90-179

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

5-241

P15-90-179

1990

В.А.Баранов, С.М.Коренченко, Н.А.Кучинский, З.Б.Цамалаидзе*

МОДЕЛИРОВАНИЕ РЕГИСТРАЦИИ ПРОЦЕССА $\pi + d \rightarrow p + p B$ УСТАНОВКЕ АРЕС

* Тбилисский государственный университет

введение

Изучение взаимодействия пионов с атомными ядрами превратилось в общирный и самостоятельный раздел ядерной физики. Точность экспериментов, проводимых с пионами на мезонных фабриках (LAMPF, TRIUMF, PSI), достигла очень высокого уровня, который был ранее типичен только для такого традиционного направления ядерной физики, как исследование нуклон-ядерного взаимодействия. В последнее время большое внимание уделяется исследованиям взаимодействия пионов низких энергий ($T_{\pi} = 20 \cdot 70$ МэВ) с ядрами, так как низкоэнергетические пионы являются эффективным средством исследования многочастичных аспектов пион-ядерных взаимодействий и структуры ядер^{/1 /}. Пионы низких энергий выгодно отличаются от резонансных большей длиной свободного пробега в ядерном веществе, сравнимой с ядерными размерами. Поэтому они более чувствительны к ядерной структуре и могут использоваться для ее изучения.

В этой работе промоделирован процесс $\pi + d + p + p$, являющийся одним из важнейших процессов поглощения пионов при низких и средних энергиях. Эта реакция является хорошим тестом для проверки различных динамических моделей для описания π NN-взаимодействий. Для восстановления амплитуды этих процессов необходим достаточно обширный набор высококачественных экспериментальных данных.

Точные измерения энергетических зависимостей угловых распределений, дифференциального и полного сечений являются особенно важными для понимания механизма реакции. Экспериментальная ситуация в области $T_{\pi} \leq 100$ МэВ неблагополучна. Имеющиеся данные ограничены и зачастую противоречивы. Обращает на себя внимание указание на наличие структуры (провала) в энергетической зависимости полного сечения реакции $\pi + d + p + p$ в области $T_{\pi} = 27,8$ МэВ ($\sqrt{s} = 2,041$ ГэВ).

В интересующей нас области ниэких и средних энергий имеются экспериментальные данные процесса

$$\pi + d + p + p \tag{1}$$

при $T_{\pi} = 20, 25, 30, 35, 40, 45, 65 M ext{ MB}^{\prime 2 \prime}$, при $T_{\pi} = 65, 72,5, 80, 95, 110, 125, 140 M ext{ MB}^{\prime 3 \prime}$ и при $T_{\pi} = 80, 100, 140, 182, 230, 323, 417 M ext{ MB}^{\prime 4 \prime}$.

В этих экспериментах на достаточно хорошем уровне были измерены угловые и импульсные распределения, а также полные и дифференциальные сечения. Эти данные частично противоречивы. Так, например, данные, полученные при $T_{\pi} = 31,3$ МэВ при использовании различных твердых мишеней, отличаются на $30\%^{18}$. Результаты, опубликованные одной и той же группой при $T_{\pi} = 40$ МэВ, полученные с использованием одной и той же методики, отличаются на 25% ($T_{\pi} = 40,4$ МэВ^{/9} и $T_{\pi} = = 40$ МэВ^{/2}).

В настоящей работе вычислена эффективность регистрации частиц, построены гистограммы импульсных и угловых распределений. Получены точностные характеристики для углов, импульсов, координат и радиуса вылетающих частиц. Оценены также фоновые процессы. В моделировании использовались экспериментальные данные по угловому распределению вылетающих протонов^{/2}.

ОПИСАНИЕ УСТАНОВКИ

Детектор заряженных частиц спектрометра АРЕС является центральной частью этой универсальной установки. На спектрометре АРЕС предполагается провести широкую программу исследований по ядерной физике, в частности, взаимодействия пионов с ядрами на фазотроне Лаборатории ядерных проблем ОИЯИ¹⁵. Общая схема спектрометра АРЕС показана на рис. 1.

Детектор представляет собой сборку из двенадцати цилиндрических камер^{15,61}, вставленных одна в другую и расположенных коаксиально. Вся конструкция расположена в магните так, что ось симметрии камер направлена вдоль оси пучка и магнитного поля. Треки всех заряженных частиц, попавших в детектор, имеют вид закрученных линий или дуг, в зависимости от того, каким импульсом обладает частица.

В центре детектора расположена газовая дейтериевая мишень цилиндрической формы, радиусом 6 см, высотой 60 см, с плотностью вещества 0,00177 г/см³ и количеством вещества $14,53 \cdot 10^{20}$ яд/см². Между 3-й и 4-й и за 12-й пропорциональной камерой помещены годоскопические системы, составленные соответственно из 8 и 24 сцинтилляционных счетчиков, сделанных из полистирола¹⁷¹. Толщина сцинтиллятора 5 мм, высота первого слоя — 500 мм, а второго — 600 мм. Схема детектирующей части установки показана на рис. 2. Как видно из конструкции детектора, основное количество вещества на пути частиц в детектирующем объеме составляет два слоя сцинтилляторов.

2

Рис. 1. Общая схема спектрометра АРЕС: 1 — мишень, 2 — цилиндрические многопроволочные пропорциональные камеры, 3 сцинтилляционные счетчики, 4 — световоды, 5 — ФЭУ, 6 — обмотки магнита, 7 — ярмо магнита, 8 — полюса-вставки магнита, 9 электроника для пропорциональных камер, 10 — комната для стабилизаций температуры и влажности для электроники.

Рис. 2. Схема детектирующей части спектрометра: 1 — мишень, 2 — многопроволочные пропорциональные камеры, 3 — сцинтилляционные счетчики.

РЕЗУЛЬТАТЫ, ОБСУЖДЕНИЕ

Моделирование проводилось с использованием программы GEANT^{/13/}. При моделировании разыгрывалось угловое, пространственное и импульсное распределения налетающих пионов, учитывались сведения о геометрии установки (схема расположения пропоршиональных камер и сцинтилляционных счетчиков, их размеры, расположение, размеры мишени и т.п.). Кроме того, учитывались потери энергии на ионизацию, многократное рассеяние частиц, распад пионов на лету и т.д. Разыгрывался импульс налетающего пиона 96 МэВ/с с импульсным разбросом 3%. Полный телесный угол детектора составляет 2*п* ср. Мы разыгрывали по 10000 взаимодействий пионов с ядрами дейтерия. Средний путь вылетающих протонов в мишени составляет 7,9 см. Средние энергетические потери в обоих рядах сцинтилляторов 13,74 МэВ, а потери в мишени 0.32 МэВ. На рис. 3-5 показаны полученные распределения. На рис. 3 приведен импульсный спектр вылетающих протонов. Из импульсного спектра видно, что средний импульс вылетающего протона равен 408,5 МэВ/с. На рис. 4-5 построены распределения только для таких случаев, когда оба протона доходят до второго ряда сцинтилляционных счетчиков. На рис. 4 приведено распределение по углам между вылетающими протонами. Из распределения видно, что средний угол между вылетающими протонами составляет 166°. На рис. 5 показано распределение по углам для вылетающего протона. Из распределений вилно. что минимальный и максимальный угол, при котором частицы доходят до второго ряда сцинтилляционных счетчиков, составляет 44° и 125° соответственно, а средний угол — 83°. Средний радиус треков вылетающих протонов равен 57,55 см при поле 1.5 Тл.

Моделирование было проведено при значениях магнитного поля 0,1, 0,5, 1,0 и 1,5 Тл. Результаты приведены при поле 1,5 Тл. При моделировании были получены отклонения траекторий протонов, обусловленные потерями энергии и рассеянием протонов в деталях установки (сцинтилляторы, стенки камер и т.д.). В табл. 1 приведены величины этих отклонений во внешней (12-й) камере установки для протонов с импульсом 408,5 МэВ/с. При моделировании мы определяли срабатывания сцинтилляционных счетчиков в первом и втором рядах. Срабатывания сцинтилляционных счетчиков, когда матричный элемент равняется константе, показаны в табл. 2. Горизонтальный столбец N₈ показывает число сработавших счетчиков в первом ряду, а вертикальный столбец N_{2.4} — число сработавших счетчиков во втором ряду. В табл. 3 показаны срабатывания сцинтилляционных счетчиков при использовании экспериментальных значений угловых распределений^{/2}.

Наряду с процессом (1) имеются и фоновые процессы. Основными фоновыми процессами для реакции $\pi + d + p + p$ являются следующие:

4

Рис. 3. Импульсный спектр протонов, а — при матричном элементе, равном константе; б — при использовании экспериментальных значений угловых распределений ^{/2}.

Мы выполнили моделирование этих фоновых процессов и получили для них срабатывания сцинтилляционных счетчиков. Результаты этих расчетов показаны в табл. 4, 5, 6, 7 соответственно для (2), (3), (4), (5) фоновых процессов. Если внимательно посмотреть в таблицы, можно обнаружить, что процессы (2), (3), (4) можно устранить выбором триггера. Для этого надо так выбрать триггер, чтобы в первом и втором ряТаблица 1. Величины отклонения траекторий протонов с импульсом 408,5 МэВ/с в камере №12: θ — полярный угол, ΔZ отклонение Z-координаты, $\Delta L = R_{12} \cdot \Delta \varphi$, где R_{12} — радиус камеры №12, $\Delta \varphi$ — азимутальный угол, Н — магнитное поле

H(T)	θ, град	ΔΖ, см	ΔL, см	
	50	0,17	0,14	
	60	0,13	0,11	
1,5 Тл	70	0,11	0,10	
	80	0,09	0,09	
	90	0,10	0,09	

Таблица 2. Срабатывания (%) сцинтилляционных счетчиков для процесса $\pi + d + p + p$, когда протоны вылетают изотропно

N ₈ N _{2 4}	0	1	2	3
0	5	11	4,3	0
1	2,7	26,7	12,2	0
2	0,7	1,2	36,4	0
3	0	0	0	0

дах сцинтилляционных счетчиков срабатывало по 2 счетчика. Эффективность регистрации частиц при этом составляет 24,3%. Процесс (5) будет записываться вместе с основным процессом, и он будет выделяться при обработке по эффективной массе, так как процесс (5) имеет эффективную массу, отличную от основного процесса. Когда матричный элемент не равняется константе для процессов (2), (4), по 2 счетчика в первом и втором ряду не срабатывают, а для процесса (3) есть несколько случаев, которыми можно пренебречь по отношению к основному процессу.

Таблица 3. Срабатывания (%) сцинтилляционных счетчиков для процесса $\pi + d + p + p$ при использовании экспериментальных значений угловых распределений /²

N ₂ N ₂	0	1	2	3
0	18,1	18	4,8	0
1	1,9	22,3	9,2	0
2	0,58	0,82	24,3	0
3	0	0	0	0

Таблица 4. Срабатывания (%) сцинтилляционных счетчиков для процесса π + d + p + p + π°

N ₈ N ₂ 4	0	1	2	3
0	54,4	30,4	13,6	0,04
1	0,9	0,6	0,01	0
2	0,05	1	0	0
3	0	0	0	0

Таблица 5. Срабатывания (%) сцинтилляционных счетчиков для процесса π + d + π + p + N

N ₈ N ₂ 4	0	1	2	3
0	25,9	30,3	7	0,02
1	2,4	30,8	3,5	0,01
2	0,01	0,1	2	0
3	0	0	0	0

N ₂ 4	0	1	2	3	
0	27	18,4	0,08	0	
1	2,7	52	0	0	
2	0	0	0	0	
3	. 0	0	0	0	

Таблица 6. Срабатывания (%) сцинтилляционных счетчиков для процесса *π* + d → *π* + d

Таблица 7. Срабатывания (%) сцинтилляционных счетчиков для процесса π + d + p + p + γ

N _B	0	1	2	3
0	12,4	20,3	6,4	0,02
1	2,4	20,1	13,3	0
2	0,4	1,1	23,5	0
3	0,01	0	0,1	0

Полученные в ходе экспериментов дифференциальные сечения процесса (1) при фиксированной энергии T_π аппроксимируются в виде разложения в ряд по полиномам Лежандра:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \frac{1}{4\pi} \Sigma \mathrm{AP} \, (\cos\theta) \,. \tag{6}$

В области Т $\pi \le 100$ МэВ вклад парциальных амплитуд с L ≥ 3 в d $\sigma/d\omega$ еще не наблюдается. Диаграмма процесса (1) показана на рис. 6 $a^{/10/}$. Основной вклад в процесс дают S и P волны (рис. 66,в) $^{/11}$, $^{12/}$. Поэтому (6) можно записать как

Рис. 6. Захват π -мезона дейтроном с вылетом двух нуклонов (a), S-волновое рассеяние (б), P-волновое рассеяние (в).

$$\frac{d\sigma}{d\omega} = A_0 + A_2 \cdot \cos^2 \theta +$$

$$+ A_4 \cdot \cos^4 \theta.$$
(7)

Надо отметить, что для реакции $\pi + d + p + p$ при $T_{\pi} = 100$ МэВ отношение A_4/A_0 меняет знак. При $T_{\pi} \leq 100$ МэВ отношение $A_4/A_0 \ge 0$. Такое поведение не согласуется с предсказаниями различных теоретических моделей. Энергетическая зависимость отношения A_4/A_0 согласу-

ется по форме с теоретическими предсказаниями, количественное отличие в указанной области энергий составляет около 20%. Кроме того, отношение коэффициентов разложения $d\sigma/d\omega$ по полиномам Лежандра A_2/A_0 для $T_{\pi} = 30,4$ МэВ^{/2/} на три стандартных отклонения отличается от плавной зависимости, и этот факт, возможно, обусловлен влиянием состояния с $L = 1^{/9/}$. Кроме того, проведенный анализ энергетической зависимости полного триплетного pp-сечения с проекцией спина нуль на направление падающего пучка показал, что в области $\sqrt{s} = 2,04$ ГэВ наблюдается узкая (резонансная) структура. Сечения реакций $\pi + d + p + p$ и обратных ей реакций $p + p + d + \pi$ связаны между собой следующим соотношением:

$$\frac{\sigma (\pi + d + p + p)}{\sigma (p + p + \pi + d)} = \frac{(2S_p + 1)^2 P_p^2}{2 (2S_d + 1) (2S_\pi + 1) P_\pi^2},$$
(8)

где P_p — импульс протона в прямой реакции (в с.ц.и.); P_{π} — импульс *π*-мезона в обратной реакции; S_p , S_{π} , S_d — спины протона, *π*-мезона и дейтрона соответственно. Так что оценивая сечение процесса (1), мы можем оценить сечение обратного ему процесса.

Из всего сказанного выше следует, что для выяснения вопросов о наличии особенности структуры в сечении процесса π + d + p + p в районе $T_{\pi} \sim 30$ МэВ, уточнения энергетической зависимости коэффициен-

10

тов разложения $d\sigma/d\omega$ по полиномам Лежандра необходимо получение новых точных экспериментальных данных реакции $\pi + d + p + p$ при $T_{\pi} \leq 100$ МэВ. По нашему мнению эти данные с достаточно хорошей точностью можно получать на установке АРЕС.

Авторы выражают благодарность А.С.Моисеенко, С.И.Яковлеву, И.В.Киселю за полезные замечания и Т.С.Тихановой за помощь при оформлении работы. Авторы благодарят также Д.А.Мжавия за проявленный интерес к работе.

ЛИТЕРАТУРА

- 1. Thomas A.W., Landau R.H. Phys. Rep., 1980, v.58, p.121.
- 2. Rithie B.G. et al. Phys. Rev., 1981, C24, p.552.
- 3. Rithie B.G. et al. Phys. Rev., 1983, C27, p.1685.
- 4. Boswell J. et al. Phys. Rev., 1982, C25, p.2540.
- 5. Коренченко С.М. и др. ОИЯИ, Д13-9542, Дубна, 1976.
- 6. Баранов В.А. и др. ОИЯИ, 13-81-381, Дубна, 1981.
- 7. Баранов В.А. и др. ПТЭ, 1987, 6, с.40.
- 8. Mathie E.L. et al. Nucl. Phys., 1983, A397, p.469.
- Строковски И.И., Пасюк Е.А. В сб.: Труды 4 Всесоюзного семинара по программе экспериментальных исследований на мезонной фабрике. ИЯИ АН СССР, М., 1986, с.241.
- 10. Rinat A.S. et al. Nucl. Phys., 1981, A364, p.486.
- 11. Maxwell O.V. et al. Nucl. Phys., 1980, A348, p.388.
- 12, Brack M. et al. Nucl. Phys., 1977, A287, p.425.
- 13. Brun R.F. et al. CERN DD/81/2, Geneva, 1981.

Рукопись поступила в издательский отдел 12 марта 1990 года.