

Объединенный институт ядерных исследований дубна

P15-93-218

С.А.Карамян, А.Г.Белов

РЕАКЦИЯ (у, 2n) НА ВЫСОКОСПИНОВОМ ЯДРЕ ¹⁸⁰та

Направлено в журнал «Известия РАН, серия физическая»

1. Введение

Ядерные реакции на высокоспиновых изомерных мищенях представляют новый малоизученный класс ядерных реакций. Недавно начата [1-3] программа исследований с изомером 178m_2 Hf (T_{1/2}=31 год, I[#] = 16⁺). Можно процитировать также небольшое число работ [4,5] с ядрами ^{180m}Та и ¹⁷⁶Lu, которые, обладая значениями I^{*} = 9⁻ и 7⁻ соответственно, содержатся в естественной смеси изотопов Та и Lu. Высокоспиновые мишени могут показать заметные отличия в сечениях поглощения излучений по сравнению с обычными ядрами, в связи с особенностями структуры, с возможным изменением деформации и радиуса, а также плотности уровней составного ядра. Отличия в угловом распределении продуктов должны возникать непосредственно благодаря спину мишени. Кроме того, интересно измерить вероятность заселения состояний различной структуры в ядре-продукте реакции. Обычно предполагается полное структурное смешивание состояний при высокой энергии возбуждения. Реакции с высокоспиновыми К-запрещенными изомерами позволяют проверить экспериментально К-смешивание для уровней составного ядра. Наиболее простой способ получить экспериментальную информацию — это измерить относительный выход изомерного и основного состояний в реакции, когда исходное ядро — изомер известной структуры. Важно определить, выявляется ли некоторая селективность эаселения уровней конечного ядра, имеющих структуру, подобную структуре исходного ядра, или нет. Для реакций с обычными, ниэкоспиновыми мишенями изомерные отношения хорошо известны, они, как правило, невелики из-за дефицита спина (в случае легких бомбардирующих частиц). Когда исходное ядро имеет высокий спин, ситуация совершенно меняется, можно ожидать предпочтительное заселение высокоспиновых изомерных уровней в конечном ядре. Удобную возможность для такого исследования представляет следующая реакция:

 $\begin{array}{rrrr} T_{1/2} & \geq 1.2 \cdot 10^{15} \; \text{met} & 9,31 \; \text{мин}, & 2,36 \; \text{ч} \\ & & 1^{80m} \text{Ta} & (\gamma,2n) & 1^{78g} \text{Ta}, & 1^{78m} \text{Ta} \\ \text{I}, \; \text{K}^{\pi} & 9,9^{-} & 1,1^{+}, & 7,7^{-} \end{array}$

Необходимо отметить, что до сих пор одновначно не выяснено, какой из уровней 1⁺ или 7⁻ в ¹⁷⁸Та расположен ниже по энергии, наиболее вероятно, что 1⁺ основное состояние. В дальнейшем будем называть 7⁻ изомерным состоянием, а 1⁺ --- основным.

2. Эксперимент

Облучения проводились на выведенном пучке электронов микротрона МТ-25 ЛЯР ОИЯИ. Схема эксперимента показана на рис.1. Пучок электронов диамстром 5 мм и интенсивностью 15 иА проходил через конвертер из W толщиной 2,5 мм. Непосредственно за конвертером помещались активируемые мищени размером 6 × 6 мм² из металлического Та и Hf. Выход реакций на изотопах Hf измерен для сравнения с результатами для ¹⁸⁰та. Показанная геометрия облучения обеспечивает максимальный поток тормозного излучения на активируемой мищени, но имеет недостаток, связанный с нагревом мишеней проходящим электронным пучком. Активность ¹⁷⁸ Та измерялась через 5 мин после окончания 15 мин облучения по линиям 1340.8 и 1350.6 коВ, а пля ¹⁷⁸т Та соответствующие интервалы времени были 0,5 и 1,5 часа и использовались линии 213,4; 325,6 и 426,4 къВ. у-спектры наведенных активностей измерены на стандартном Ge-детекторе. С учетом всех необходимых факторов (эффективность, распад, самопоглошение, выход у-квантов) определялось абсолютное число атомов интересующего изотопа в активированной мишени Napog. Затем вычислялся выход продукта:

$$Y = \frac{N_{\rm ar}^{\rm npoqysta}}{N_{\rm ar}} \tag{1}$$

.

ŧ

Рис.1. Схема эксперимента по изучению фотоядерных реакций на пучке электронов микротрона МТ-25 методом активации. 1 — пучок электронов, 2 — вакуумная труба, 3 — вакуумная фольга, 4 — W конвертер, 5 — карманы из Си-фольги, 6 — держатель, 7 — мишень, 8 — мониторная мишень, 9 — поглотитель пучка, 10 — вентилятор

2

как отношение N_{ат}^{под} к числу атомов мишени и к числу электронов, прошедших через конвертер. Выход Y содержит интегральное по тормозному спектру сечение фотоядерной реакции, а также геометрические факторы, которые были стандартизованы и одинаковы во всех облучениях. Поэтому величину Y можно рассматривать как физический выход реакции.

Ядро-	$I_i^{\pi} \rightarrow I_f^{\pi}$	Ядро-	Период	Тип	Выход при
мишень	1	продукт	полу-	реакции	$E_m = 21,5 M \Rightarrow B$
			распада		
174Hf	$0^+ \rightarrow 1/2^-$	¹⁷³ Hf	24 ч.	$g(\gamma,n)g$	$5, 4 \cdot 10^{-26}$
¹⁷⁴ Hf	$0^+ \rightarrow 0^+$	¹⁷² Hf	683 дн.	$g(\gamma, 2n)g$	$2,4 \cdot 10^{-27}$
¹⁷⁸ Hf	$0^+ \rightarrow 7/2^+$	¹⁷⁷ <i>g</i> Lu	6,7 дн.	$g(\gamma,p)g$	$0,7 \cdot 10^{-28}$
¹⁸¹ Ta	$7/2^+ \rightarrow 1^+$	¹⁸⁰ ^g Ta	8,15 ч.	$g(\gamma,n)g$	$5,7 \cdot 10^{-26}$
¹⁸¹ Ta	$7/2^+ \rightarrow 8^-$	¹⁸⁰ ^m Hf	5,5 ч.	$g(\gamma,p)m$	$2,0\cdot 10^{-30}$
¹⁸¹ Ta	$7/2^+ \rightarrow 7/2^+$	¹⁷⁷ gLu	6,7 дн.	$g(\gamma, \alpha)g$	$3, 1 \cdot 10^{-31}$
^{18Cm} Ta	$9^- \rightarrow 1^+$	¹⁷⁸ <i>9</i> Ta	9,31 м.	$m(\gamma, 2n)g$	$0,9 \cdot 10^{-27}$
^{180m} Ta	9 [−] → 7 [−]	¹⁷⁸ Ta	2,36 ч.	$m(\gamma,2r)m$	$2,8 \cdot 10^{-27}$

Таблица. Список изученных реакций

В таблице 1 приведены радиоактивные продукты наблюдавшихся реакций, указаны спин и четность мишеней и продуктов, а также тип реакции и ее выход при максимальной энергии тормозного спектра 21,5 МэВ. Кроме хорошо известных реакций $g(\gamma, x)g$ и $g(\gamma, x)m$, когда наблюдают выход основного и изомерного состояний в ядре-продукте реакции, стартуя с основного состояния g_{Ak} а-мишени, зафиксированы также малоизученные процессы типа $m(\gamma, x)g$ и $m(\gamma, x)m$ на изомерной мишени.

3. Результаты

На рис.2 показаны зависимости выхода изученных фотоядерных реакций от максимальной энергии тормозного спектра. Случайная погрешность в большинстве случаев меньше размера точех, в ином случае погрешность дана на рис.2. Абсолютизация всей системы точек не ямеет особого значения, т.к. речь идет об отношениях выходов реакций. Видно, что реакции с испусканием заряженных частиц подавлены на несколько порядков величины по сравнению с испусканием нейтронов. Выход ^{180m} Нf на мишени ¹⁸¹ Та добавочно уменьшается за счет изомерного отношения, которое согласно литературным данным должно быть на уровне нескольких процентов [6,7].

Наиболее интересно сравнить реакцию (γ ,2n) на высокоспиновом ядре ^{180m} Та и на ядре со спином 0 — ¹⁷⁴ Нf. Видно, что суммарный выход первой реакции, включающий выход изотопов ^{178m} Та и ^{178g} Та, почти в полтора раза выше, чем выход изотопа ¹⁷² Нf на мишени ¹⁷⁴ Hf. Выход ^{178m} Та определяется с хорошей точностью, и даже он один (без учета ^{178g} Ta) чуть вы-

Рис.2. Эленсимости выходов радиоактивных продуктов от максимальной энергии тормоэного спектра, измеренные при облучении мишеней ^{сст}Нf и ^{сст}Та. Точки соответствуют ядрам-мишеням: • — ¹⁸¹Та, О — ¹⁸⁰^mТа, П — изотопам Hf. Кривые проведены по точкам

ше, чем для ¹⁷² Нf. Изотоп ¹⁷⁸ Ta образуется с выходом в 3 раза меньше, чем ¹⁷⁸ Ta. Точность определения ¹⁷⁸ Ta хуже из-за его свойств распада — короткий период и небольшой выход γ -квантов. Тем не менее различие выходов ¹⁷⁸ Ta и ¹⁷² Нf значительно превосходит стандартную погрешность.

На рис.2 сравниваются также реакции испускания одного нейтрона ¹⁸¹ Та(γ ,n)¹⁸⁰⁹ Та и ¹⁷⁴ Нf(γ ,n)¹⁷³ Hf. Эдесь, в соответствии с ожиданиями, большого различия выходов не наблюдено. Доля сечения, заселяющего ^{180m} Та, согласно оценкам, находится на уровне нескольких процентов и не может значительно увеличить выход реакции ¹⁸¹ Ta(γ ,n). Было бы интересно измерить и выход реакции ^{180m} Ta(γ ,n), однако образующийся изотоп ¹⁷⁹ Та при распаде не испускает γ -квантов и не может быть определен методом γ -спектромстрии.

4. Обсуждение результатов

Реакции на изомерных мишенях 178m_2 Hf $(n,\gamma){}^{179m_2}$ Hf и 180m Ta $(\gamma,\gamma'){}^{180g}$ Ta были изучены в работах [2] и [4] соответственно. В работе [2] измерено сечение эаселения изомерного состояния, а ветвь реакции, ведущая к основному состоянию ядра-продукта, не определена; в работе [4], напротив, определялся только выход основного состояния. Большое сечение радиационного захвата нейтрона, ведущего к изомеру ^{179m} Hf. позволило утверждать, что, вероятно, главная доля сечения рассляет изомер, имеющий высокое квантовое число $K^{\pi} = 25/2^{-}$ и структуру, близкую к структуре ядра мишени. В работе [4] показано, что основное состояние заселяется с сечением, составляющим заметную долю от полного. Эти выводы не противоречат друг другу, так как в [2] и [4] не достигнута полнота данных, когда одновременно был бы измерен выход и основного и изомерного состояний. Преимущество настоящей работы в том, что искомая полнота обеспечена. Установлено, что ядро, стартуя с изомерного высокоспинового уровня, после реакции (γ ,2n) достигает изомерного уровня подобной структуры в 75% случаев, а в 25% переходит на низкоспиновое основное состояние остаточного ядра. Таким образом, изомерное отношение составляет в этой реакции $Y_m/Y_a = 3:1$. Этот результат подтверждает качественные выводы обеих работ [2] и [4]. Действительно, главная доля сечения приходится на заселение высокоспинового изомерного состояния, структура которого подобна мишени. Вместе с тем заселение низкоспинового основного состояния имеет вполне заметную вероятность, намного больше, чем в некоторых расчетах, предсказывавших вероятность порядка 10⁻³ и ниже.

Для описания изомерных отношений часто применяются те или иные версии статистической модели. После поглощения дипольного γ -кванта ядром ¹⁸⁰^тТа васеляются уровни составного ядра со спинами 8⁺, 9⁻ и 10⁺ при энергии возбуждения, равной E_{γ} . После испускания нейтронов допустимый диапазон спинов существенно расширяется, кроме того, возникае́т разброс энергий возбуждения. На рис.3 для иллюстрации показано распределение в координатах E^{*}, J для остаточного ядра-продукта реакции ^{180m} Ta(γ ,2n) в случае E_{γ}=22 M3B. Видно, что заселяется довольно широкая область, которая еще растянется по вертикали, если учесть сплошной спектр γ квантов тормозного излучения. Неудивительно, что при таком распределении возбуждается большое число уровней, распадающихся ускоренными переходами на полосу основного состояния. Скорее можно было ожидать, что вероятность заселения изомера 7⁻ окажется значительно ниже, чем наблюдаемое в эксперименте значение — 75%. Так или иначе необходим детальный статистический расчет изомерного отношения в исследованной реакции. После этого можно будет сделать вывод о существовании или отсутствии какой-либо селективности заселения уровней определенной структуры.

Рис.3. Область E*, I, заселяемая в ядре-остатке реакции ^{180m}Ta(γ ,2n) после ислускания нейтронов, в случае E $_{\gamma}$ =22 МэВ

Обсудим теперь полное сечение образования ^{178m+g}Ta, которое неожиданно оказалось почти в 1,5 раза больше, чем для аналогичной реакции на ¹⁷⁴Hf. Данный результат не предсказывался теорией, поэтому следует по-

Рис.4. Отношение выходов $(\gamma,2n)/(\gamma,n)$ -реакций на ядрах ^{180m,181}Та и ¹⁷⁴Нf

пытаться объяснить его такой тривиальной причиной, как различие порогов двух реакций — 14,5 и 15,5 МэВ. На рис.4 показано отношение выходов $(\gamma,2n)$ -реакций ^{180m}Ta $(\gamma,2n)$ и ¹⁷⁴Hf $(\gamma,2n)$ к выходам (γ,n) -реакций ¹⁸¹ Ta(γ ,n) и ¹⁷⁴ Hf(γ ,n) соответственно. Как известно из статистической теории, отношение сечений двух процессов в области энергии возбуждения заметно выше порогов определяется разностью порогов этих процессов. т.е. в нашем случаем разностью В_{2n}-В_n. Значения В_{2n}-В_n для двух указанных пар реакций почти одинаковы, таким образом, можно ожидать одинаковых значений Y_{2.2n}/Y_{2.n} для Та и Hf. Как видно на рис.4, точки для Та лежат заметно выше, чем для Hf. Следовательно, данное различие не связано с различием порогов реакций, а имеет какую-то внутреннюю причину. Можно предположить, что сечение поглощения у-квантов высокоспиновым ядром ^{180m}Та заметно повышено. Причем не ясно, увеличена ли амплитуда гигантского дипольного резонанса как целого или имеет место более пологий правый склон резонанса при E₇ ≥ 16 МэВ. Требуются дальнейшие экспериментальные исследования этого вопроса. В теоретическом плане кажется возможным, что присутствие двух выстроенных нечетных

нуклонов увеличивает вероятность дипольного поглощения γ-кванта. Это, по-видимому, противоречит некоторым теоретическим описаниям гигантских резонансов. Но можно ли утверждать, что механизм фотопоглощения ядром жестких γ-квантов совершенно однозначно выяснен?

Таким образом, впервые для фотоядерной реакции на высокоспиновом ядре измерено изомерное отношение выхода продуктов, а также обнаружен рост сечения фотопоглощения по сравнению с обычными низкоспиновыми мишенями.

Авторы благодарны Ю.Ц.Оганесяну за поддержку работы.

Литература

- Oganessian Yu.Ts., Karamian S.A., Gangrski Yu.P. et al. J.Phys.G., 1992, v.18, p.393-399.
- Оганесян Ю.Ц., Карамян С.А., Назаров В.М., Шстловски З. Кр. сообщения ОИЯИ 3(54)-92, с.72-79, Дубна, 1992.
- Oganessian Yu.Ts., Karamian S.A., Gangrsky Yu.P. et al. Preprint JINR E15-93-96, Dubna, 1993.
- 4. Collins C.B., Eberhard C.D., Glesener J.W. and Anderson J.A. Phys.Rev., 1988, v.C37, p.2267.
- 5 Dubbers F., Funke L., Kemnitz P. et al. Nucl. Phys. 1979, A315, p.317.
- 6. Мазур И.В., Соколюк И.В., Биган З.М. ЯФ, 1991, т.54, с.895.
- 7. Мазур И.В., Лендел А.И., Биган З.М. и др. Тезисы 42 совещания по ядерной спектроскопии и структуре ядра. с.244, "Наука". С.-Петербург, 1992.

Рукопись поступила в издательский отдел 15 июня 1993 года.