЕКТРОННЫХ УСКОРИТЕЛЕЙ НА ЭНЕРГИИ 0,5-10 МЭВ

Дубна 1974

P16 - 7834

В.И.Цовбун

БЕТОННАЯ ЗАЩИТА ЭЛЕКТРОННЫХ УСКОРИТЕЛЕЙ НА ЭНЕРГИИ 0,5-10 МЭВ

Направлено в АЭ

Экспериментальные исследования по защите из обычного бетона / $\rho = 2,36 \ s/cm^3$ / для электронных ускорителей с энергиями 4,6 и 10 МэВ проводились в работах ^{/1-3/}. Измерения ослабления тормозного излучения в бетоне в этих работах выполнены для угла вылета излучения О° по отношению к направлению движения пучка электронов, для случая падения излучения на защиту по нормали и до кратностей ослабления тормозного излучения ~ 500. В работе^{/4/}ослабление тормозного излучения с максимальной энергией 3 МэВ для угла вылета О° и падения по нормали рассчитывалось методом "кон-курирующих линий" ^{/5/}до кратностей ~ 10⁶.

В настоящей работе проведены обширные расчеты методом "конкурирующих линий" защиты из обычного бетона для ускорителей электронов с энергиями O,5; 1; 1,5; 2; 3; 4; 5; 6; 7; 8; 9; 10 МэВ. Углы падения излучения на защиту были выбраны от О до 70° с шагом 10° . Расчеты выполнены для четырех варнантов взаимного расположения защиты и мишени, бомбардируемой электронами /рис. 1/. Рассчитанные кратности ослабления излучения достигали 10^{10} .

При проведении вычислений спектры тормозного излучения представлялись в 10-групповом, а для энергий электронов 8, 9 и 10 *МэВ* в 12-групповом приближении. В 10-групповом приближении разбиение по энергии принималось равномерным с шагом $\Delta E_{i=1,10} = E_0/10$, где E_0 - энергия падающих на мишень электронов. В 12-групповом приближении разбиение было выбрано следующим:

$$E_{i=1,12} = (E_1 = 0.05 E_0, E_2 = 0.1 E_0, E_3 = 0.15 E_0)$$

$$E_{i=4,12} = (i-2) \frac{E_0}{10} .$$

Рис. 1. Четыре варианта взаимного расположения защиты и мишени, для которых выполнялись расчеты.

Матрица толщины защиты, необходимой для ослабления моноэнергетического излучения фотонов в К_ј раз, составлялась для кратностей ослабления

 $K_{j=1,56} = (1,5; 2;3;4;6;8;10;) \cdot 10^{n}$, n=0,7.

Необходимая толщина защиты, ослабляющая тормозное излучение до требуемой кратности ослабления К, рассчитывалась как

$$\mathsf{D} = \mathsf{d} + 2\lambda \cdot \cos\theta,$$

где d - толщина защиты, ослабляющая лидирующую группу фотонов в K_i раз / K_i = K · η_i , η_i - вклад в полную дозу падающего на защиту излучения фотонов i - й энергетической группы/; λ_k - длина свободного пробега фотонов "конкурирующей" группы; θ - угол падения излучения на защиту.

Поправка $2\lambda_k \cdot \cos \theta$ была выбрана подбором наилучшего положения кривых ослабления /они должны исходить из точки K=1/с учетом того, что в слоё защиты от d до $d - \lambda_k \cdot \cos \theta$ ослаблялись до требуемых кратностей ослабления K_i 3-4 энергетических группы.

В качестве исходной информации по спектрально-угловым распределениям тормозного излучения использовалась информация из обзора ^{/6/}.

Для заполнения матрицы кратностей ослабления моноэнергетического излучения были взяты данные $^{7/}$ по ослаблению плоского мононаправленного излучения источника, расположенного в бесконечной бетонной защите, которые интерполировались по энергии фотонов и по углам вылета излучения из плоскости источника. До кратностей ослабления ~ 10 использовались данные $^{8,9/}$ по ослаблению у -излучения бетонными барьерами, которые также интерполировались по энергии и углам.

По данным расчетов были построены кривые ослабления дозы тормозного излучения в бетоне. Оказалась возможной экспоненциальная аппроксимация кривых ослабления вплоть до кратностей 10¹⁰ для всех исследуемых энергий падающих на мишень электронов. Отклонение расчетных значений кратностей ослабления от аппроксимирующих кривых не превышало 2 по кратности ослабле-

ния /за исключением падения излучения на защиту под 60 и 70°, когда отклонения иногда достигали 3 и 5 соответственно/. На рис. 2 приведено характерное положение кривых ослабления и расчетных значений кратностей ослабления. Информация о слоях десятикратного ослабления тормозного излучения в обычном бетоне^{*}, полученная из кривых ослабления, для различных энергий электронов и вариантов взаимного расположения мишени и защиты собрана в таблице.

Ошнбка в определении слоя десятикратного ослабления оценивалась как

$$\sigma_{\theta} \simeq \frac{\lambda_{\pi}}{10} \cdot \frac{\Lambda_{0,1}(\theta)}{\Lambda_{0,1}(0^{\circ})} \cdot f,$$

где λ_{Π} - длина свободного пробега "лидирующей" группы фотонов; $\Delta_{0,1}(\theta)$ - слой десятикратного ослабления тормозного излучения при падении его на защиту под углом θ ; f - поправочный коэффциент, который принимался равным 1, когда отклонения расчетных значений от аппроксимации не превышалн 2, f =1,5, когда отклонения достнгали 3, и f =2, когда отклонения достнгали 5.

При этом подразумевалось, что положение "истинной" кривой ослабления при K = 10^{10} отличается не более чем на λ_{π} от построенной кривой ослабления для угла падения излучения O°.

Цнфры, приведенные в таблице в скобках, для углов падения O° и энергий электронов 4,6 и 10 *МэВ* взяты из работ /1-3/. Слои десятикратного ослабления, полученные экспериментально в /1-3/, несколько меньше приведенных в настоящей работе, и это связано в основном с тем, что эксперименты /1-3/ проводились лишь до кратности ~500, а аппроксимация данных расчетов в диапазоне кратностей ослабления до 10¹⁰

* Оценку слоев десятикратного ослабления тормозного излучения в других бетонах можно сделать, введя поправку на плотность бетона, при этом ошибка в определении слоя десятикратного ослабления составит менее 10% /3/.

Рис. 2. Кривые ослабления в обычном бетоне тормозного излучения электронов с энергией 4 *МэВ*, бомбардирующих мишень из олова.

Таблица

Чер	VUTOUL	Bolt			,					
Nan,		ри –ич	Dat More	нтикратного	ослаоления в под углом	в сантиметрах в . град.	для падени	я тормозно	ло излучен	AA A
		೭	0	OI	20	30	40	50	60	20
н	2	~	4	2	9	٤.	8	6	DI	
0,5	ы	ЧNч	13,6±0,4 13,2±0,4 13,2±0,4	13,2±0,4 12,8 ± 0,4	I2,7±0,4 I2,4±0,4	12,2±0,4 11,9±0,4	II,3±0,4 II,3±0,4	10, 5±0, 3 10, 4±0, 3	9,6±0,4 9,5±0,3	8,3±0,5 8,6±0,5
		h 4	12,1±0,4	11,8±0,4	11,8-0,4 II,3±0,4	11,0±0,4	10,6±0,4 10,5±0,4	9,5±0,3 9,9±0,3	8,9±0,3 9,0±0,3	8,1±0,4 8,0±0,3
7	Au	HOM4	17,5±0,6 15,6±0,7 15,6±0,7 15,1±0,6	I7,0±0,6 I5,3±0,6 I4,8±0,6 I4,8±0,6	I6,5±0,6 I4,8±0,6 I4,4±0,6 I4,3±0,6	I5,8±0,6 I4,2±0,5 I3,9±0,5 I3,7±0,5	I4,6 [±] 0,6 1 I3,3 [±] 0,5 1 I2,9 [±] 0,5 1 I2,9 [±] 0,5 1	12,9±0,5 12,2±0,7 11,4±0,5 11,6±0,5	II,7±0,4 II,1±0,9 IO,4±0,6 IO,7±0,7	I0,3±0,7 9,9±0,9 9,6±0,8
1,5	Au	H 0 M 4	20,7±0,7 20,3±0,7 20,3±0,7 18,7±0,7	20,1±0,7 19,5±0,7 18,4±0,6 18,1±0,6	19,4 ⁴⁰ ,7 19,1 ⁴⁰ ,7 17,7 ⁴⁰ ,6 17,7 ⁴⁰ ,6	I8,6±0,7 1 I8,2±0,7 1 I7,0±0,6 1 I7,0±0,6 1	17,2 [±] 0,6 I 17,0 [±] 0,6 I 15,6 [±] 0,5 I 5,8 [±] 0,6 I	5,0±0,6 5,4±0,6 4,0±0,5 4,0±0,5	13,5±0,5 13,8±0,5 12,6±0,4 12,8±0,5	II,7 [±] 0,7 I2,0 [±] 0,7 II,1 [±] 0,7 II,0 [±] 0,7
	•									

н	2	m	4	ŝ	9	2	8.	6	. I O	II
	-	н	23 , 0±0,9	22 , 5±0,8	21 , 9±0,8	20,5±0,8	18,3±0,7	16,3±0,6	14,3±0,6	12 ,3 [±] 0,
c	0.7	2	22,I±0,9	21,7±0,8	20 , 9 1 0,8	I9,6±0,8.	18,3±0,7	16,5±0,6	14,7 [±] 0,6	I3,2 [±] 0,9
Z	E	m	22, I [±] 0,9	20,0±0,8	19,3 [±] 0,7	18,5±0,6	17 ,0±0, 6	15,0±0,5	13,5 [±] 0,5	11,6±0,8
		4	20,5±0,8	20,0±0,8	7 ,0 ±4,€I	18,4±0,6	16,9±0,6	15,1 [±] 0,5	13,3±0,5	11,8 [±] 0,8
		н	27,9±1,0	27,I [±] I,0	26,3±1,0	24 ,5[±]0, 9	21,9±0,8	19 , 6±0 , 7	16,5±0,6	I4,3±0,8
~	Au	~	26,4±1,0	25,2±I,0	24,6 [±] I,0	23 , 5±0,9	22, I [±] 0, 8	19,2 [±] 0,7	16,8±0,6	I4,8±0,ξ
,	5	m	26,4±1,0	25,4±1,0	24 , 6±0,9	23,2±0,9	20,8±0,8	18,8±0,7	16 , 3±0,6	I4,2 ^{±0} ,8
		47	1	1	<mark>,</mark> ۱	1	ł		t.	ı
		н	30, 1±1,2 (28,3)	29,0±1,2	2.6,9±1,I	25,5±1,0	22,8±0,9	19,4±0,8	16,8±0,7	I4,2±0,9
4	S ⁴	N	28,I±I,2	26,9±1,2	25,9±1,I	24,5±1,0	22,0±0,9	20,0±0,8	17,1±0,7	I4,7±0,9
		m	28,I±I,2	26,4±1,0	25,4±1,0	24,0±0,9	21,7±0,8	18,7±0,7	15,9±0,6	13,8±0,8
		4	26,2±1,I	25,7±1,0	25,0±1,0	23,6±0,9	21,1 [±] 0,8	7±0,7	I6,2±0,6	13,7±0,8

16,8±0,8 17**,3±0,**9 16,3±1,0 17,8±0,8 16,8±0,8 16**,3±**0,9 I7, I[±]0,7 17,8±1,2 16,3±0,9 15,9±0,9 16,2±0,8 I6,0±0,8 15**, 3±0,**8 16,7±0,8 16,0±0,91 16,5±0,8 16,8±0,9 15,3±0,8 14,9±0,9 16**, E[±]0,** 8 16,6±0,9 ㅂ Ħ 20,0±0,8 21,8±0,8 20,8±0,8 19,7±0,8 20,8±0,8 20,2±0,8 21,7±0,8 19,4±0,8 19,9±0,8 19,7±0,8 18,0±0,81 19,6[±]0,8 .8,0±1,01 18,7±0,8 18,6±0,7 17,5±0,7 20,0±0,8 19,2[±]0,8 17,7±0,7 18,0±0,7 18,8±0,8 В ដ 23,0±1,0 25,6±1,0 25,0±1,0 23,0±1,0 24,4±1,0 23,8±1,0 24, I[±]I,0 25,6±1,0 23**,5[±] 0,**9 23,7±1,0 22,8±0,9 22,7±0,9 20**,4±**0,9 22,4±0,9 23,2±0,9 21,0±0,8 21,7±0,8 21,8±0,9 22,1±0,9 22,2±0,9 22,1±0,9 ÷., 6 5 δ $1_{\vec{n}}$ 26,8[±]I,I 27,9±1,I 28,7±1,2 28,0±1,2 30,7±1,2 29,9±1,2 27,7±1,2 28,7[±]I,I 26,7±I,I 27,5±1,I 25**,**7±1,0 26,2±I,I 25,7±I,I 23,341,0 26,411,0 25,041,0 25,I±I,0 24,9±1,0 24,4±1,0 25,3H 23,6440 œ ω 30,2±1,3 29,7±1,3 30,9±1,3 31,4±1,3 33, 4±1,3 31, 3[±]1, 3 34,2^{±1},3 32, I[±]I, 3 32, I[±]I, 3 29**,**9±1,3 26,5±1,I 26,2[±]I,I 29,2±1,2, 29,241,2 28, I[±]I,2 28,4±1,3 27 나가 1 27**,9±1,**I. 28,411,2 31, I[±]1,3 28, 5±1,3 5 5 . -34, I[±]I, 4 33,2[±]1,4 32,6±1,4 32,0[±]I,4 35,2±1,4 31\7±1,4 32,9±I,4 36, 5±1,4 34,0±1,4 30,1,1,3 28, I±I,I 31,341,3 30,0±1,3 32**,**7±1,4 31,6±1,4 30,641,4 29, I±I,2 27**,9**±1,1 30,4±1,4 32,0±1,3 29,5±1,2 12 9 9 34**,**4±1,5 40, I[±]I,5 34,3[±]1,5 33,2±1,5 33,0±1,5 39,1[±]1,5 35,3±1,5 34,0^{±1},5 37,2[±]I,5 34,641,4 31,9±1,4 35,7±1,4 32,7±1,4 3I,9±I,4 29,7±1,3 31,2±1,4 31, I[±]I, 4 28,941,2 28,941,2 31,5±1,4 31,9±1,3 ŝ ഹ 41,9±1,6 (38,6) 37,6±1,6 35,6[±]1,5 34,0[±]1,5 36,6[±]1,6 36,6[±]1,6 35, I[±]I, 5 ۰. ا 38,4±1,5 35,6[±]I,5 40,2±1,6 30,4±1,3 35,2[±]1,4 (34,0) 33,0±1,4 33**,**0±1,4 33**,**4±1,5 37,2±1,5 33,4±1,5 32,741,5 30,411,3 31,7±1,4 33,0±1,3 29,41,3 4 4 4 н m н 2 m 4 н 2 \mathbf{m} m н Š 4 н N m 4 н N m 4 N S S 2 S, S S S 6 н 8 5 9 н ~

10

ιH

16**,6[±]1,**0 15, 7±1, I

20,5±0,8

20,9±0,8

24,7±1,0

28,8[±]1,2

31,9±1,3

32,0[±]1,3

34,0±1,4 33,4±1,4

37,6±1,6 36,7±1,6

18,0±0,9

22,0±0,8

26,0±1,0 24,2±1,0

29, 3[±]1, 2 28**, 5±1,**2

33, 3±1,3

34, 7±1,4

36,4±1,5 35, 5-1, 5 35,0±1,5

N m +

≥

В заключение автор выражает благодарность Н.А. Ульяновой за подготовку для ЭВМ большого объема числовых данных, а также за помощь в оформлении работы.

Литература

- 1. F.S.Kirn, R.J.Kennedy. How Much Concrete for Shielding. Nucleonics, 12 (6), 44-48 (1954).
- 2. C.J.Karzmark, T.Capone. Measurements of 6MVX-rays. British Journal of Radiology, 41, 33-39 (1968).
- 3. T.Maruyama, a.o. Attenuation of 4-32 MV X-rays in Ordinary Concrete, Heavy Concrete, Iron and Lead. Health Physics, 20, 277-284 (1971).
- 4. Л.Р.Кимель, В.П.Машкович, А.М.Панченко. Защита от излучений электронных ускорителей с максимальной энергией ускоренных электронов до ЗО МэВ. В сборнике "Приборы и методы анализа излучений", выпуск III, Москва, 1962.
- 5. Л. Р.Кимель, В.П. Машкович. Защита от ионизирующих излучений. Москва, Атомиздат, 1972.
- 6. В.И.Цовбун. Электронные ускорители на энергии 0,5-100 МэВ как источники излучения. ОИЯИ, P16-7104, Дубна, 1973.
- L.V.Spencer, J.C.Lamkin. Slant Penetration of γ-rays in Concrete. NBS Report 6591, 1959.
- F.S.Kirn, R.J.Kennedy, H.O.Wyckoff. The Attenuation of γ -rays at Oblique Incidence, Radiology, 63 (1), 94-104 (1954).
- 9. W.O.Dogget, F.A.Bryan. Theoretical Dose Transmission and Reflection Probabilities for 0,2-10,0 MeV photons Obliquely Incident on Finite Concrete Barriers. Nuclear Science and Engineering, 39, 92-104 (1970).

Рукопись поступила в издательский отдел 29 марта 1974 года.