90-192

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

K-789

P15-90-192

В.Д.Крашенинников*, В.А.Поярков*, И.В.Сизов

УГЛОВОЕ РАСПРЕДЕЛЕНИЕ ГАММА-КВАНТОВ ИЗ РЕАКЦИИ ¹² С(р, ү) ¹³ N, ИЗМЕРЕННОЕ НА ТОЛСТОЙ МИШЕНИ

* Киевский государственный университет

1990

1. ВВЕДЕНИЕ

В работах $^{\prime 1-3\prime}$ показано, что при изучении радиационного захвата протонов ядрами 12 С в резонансе ядра 13 N с энергией возбуждения 3512 кэВ наблюдается несоответствие между спектром гамма-излучения, испущенным из "толстой" мишени, и известными данными, полученными в измерениях на "тонкой" мишени $^{\prime 4, 5\prime}$. Основное проявление этой аномалии состоит в том, что максимум в спектре гамма-излучения, испущенного при захвате протонов в резонансе 3512 кзВ ядра 13 N в "толстой" мишени, оказывается сдвинутым к меньшей энергии относительно рассчитанного по хорошо известным данным о положении резонанса на 12 кэВ, что значительно больше погрешности измерения положения максимума. В настоящей работе анализируются спектры гаммаквантов, испущенных под углами от 0 до 140° при захвате протонов в различных энерг*е*тических интервалах в резонансах 3512 кэВ и 2366 кзВ ядра 13 N.

Исследование углового распределения гамма-квантов позволит получить дополнительную информацию о наблюдаемом в работах /1~3/ аномальном радиационном захвате.

2. МЕТОДИКА ИЗМЕРЕНИЙ

Методика изучения радиационного захвата в "толстых" мищенях основывается на двух следующих свойствах взаимодействия заряженных частиц с веществом. Во-первых, при радиационном захвате протонов ядром с массовым числом А испускается гамма-квант, энергия которого $E_{\gamma 0}$ однозначно связана с энергией протона E_{p} энергией его связи E_{cB} . в образованном ядре массой A + 1 и энергией возбуждения $E_{возб.}$ конечного состояния, образуемого после испускания гамма-кванта:

$$E_{\gamma 0} = E_{p} \frac{A}{A+1} + E_{CB} - E_{B036}$$
 (1)

Если учесть, что ядро, испускающее гамма-квант, движется со скоростью

$$V_{g} = \frac{c}{A+1} \sqrt{\frac{2E_{p}}{m_{p}c^{2}}}$$
(1')

в направлении первоначального движения протона, где с — скорость света, ^m_p — масса протона, то с учетом эффекта Доплера и отдачи гаммакванта энергия ^E_y в зависимости от угла вылета относительно направления движения протонов запишется в виде:

$$E_{\gamma} = E_{\gamma 0} \left(1 + \frac{V_{R}}{c} \cos \theta\right) \left(1 - \frac{E_{\gamma 0}}{2m_{n}c^{2}}\right).$$
(2)

Выражение (1 ') для скорости испускающего гамма-квант ядра справедливо, если время реакции радиационного захвата r_R мало по сравнению со временем торможения ядра отдачи в веществе мишени. Время реакции связано с шириной резонансов Г соотношением $r_R = \hbar / \Gamma$, поэтому для резонансов с $\Gamma > 0,1$ кэВ выражение (1 ') справедливо для протонов с энергией в несколько МэВ.

Таким образом, для определенного угла вылета энергия гаммакванта однозначно связана с энергией захваченного протона. Во-вторых, протон с энергией E_{p0} при прохождении через вещество мишени, толщина которой L больше длины пробега, за счет торможения проходит в мишени все значения энергии от E_{p0} до 0. Если на такую "толстую" мишень падает поток протонов с энергией $E_{p0} ~ 2$ МэВ, то в мишени на разной глубине в пределах ~25 мкм присутствуют протоны с непрерывным спектром от E_{p0} до 0, которые, взаимодействуя с ядрами мишени, могут вступать в реакцию радиационного захвата. С учетом (1) спектральная плотность гамма-излучения из реакции (p, γ) в "толстой" мишени будет определяться выражением, полученным в работе $^{6/2}$:

$$F(E_{\gamma}) = N_{p} \frac{d\sigma}{d\Omega} (E_{p}, \theta) - \frac{A+1}{A} \frac{1}{\xi} n d\Omega , \qquad (3)$$

где N_p — поток протонов с энергией E_p , падающий на мишень; do/d Ω (E_p , θ)— сечение захвата протона с энергией E_p , при этом испускается гамма-квант под углом θ с энергией E_γ , связанной выражением (2) с $E_{\gamma 0}$; ξ — тормозная способность вещества мишени для протонов с энергией E_p , которая мало изменяется в пределах резонанса; n — плотность в мишени ядер с массовым числом A; d Ω — телесный угол, в котором наблюдается гамма-излучение. Легкие ядра в сечении захвата имеют резонансы с шириной Г от долей эВ до десятков кэВ, причем вне резонансов сечение захвата значительно меньше, чем в резонансах. В результате из всех протонов, присутствующих в мишени с энергией от E_{p0} до 0, с большей вероятностью захватываются протоны с резонансной энергией E_R и в спектре гамма-излучения наблюдаются максимумы, положение которых E_{yR} и ширина Γ_{yR} связаны с E_R и Г соотношением:

$$E_{\gamma R} = (E_{R} - \frac{A}{A+1} + E_{cs} - E_{sos6})(1 + \frac{V_{R}}{c} \cos\theta) \times (1 - \frac{E_{\gamma 0}}{2m_{R}c^{2}}),$$

$$I_{\gamma R} = I - \frac{A}{A+1} (1 + \frac{V_{R}}{c} \cos\theta)(1 - \frac{E_{\gamma 0}}{2m_{R}c^{2}}).$$
(4)

Если ширина резонанса больше разрешения гамма-спектрометра, то она определяет ширину максимума в гамма-спектре. Для широких резонансов, когда их ширина больше разрешения спектрометра, такая методика в одном измерении позволяет получить функцию возбуждения в пределах одного или нескольких резонансов. Причем страглинг и разброс энергии падающего пучка протонов не влияют на положение и форму максимума в слектре, т.к. для однородных мишеней приводят к незначительным вариациям расстояния от поверхности мишени, на которых протоны с начальной энергией E_{p0} будут иметь резонансную энергию E_{p} .

В настоящей работе эта методика использована для измерения угловых распределений гамма-квантов из реакции ¹²С (р, _у)¹³N в резонансах 3512 и 2366 кэВ.

В качестве источника протонов с энергией 1800 кэВ использовался электростатический генератор ЭГ-5 Лаборатории нейтронной физики ОИЯИ. В качестве мишени использовалась пластина реакторного углерода толщиной 2 мм. Гамма-излучение регистрировалось Ge (L1) полупроводниковым детектором объемом 60 см³ и разрешением 2,8 кэВ при энергии 1,5 МэВ. Спектр накапливался в многоканальном анализаторе импульсов на базе крейта КАМАК и мини-ЭВМ "Правец". Детектор устанавливался на расстоянии 10 см от мишени под углами от 0° до 140° к направлению падающего потока протонов. Эффективность детектора в диапазоне энергий 0,8 ÷ 6 МэВ определялась по гамма-квантам источника ⁵⁶Со и из реакции ²⁷Al(p, γ) в резонансе 992 кэВ^{/7/}. Калибровка спектрометрического тракта по энергии производилась в диапазоне 0,5 ÷ 3,5 МэВ по линиям источника ⁵⁶Со и контролировалась в каждом

3

7

Рис. 1. Спектр гамма-излучения из "толстой" углеродной мишени ($\theta = 0^{\circ}$) и схема реакции ${}^{12}C(p, \gamma){}^{13}N$.

измерении по гамма-излучению с энергиями 2313; 3378,6; 4913,4; 5105,9 кэВ из реакции ${}^{13}C(p,\gamma){}^{14}N$ и фоновым линиям 1461 и 2614 кэВ, при этом там, где необходимо, учитывали доплеровский сдвиг. Такой непрерывный контроль энергетической калибровки по положению линий и их ширине (3 кэВ) обеспечивал точность определения энергий гамма-квантов в диапазоне 500 ÷ 3700 кэВ лучше 1,5 кэВ.

На рис. 1 показаны спектр гамма-излучения из "толстой" углеродной мишени, Е $_{p0}$ = 1800 кэВ, $\theta = 0^{\circ}$, и схема уровней ядра ¹³N. В спектре присутствует максимум при энергии 3510 кзВ, соответствующий зарегистрированному в пике полного поглощения гамма-излучению из захвата протонов в резонансе 3512 кэВ и переходу на основное состояние адра ¹³N. При энергии 2370 кэВ имеется максимум, соответствующий захвату протонов в резонансе 2366 кэВ и переходу на основное состояние, при энергии 1128 кэВ — захвату протонов в резонансе 3512 кэВ и переходу на состояние 2366 кэВ.

Для определения положения максимума участок (~150 каналов) спектра шириной 150 кэВ вокруг максимума аппроксимировался функцией номера канала N_k , описывающей фон FF(N_k) и пикообразный компонент FM(N_k), параметры которой находились из условия минимума χ^2 :

$$F(N_k) = FF(N_k) + FM(N_k).$$
⁽⁵⁾

Для описания фона использовался полином:

FF
$$(N_k) = A1 + A2 (N_k - N_0) + A3 (N_k - N_0)^2$$
, (6)

где N₀ — номер первого канала аппроксимируемого интервала, максимум описывался функцией, близкой к функции Лоренца:

$$FM(N_{k}) = \frac{D(N_{k})}{\xi(N_{k})} \frac{A4 N_{k}^{2L+1}}{(N_{k} - N_{kR})^{2} + (\Gamma D(N_{k})/2)^{2}} \epsilon(N_{k}),$$
(7)

где функция $D(N_k)$ учитывает изменения проницаемости кулоновского барьера; $\xi(N_k)$ — изменение тормозной способности; $\epsilon(N_k)$ — эффективности регистрации гамма-излучения детектора; $(N_k)^{2L+1}$ — вероятности перехода мультипольности L в пределах ширины анализируемого резонанса.

Параметры A1 , A2 , A3 , A4 , N_{kR} и Γ определялись из условия минимума χ^{2}

Для анализа устойчивости процедуры обработки спектра варьировались следующие условия:

- протяженность обрабатываемого интервала спектра и его начало N₀;
- степень полинома, описывающего фон;
- обрабатывались не только пики полного поглощения, но и пики двойного вылета в спектре;
- фиксировались $D(N_k)$, $\xi(N_k)$, $\epsilon(N_k)$, $(N_k)^{2L+1}$.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

При обработке спектров, полученных при $\theta = 90^{\circ}$, где отсутствует доплеровский сдвиг, оказалось, что положение максимума в спектре N_{kR} слабо зависит от указанных факторов и изменялось при их вариации менее чем на 1 кэВ для перехода 3512 - 0. При этом χ^2 изменялся от 0,9 до 1,3. Средняя для 27 спектров величина $E_{\gamma R} = (3500 \pm 1)$ кэВ.

Для перехода 2366 · 0 при $\theta = 90^{\circ} \chi^2$ изменялось от 0,9 до 1,4, для минимальных $\chi^2 E_{\gamma R} = (2365, 6 \pm 1)$ кэВ. Здесь большее значение имеет зависимость от энергии протона (в результате от N_k) проницаемости кулоновского барьера D(N_k). Введение проницаемости изменяет для этого резонанса значение $E_{\gamma R}$, соответствующее N_{kR} в формуле (7), на 1,7 кэВ.

Таким образом, в этой работе подтвержден результат, полученный в работах ^{/1-3/} о том, что максимум в спектре гамма-излучения из реакции ¹²С(p, y) ¹³N для перехода 3512 →0 находится при энергии 3500 кэВ и смещен относительно ожидаемого на 12 кэВ. Положение максимума, соответствующего захвату в резонансе 2366 кэВ и переходу

Рис. 2. Значения Е_{УК}В зависимости от угла вылета гамма-квантов для резонанса 3512 кэВ (а) и 2366 кэВ (б).

в основное состояние, определено как (2366± ±1) кэВ и согласуется с имеющимися данными.

Для перехода $3512 \rightarrow 2366$ при $\theta = 90^{\circ}$ функция возбуждения искажена интерференцией, которая отсутствует при $\theta = 0^{\circ}$, и тогда $E_{\gamma R} = (1128 \pm 2)$ кэВ, что на 23 кэВ отличается от расчетной величины (формулы (4), (1['])).

Для гамма-излучения, испущенного под углами θ , отличными от 90°, должен наблю-

даться доплеровский сдвиг для испущенных в реакции захвата гаммаквантов, величина которого определяется формулой (2). В соответствии с этим максимумы в спектре будут также смещаться согласно формуле (4).

Спектры гамма-квантов из реакции ${}^{12}C(p,\gamma){}^{13}N$ измерены на "толстой" мишени при $E_p = 1800$ кэВ и углах вылета $0^\circ \div 140^\circ$; они были обработаны указанным выше образом. На рис. 2 показаны измеренные в различных условиях, с различными детекторами и в различных реакционных камерах значения $E_{\gamma R}$ в зависимости от $\cos\theta$. На рис. $2a^-$, данные для перехода 3512 $\rightarrow 0$. Пунктирная прямая — расчет по формуле

$$E_{\gamma R} = E_{\gamma 0} \left(1 + \frac{V_{R}}{c} \cos \theta\right)$$
(8)

при
$$\frac{V_{R}}{C} = 4,63 \cdot 10^{-3}$$
,

где $E_{\gamma 0} = 3500$ кэВ. Эта величина получена в измерениях для $\theta = 90^{\circ}$, а $V_{\rm g}$ рассчитано по формуле (1[°]) при $E_{\rm p} = 1700$ кэВ. Как видно из рисунка, прямая плохо согласуется с измеренными величинами.

Сплошная прямая соответствует минимальному χ^2 , при этом варыировались $V_{g/c}$ и $E_{\gamma 0}$. Найдены значения

$$\frac{V_{\rm R}}{c} = (3,66 \pm 0,2) \cdot 10^{-3} ;$$

$$E_{v0} = 3500,1 \pm 0,5$$
 кэВ.

На рис. 26 — аналогичная зависимость для перехода 2366 кэВ
+ 0. При этом прямая с рассчитанным значением $V_{\rm g/c} = 2,4 \cdot 10^{-3}$;
Е $_{\gamma 0} = = 2366$ кэВ хорошо описывает экспериментальные результаты.

Это указывает на наблюдение еще одного свойства аномального радиационного захвата при переходе 3512 - 0. А именно: зависимость положения максимума в спектре не согласуется с формулой (4) для скорости ядра, рассчитанной по формуле (1').

В дальнейшем изучался вопрос о том, с чем связан этот дополнительный сдвиг: с изменениями формы максимума в гамма-спектре для разных углов наблюдения или с тем, что форма максимума не изменяется. В этих исследованиях использовалась итерационная процедура обработки гамма-спектров, которая отделяла максимум от непрерывного фонового распределения, не фиксируя при этом его формы ^{/8/}. Полученный при этом максимум с учетом выражекий (3) и (4) является функцией возбуждения реакции (р, γ), измеренной на "толстой" мишени.

На рис. З приведены полученные таким образом функции возбуждения перехода $3512 \rightarrow 0$ для $\theta = 30^{\circ}$ (точка), 90° (треугольники), 140° (квадраты), нормированные на 1 в максимуме. Эти функции возбуждения совмещены таким образом, что совпадали их Максимумы, найденные из подгонки участка спектра функцией (5). Как видно из рис. 3, формы функций возбуждения, приведенные к одному положению максимума, практически одинаковые и не изменяются в зависимости от угла. Другой характеристикой формы функции возбуждения является отношение площадей участков функции возбуждения равной ширины, симметричных относительно максимума. На рис. 3 указаны такие интервалы шириной 40 хэВ по обе стороны фактических максимумов. На рис. 4 показаны отношения площадей интервала 2-го к 3-му (точки) и (1+2)-го

7

Рис. 3. Функция возбуждения перехода 3512 кэВ $\rightarrow 0$ в ядре ¹³N при θ =30°, 90°, 140°.

Рис. 4. Отношения площадей для разных участков функции возбуждения 3512 кэВ →0.

к (3+4)-му (треугольники). Как видно из рисунка, такой анализ также показывает, что максимумы в спектрах не изменяют формы для разных углов наблюдения, но их сдвиг друг относительно друга не согласуется с расчетом по формулам (4) и (1').

Далее изучались угловые распределения гамма-квантов для интервалов, указанных на рис. 3.

Сечение радиационного захвата протонов с энергиями 0,3 ÷ 2,0 МэВ определяется сечением радиационного захвата σ_{R1} в резонансе 2366 кзВ шириной 39 кэВ, при котором в результате E1-перехода из состояния $(1/2^+)$ заселяется основное состояние ядра ¹³N $(1/2^-)$, сечением радиа-

ционного захвата σ_{R2} в резонансе 3512 кэВ шириной 65 кэВ, при котором основное состояние может заселиться в результате М1 – или Е2-переходов из состояния (3/2⁻), а также сечением прямого радиационного захвата σ_{DC} , которое определяется поведением начальной и конечной волновых функций вне ядра и соответствует переходу из начального s(σ_{DC1}) или d(σ_{DC2}) в конечное Р состояние. Первые два сечения носят резонансный характер и практически полностью определяют сечение реакции в пределах соответствующих резонансов ^{/4/}. Вдали от резонансов в сечение реакции вносит вклад прямой процесс и интерференционные между указанными тремя процессами члены. В диапазоне энергий от 0,3 до 2 МэВ сечение имеет вид:

$$d\sigma / d\Omega(E,\theta) = \sigma_{R1} (E) W_{1}(\theta) + \sigma_{R2}(E) W_{2}(\theta) + \sigma_{DC}(E) W_{3}(\theta) + 2\sqrt{\sigma_{R1}(E)} \sigma_{DC1}(E) \cos \delta_{1} W_{4}(\theta) + 2\sqrt{\sigma_{R1}(E)} \sigma_{DC2}(E) \cos \delta_{2} W_{5}(\theta) + (9) + 2\sqrt{\sigma_{R1}(E)} \sigma_{R2}(E) \cos \delta_{3} [W_{6}(\theta) + \beta W_{7}(\theta)] + 2\sqrt{\sigma_{R2}(E)} \sigma_{DC1}(E) \cos \delta_{4} [W_{8}(\theta) + \beta W_{9}(\theta)] + 2\sqrt{\sigma_{R2}(E)} \sigma_{DC2}(E) \cos \delta_{5} [W_{10}(\theta) + \beta W_{11}(\theta)],$$

где δ_i — разность ядерных и кулоновских фаз для соответствующих орбитальных моментов; $W_i(\theta)$ — множитель, определяющий угловое распределение для соответствующего процесса; $\beta = -0.09$ — коэффициент смешивания $E^2 - u M1$ -перехода ^{/4/}.

Согласно работе ${}^{/4'}\sigma_{R1}$ в максимуме имеет величину ~10 мкб/ср, $\sigma_{R2} \sim 4$ мкб/ср, $\sigma_{DC1} + \sigma_{DC2} \sim 0,1$ мкб/ср. Поэтому в пределах резонансов угловое распределение гамма-излучения определяется множителями $W_1(\theta) = 1$ для резонанса 2366 кэВ и $W_2(\theta) = 1 - A_2 P_2(\cos \theta)$ для перехода 3512 $\rightarrow 0$, где $A_2 = 0,64^{/4/}$ ($P_2(\cos \theta)$ — полином Лежандра).

Для проверки этого обстоятельства измерялось угловое распределение гамма-квантов для интервалов 1-4, указанных на рис. 3.

Спектры, измеренные под разными углами, нормировались на площадь пика, соответствующего зарегистрированному излучению с энергией 2313 кэВ из реакции ¹³С(р, у)¹⁴N, угловое распределение которого изотропно. Такая нормировка спектров позволила учесть различные аппаратурные эффекты, связанные с переменной загрузкой спектрометрического тракта, однородностью мишени, вариациями телесного угла и т.п.

На рис. 5. показаны угловые распределения для гамма-квантов в интервале 1+2 (пустые точки), 4+3 (квадраты) и 1+2+3+4 (треугольники.

Сплошная линия на рисунке — подгонка по МНК полиномами Лежандра, полученная при этом величина $A_2 = 0.65 \pm 0.02$ согласуется с $A_2 = 0.64$ из ^{'4'} и $A_2 = 0.65$ из ^{'5'}.

Как видно из рисунка, угловые распределения для отдельных частей резоненса согласуются с угловыми распределениями для всего резонанса.

4. ЗАКЛЮЧЕНИЕ

Полученные результаты показывают, что угловое распределение для гамма-квантов, испущенных при захвате протонов в "толстой" мишени для перехода 3512 \rightarrow 0, согласуется с имеющимися данными об угловых распределениях, измеренных на тонких мишенях. Угловое распределение для перехода 3512 \rightarrow 0 дает значение $A_2 = 0,65$, как для интеграла по всему резонансу, так и для его отдельных частей. При этом форма резонанса для различных углов вылета гамма-квантов остается постоянной, что доказывает малый вклад интерференционных членов в области резонансов. В то же время положения максимумов этого резонанса для разных углов вылета не согласуются с рассчитанными по формуле (2) при значении скорости ядра $V_{\rm R}$, полученной из кинематики реакции для резонансной энергии $E_{\rm p} = 1700$ кэВ.

Наблюдаемое нами несоответствие энергии гамма-квантов с расчетной (с учетом эффекта Доплера) следует рассматривать как экспериментальный факт, не получивший пока удовлетворительного объяснения. Действительно, время жизни резонансного состояния, имеющего ширину порядка 65 кэВ, составляет $r = 10^{-20}$ с. За это время ядро пройдет расстояние ~ 10^{-12} см и не изменит своей скорости за время протекания реакции.

В то же время в недавних наших измерениях разности энергий $\Delta E_{\gamma} = E_{\gamma}(0^{\circ}) - E_{\gamma}(90^{\circ})$, выполненных на тонкой мишени в максимуме функции возбуждения реакции ${}^{12}C(p,\gamma)$ ${}^{13}N$, для рассматриваемого резонанса получена величина $\Delta E_{\gamma} = (16.6 \pm 0.3)$ кэВ, что хорошо согласуется с расчетами по формуле (2).

ЛИТЕРАТУРА

- 1. Поярков В.А., Сизов И.В. ЯФ, 1984, т.40, с.21.
- 2. Поярков В.А., Сизов И.В. ЯФ, 1987, т.45, с.1253. (Sov. J. Nucl. Phys., 1987, v.45, р.1053).
- Поярков В.А., Сизов И.В. Тезисы XXXVI Совещания по ядерной спектроскопии и структуре атомного ядра, Л.: Наука, 1986, с.275.
- 4. Rolf C., Azume R.E. Nucl. Phys., 1974, A227, p.291.
- 5. Young F C., Armstrong J.C., Marion J.B. Nucl. Phys., 1963, v.44, p.486.
- 6. Kurts E. et al. NIM, 1965, v.65, p.56.
- 7. Войтов А.И., Кастрюлин И.И., Поярков В.А. Приборы и техника эксперимента, 1981, №3, с.51.
- 8. Войтов А.И. и др. Сообщение ОИЯИ Р15-11101, Дубна, 1977.

Рукопись поступила в издательский отдел 15 марта 1990 года.