

*

Объединенный институт ядерных исследований

дубна

a span and we had

ваеранах вссаедования БИБЛИОТЕНА

P15-90-425

1990

А.Д.Антонов^{*}, Н.П.Балабанов^{*}, Ю.П.Гангрский, Ф.Г.Кондев, С.Г.Маринова^{*}, А.П.Тончев, Х.Г.Христов, В.Д.Чолаков^{*}

ИЗМЕРЕНИЕ ИНТЕГРАЛЬНЫХ СЕЧЕНИЙ РЕАКЦИИ (γ, α) В ОБЛАСТИ ГИГАНТСКОГО ДИПОЛЬНОГО РЕЗОНАНСА

Направлено в журнал "Ядерная физика"

Университет им.П.Хилендарского, Пловдив, НРБ

1. Введение

Исследования реакций с вылетом «частиц при взаимодействии у-квантов с атомными ядрами позволяют получать сведения о механизме формирования «частиц и их эмиссии из возбужденных ядер.

Результаты анализа функций возбуждения /1/,энергетических слектров /2-6/ и угловых распределений /7,8/ «-частиц в фотоядерных реакциях указывают на преимущественно статистический характер ислускания «-частиц в легких и средних ядрах.Однако для ряда тяжелых ядер наблюдается увеличение числа высокоэнергетических «-частиц и анизотропия их угловых распределений, что говорит о наличии предравновесных и прямых процессов /7,8/.

Представляет интерес получение данных о соотношении между прямым и испарительным процессами, о влиянии на них структуры ядер. Для этого необходимы дальнейшие исследования реакций (ү, а) при разных энергиях ү-излучения. Поэтому целью данной работы является измерение выходов и интегральных сечений реакции (ү, а) для ядер в широком диалазоне 2 и А.

2. Методика эксперимента

Настоящие исследования проведены на пучке тормозного излучения микротрона МТ-25 Лаборатории ядерных реакций ОИЯИ. Основным преимуществом применения микротрона является высокая монохроматичность (ΔΕ=30-40 кэв) и сравнительно высокая мошность (до 500 Вг) электронного пучка,что устраняет ряд трудностей, связанных с обработкой экспериментальных результатов.

Образцы из исследуемых ядер облучались при граничной энергии тормозного излучения 23 МэВ и среднем токе электронов 15 мкА. Мониторирование потока т-квантов осуществлялось с помощью пластинок из меди, которые облучались вместе с образцами. Для определения выхода реакции (т, а) на исследуемых ядрах применен метод наведенной активности /1/.

Характеристики мишеней и ядер-продуктов приведены в табл.1. Измерения т-излучения ядер-продуктов, накапливаемых в облученных образцах из реакции (т, а), проводились с помощью слектрометра, состоящего из полупроводникого детектора (НРСе объемом 2.1 см³

или Ge(Li) объемом 60 см³),4096-канального амплитудного анализатора LP-4900 "NOKIA" и автономной анализаторной системы "MИКАМ-2"/9/.

Таблица 1

ЯДРА-МИШЕНИ			ЯДРА-ПРОДУКТЫ			
Изотоп	Состав	Обогащение %	Изотоп	^T 1/2	Е кэВ	I X
51 _V	V ₂ 0 ₅ (нат.)	99.75	⁴⁷ Sc	3.42 дн	159.4	73.0
⁶⁵ Cu	Сц (нат.)	30.96	⁶¹ Co	1.65 ч	67.5	87.0
⁷¹ Ga	Ga203	98.91	⁶⁷ Cu	61.92 ч	184.5	47.0
⁷⁶ Ge	GeO	77.00	⁷² Zn	46.50 ч	144.8	83.0
96 _{Zr}	Zr0 ₂	59,60	⁹² Sr	2.71 ч	1370.0	90.0
93 _{Nb}	NDO	100.00	89m _Y	16.00 c	909.0	99.0
92 _{Mo}	Мо (нат.)	14.84	⁸⁸ Zr	83.40 дн	392.8	97.0
¹¹⁵ In	In (Har.)	95.70	¹¹¹ Ag*	7.45 дн	342.1	4.6
¹⁴³ Nd	Nd (Har.)	12.18	¹³⁹ Ce	137.7 дн	165.8	80.0
145 _{Nd}	Nd (Hat.)	8.30	¹⁴¹ Ce	32.50 дн	145.4	48.0
¹⁴⁸ Nd	Nd (Har.)	5.76	¹⁴⁴ Ce	284.4 дн	133.5	10.8
¹⁷⁰ Er	Er203	98.00	166 _{Dy}	3.40 дн	82.5	12.0
¹⁸¹ Ta	Та (нат.)	99.99	¹⁷⁷ Lu*	6.71 дн	208.0	11.0
²⁰⁷ РЬ	РЬ (нат.)	22.10	²⁰³ Hg	46.50 дн	279.2	81.5

. Проводилось химическое выделение продукта реакции.

•

В некоторых случаях для уменьшения фона от реакции (у,n) и (у,p) проводилось химическое разделение продуктов реакций.

Большое внимание было уделено учету вклада интержерирующих реакций на примесях других элементов (или изотопов исследуемых элементов) в облучаемом образце. Во всех возможных случаях вклад от этих мешающих реакций не превышал 1-2%.

3. Экспериментальные результаты

Выход реакции (г, а) на исследуемых ядрах при граничной

энергии тормозного спектра в =23 МэВ определялся относительным методом, путем сравнения площадей пиков у-лучей ядер-продуктов (табл.1) и анцигиляционного излучения ($E_y=511 \kappa_{9B}$) ядра ^{64}Cu ($T_{1/2}=12.8$ ч), образующегося в реакции $^{65}Cu(r,n)$.

Так как при торможении электронов в мишени образуется не~ прерывный спектр у-квантов с граничной энергией Е, то измеряемые выходы реакции связаны с сечением с(Е) интегральным уравнением:

$$Y(E_{o})=N_{o} \cdot \int_{\sigma(E)}^{E_{o}} N(E,E_{o}) dE, \qquad (1)$$

где No-число ядер в образце, N(E,Eo)-интенсивность тормозного излучения /10/, Е_{пор.}-порог реакции.

Аналогично, как в /1/. зная выход реакции при одной граничной энергии тормозного излучения, можно определить интегральное сечение реакции:

$$Y(E_{o}) = \frac{\sigma(E_{o})}{(E_{o} - E_{nop.})} \cdot \int_{E_{nop.}}^{E_{o}} N(E, E_{o}) dE, \qquad (2)$$

$$E_{o}$$

$$HHT.$$

$$\sigma(E_{o}) = \int \sigma(E) dE. \qquad (3)$$

(3)

г де

Порог (у, а) реакции принимался равным сумме энергии связи α-частицы Q_n и ее кулоновского барьера В_n.

Епор.

Полученные таким способом выходы и интегральные сечения, а также значения Q_и(рассчитанные из масс ядер /11/) и В_и(взятые из расчетов по оптической модели /12/) представлены в таблице 2. При этом в качестве реперных использовались выход и интегральное сечение при Е₀=23 МэВ реакции ⁶⁵Cu(γ,n)⁶⁴Cu: Y(E₀)≈4.2.10⁶ (моль. Р)⁻¹; _{бинт} (Е_с)=426 МэВ. мб /13,14/.

Абсолютная ошибка Приведенных в таблице 2 выходов определяется ощибкой значений выходов мониторов, статистической погрешностью счетов в пике измеряемой у-линии и неопределенностями фона и эффективности регистрации у-излучения.В то же время из-за приближенного характера выражения (2) и разных порогов реакциий (γ, n) и (γ, α) абсолютные ошибки интегральных сечений порядка 20-40%.Однако их относительная ощибка для всех исследуемых реакций та же, что и для реакции ⁶⁵сu(r, a)⁶¹со, и не превышает ошибки выходов. 3

В случае реакции $93_{Nb}(\tau, \alpha)$, $115_{In}(\tau, \alpha)$ и $181_{Ta}(\tau, \alpha)$ приведенные в таблице 2 выходы и интегральные сечения относятся лишь к образованию ядра либо в основном, либо в изомерном состоянии, поэтому их полные значения будут выше и для их определения нужно сделать поправку на изомерные отношения.

Для определения этой поправки использовался метод Хюзенги и Ванденбоша /15/.При расчете вероятности заселения основного и изомерного состоянии по этому методу особую роль играет параметр ограничения по спину σ_о,входящий в слиновую зависимость плотности уровней остаточного ядра:

$$\rho(E,J) = \overline{\rho} \cdot (2J+1) \exp\left[-\frac{(J+1/2)^2}{2 \cdot \sigma_0^2}\right],$$
 (4)

где 🖗 - энергетическая зависимост плотности уровней.

Таблица 2

РЕ АКЦИЯ	Ω _α МэВ	в _а МэВ	^Q _α +В _α МэВ	у –1 10 ³ {моль.Р}	_о инт. МэВ.мкб
⁵¹ V(γ,α)	10.3	6.2	16.5	8.9±0.8	3200±900
65 _{Cu(γ,α)}	6.8	7.4	15.2	19.0±2.0	6500±1000
$71_{Ga(\gamma,\alpha)}$	5.3	7.8	15.1	2.2±0.2	900±200
⁷⁶ Ge(γ,α)	7,5	8.0	15.5	1.8±0.1	550±100
$96_{\rm Zr}(\gamma,\alpha)$	4.9	9.7	15.6	2.1±0.2	470±100
$93_{\rm Nb}(\gamma,\alpha)$	1.8	9.9	11,8	1.8±0.2	710±200
⁹² Mo(γ,α)	5.6	10.1	15.7	1.6±0.2	430±100
¹¹⁵ In(γ,α)	3.7	11.5	15.2	0.27±0.05	64±20
¹⁴³ Nd(γ, α)	- 0.5	13.7	13.2	0.38±0.05	74±21
¹⁴⁵ Nd(γ, α)	- 1.6	13.7	12.1	0.24±0.04	46±15
¹⁴⁸ Nd(γ, α)	- 0.6	13.7	13.1	0.64±0.06	100±30
¹⁷⁰ Er(γ,α)	- 0.5	15.3	14.8	0.94±0.20	180±80
181 Ta(γ, α)	~ 1.5	16.4	14.9	0.18±0.05	40±15
²⁰⁷ Pb(γ,α)	- 0.4	18.2	17.8	0.082±0.016	26±12

Выходы и интегральные сечения реакции (у, «)

Результаты расчета показывают, что в случае 181_{Ta} заселение высокоспинового изомера у ядра 177_{Lu} очень маловероятно ($\chi^{\text{m}}/\chi^{9}<1\%$).

поэтому можно считать, что приведенные в таблице 2 характеристики этой реакции практически совпадают с полными. Это также относится и к реакции ¹¹⁵In(γ,α), где хотя вероятность образования изомера и большая (Y^m/Y^g≈0.89), но он практически весь распадается в основное состояние (~99.3%) ядра ¹¹¹Ад.

Для реакции 93 Nb(γ, α) при $\sigma_0^{\geq 4}$ изомерное отношение мало меняется, поэтому можно считать, что выход изомера составляет ~83% от полного выхода реакции 93 Nb(γ, α). Это ведет к $Y_{(\gamma, \alpha)}^{=}$ (2.5±0.2).10³ (моль. P)⁻¹ и $\sigma^{\text{ИКТ}}$ =830±210 мкб. МэВ.

4. Обсуждение результатов

Измеренные интегральные сечения реакции (т, «) относятся к диапазону энергия возбуждения 18-23 МэВ.При этих энергиях, соответствующих области гигантского дипольного резонанса, расстояния между уровнями возбужденного ядра становятся гораздо меньше, чем их ширины, и основные характеристики реакции (т, «) можно описать, используя статистический подход.

Поэтому представляет интерес провести сравнение измеренных интегральных сечений реакции (у,а) в широком диалазоне 2 и а с расчетами, основанными на этом подходе.

Сечения реакции (у, а) можно представить в виде:

$$\sigma_{(\gamma,\alpha)} = \sigma_{t} \cdot \Gamma_{\alpha} / \Gamma_{t} , \qquad (5)$$

40.

11

где

При энергии ниже порога (γ, 2n) реакции интегральные сечения (γ, α) реакции определяются выражением:

$$\sigma_{(\gamma,\alpha)}^{\text{NHT}} = \int \sigma_{(\gamma,n)}(E) \cdot \Gamma_{\alpha}(E) / \Gamma_{n}(E) dE. \qquad (8)$$

$$E_{\text{nop}}.$$

Отношение парциальных ширин $\Gamma_{\alpha} / \Gamma_n$ описывается выражением, которое при учете массовых чисел и спиновых множителей испускаемых частиц имеет вид:

$$\frac{\Gamma_{\alpha}}{\Gamma_{n}} = 2 \cdot \frac{\int_{n}^{\infty} E_{\alpha} \cdot \sigma_{\alpha}(E_{\alpha}) \cdot \rho_{\alpha}(E_{\alpha \max} - E_{\alpha}) dE_{\alpha}}{\int_{n}^{\infty} E_{n} \cdot \sigma_{n}(E_{n}) \cdot \rho_{n}(E_{n\max} - E_{n}) dE_{n}}, \qquad (9)$$

где $E_{\alpha max} = E_{\gamma} - Q_{\alpha} - \delta_{\alpha} - B_{\alpha}$, $E_{nmax} = E_{\gamma} - Q_{n} - \delta_{n} i \delta_{\alpha}, \delta_{n} - энергия спаривания /17/; <math>E_{\gamma}$ -энергия возбуждения составного ядра; $\sigma_{\alpha}, \sigma_{n}$ - сечения обратных реакций /18/; ρ_{α}, ρ_{n} -плотность уровней конечных ядер после испускания α -частицы и нейтрона с энергией E_{α} и E_{n} .

Аналогично, как в /1/, плотность уровней при высоких энергиях возбуждения конечных ядер описывалась моделью фермигаза, а при низких энергиях – моделью с постоянной температурой /19/.При энергии возбуждения составного ядра выше порога (γ, 2n) реакции в (8)-(9) учитывалась эмиссия вторичного нейтрона.

llocкольку порог реакции (γ, απ) и (γ, αφ) заметно больше, чем для (γ, α), то сечения этих реакций при ε_γ≤23 МэВ пренебрежимо малы, так что их вклад можно не учитывать.

На основе изложенного выше алгоритма были рассчитаны интегральные сечения реакции (γ, α) для всех измеренных ядер при E_{γ} =23 МэВ.

В этих расчетах для параметра плотности уровней были использованы экспериментальные данные, полученные из анализа нейтронных резонансов /20,21/,а для тех ядер, где они отсутствовали, такие данные были получены из феноменологической зависимости плотности уровней при энергии связи нейтрона /22/.

Полученные нами экспериментальные значения $\sigma^{\rm ИНТ}_{(\gamma,\alpha)}$, нормированные для граничной энергии 23 МэВ, данные из работ /23,24/, а также расчеты по статистической модели показаны на рис.1.

Рассчитанные значения $\sigma_{(\gamma,\alpha)}^{инт.}$ были сглажены методом наименьших квадратов,чтобы исключить разброс энергий связи α -частиц.

Из зависимости $\sigma_{3KCII}^{ИНТ.}$ от Z видно, что для среднетяжелых ядер (30<2550) интегральные сечения реакции (γ, α) резко уменьшаются с увеличением Z. В этом диапазоне статистическая модель хорошо описывает характеристики реакции (γ, α), поэтому можно предполагать, что уменьшение $\sigma_{\{\gamma, \alpha\}}^{(HT.)}$ связано в основном с увеличением кулоновского барьера, который препятствует испарению α -частиц из возбужденных ядер.

Качественно иная картина наблюдается для тяжелых ядер (2>50), где с увеличением 2 интегральные сечения реакции (γ, α) почти постоянные, а рассчитанные в $10^2 - 10^3$ раз меньше, чем экспериментальные.По-видимому, в этом диапазоне ядер заметную роль начинают играть прямые и предравновесные процессы в механизме реакции (γ, α).

Аналогичная зависимость имеет место и для реакций (ү,р).В области гигантского дипольного резонанса отмечен заметный выход

Рис.1. Зависимость интегральных сечении реакции (γ,α) от атомного номера (Z) при граничной экергии тормозного излучения 23 МэВнаши данные - [], работа /23/ - ♡, работа /24/ - ▲, - - - расчет по статистической модели.

протонов, связанный с прямыми процессами при Z>50 /25/.

σ.^{ИНТ.} (Hanp. 96 Zr, 93 Nb, 92 Mo) Заметный разброс в значениях (x a) связан, но-видимому, с наличием оболочечных эффектов и наиболее сильно проявляется при приближении конечных ядер к замкнутым оболочкам. Сравнение имеющихся экспериментальных данных по (n, a) реакциям на тепловых нейтронах /26/, где наблюдается сильный разброс экспериментальных приведенных «-ширин с нашими результа тами. показывает. что при энергии возбуждения в области гигантского дипольного резонанса влияние оболочечных ЭФФЕКТОВ начинает значительно уменьшаться, ко еще остается заметным.

В заключение авторы выражают благодарность Г.Н.Флерову и Ю.Ц.Оганесяну за поддержку работы, А.Г.Белову и С.В.Лабутину за облучение образцов на микротроне, Б.С.Ишханову и И.М.Капитонову за полезные обсуждения.

Питература

- 1. Антонов А. Д., Балабанов Н. П., Гангарский Ю. П., Кондев Ф. Г., Маринова С. Г., Христов Х. Г.- ЯФ, 1990, т. 51, с. 305.
- 2. Menegheti L., Vitale S.-Nucl. Phys. 1965, v. 61, p. 316.
- 3.Wendling R., Kosiek R.-Z. Phys. 1966, v. 192, p. 502.
- 4.Hcffman H., Prowe B., Ullrich H.-Nucl. Phys. 1966, v.85, p.631.
- 5.Kraft G., Kosiek R., Mundhenke R., Winter J.-Nucl. Phys. 1968, v. A118, p.25.
- 6.Keller N.A., McConnell D.-Can.J.Phys.1972, v.50, p.1554.
- 7.Murphy J., Skopik D., Asai J., Uegaki J.- Phys. Rev. 1978, v. C18, p. 736.
- 8.Tamae T., Urano T., Hirooka M., Sugawara M.-Phys.Rev.1980, v.C21, p. 1758.
- 9.Глейбман Е., Жучко В.-Препринт ОИЯИ 10-10-50, Дубна, 1980.
- 10. Жучко В., Циленюк Ю.-АЭ, 1975, т. 39, с. 66.
- 11.Wapstra A.H., Audi B.-Nucl. Phys. 1985, v. A432, p. 55.
- 12.Huizenga J., Igo G.-Nucl. Phys. 1962, v. 29, p. 462.
- 13.Katz L., Cameron A.G.-Can.J.Phys.1951, v.29, p.518.
- 14.Fultz S.C., Bramblett R.L., Caldwel J.T., Harvey R.R.-Phys.Rev. 1964, v. 133, p. B1149.
- 15.Huizenga J., Vandenbosch G.-Phys.Rev.1960, v.120, p.1305.
- 16.Dietrich S., Berman B.-Atom. Data Nucl. Data Tables, 1988, v. 38, p. 199.
- 17. Truran J.W., Cameron A.G.-In:Proc.Intern.Conf.on the properties of nuclei far from the region of beta-stabillity.CERN 70-30, Leysin, v. 1, p. 275.1970.
- 18.Gadioli E., Gadioli Erba E.-Phys.Rev.1977, v.C16, p.1404
- Игнатюк А.В.-Статистические свойства атомных ядер. Энергоатомиздат, М. 1983.
- 20.Baba H.-Nucl.Phys.1970, v.A159, p.625.
- 21.Dilg W.,Schantl W.,Vonach H.,Uhl M.-Nucl.Phys.1973,v.A217,p. 269
- 22.Ильинов А.С., Черепанов Е.А.-Преприкт ИЯИ АН СССР П-0064, 1977.
- 23. Erdos P., Scherrer P., Stoll P.-Helv. Phys. Acta, 1957, v. 30, p. 639.
- 24.Dodge W.,Leicht R., Hayward E., Wolynec E.-Phys.Rev.1981,v.C24, p.1952.
- 25.Shevchenko V.G., Yurev B.A.-Nucl. Phys. 1962, v. 37, p. 495.
- 26.Балабанов Н.П., Втюрин В.А., Гледенов Ю.М., Попов Ю.П.-ЭЧАЯ, 1991, т. 21, с. 317.

Рукопись поступила в издательский отдел

13 июня 1990 года.