

ОбЪЕДИНЕННЫЙ Институт Ядерных Исследований Дубна

A 724

P15-89-318

А.Д.Антонов *, Н.П.Балабанов *, Ю.П.Гангрский, Ф.Г.Кондев, С.Г.Маринова*, Х.Г.Христов

ИССЛЕДОВАНИЯ ФОТОЯДЕРНЫХ РЕАКЦИЙ С ВЫЛЕТОМ α-ЧАСТИЦ В ОБЛАСТИ ГИГАНТСКОГО ДИПОЛЬНОГО РЕЗОНАНСА

Направлено в журнал "Ядерная физика"

*Университет им. П.Хилендарского, Пловдив, НРБ

and the second and a second second second and a second s

Изучение фотояцерных реакций позволяет получить важные сведения о структуре и свойствах атомных яцер. Успехи, цостигнутые в описании электромагнитных взаймоцействий, стимулируют эксперименты по изучению процессов испускания различных частиц из возбужденных ядер в этих реакциях. Опним из таких направлений исследований являются фотояцерные реакции типа (у, х), которые представляют уникальную возможность изучения процесса формирования ос-частиц в возбужденном ядре. Сравнение сечений реакций (У, о) и других реакций позволило бы судить о роли предравновесных процессов, влиянии входного канала и т.д.

法的财产 有效性

Оцнако реакции (Х, х) исследованы сравнительно слабо, особенно это касается цетальных измерений функций возбуждения (можно лишь отметить результаты работ/1-3/). Одной из принин этого являются малые значения сечений (порядка долей миллибарна) и связанные с этим трудности выделения реакций (У, х) на фоне других, более интенсивных процессов.

Целью данной работы является измерение сечений и функций возбуждения реакций (У, с) для ядер в широком циапазоне Z и A при энергиях X-квантов в области гигантского ципольного резонанса (18-25 MaB), сравнение с цругими аналогичными реакциями и теоретическими расчетами.

[10] A. M. Martin, Phys. Rev. B 10, 100 (1997).

2. Метоцика эксперимента

Исследования были проведены на пучке тормозного излучения микротрона МТ-25 ЛЯР ОИЯИ. Образцы, содержащие обогащенные изотопы исследуемых ядер, облучались при энергиях ускоряемых электронов в диапазоне 18 - 25 МэВ при среднем токе пучка 12 - 15 мкА. Мониторирование потока У-квантов осуществлялось с помощью пластинок из меди натурального изотопного состава, которые облучались вместе с образцами. Для опрецеления выхода реакций (у, х) на исследуемых ядрах применен метод навеценной активности. Он позволяет разнести во времени операции облучения и измерения, что устраняет трудности, связанные с наличием сильного излучения вокруг ускорителя во время его работы. В наших измерениях Х-излучение ядер-продуктов, накапливаемых в облучаемых образцах из реакции (у, «) на япрах мишени, регистрировалось с помощые полупроводниковых цетекторов (одного из чистого Ge объемом 2, Icm³, другого-Ge(Ц), 60см³). Характеристики мишеней (химический состав

1 -

и обогащение исследуемым изотопом) и ядер-продуктов (период полураспада, энергия и интенсивность измеряемой у-линии/4/) приведены в табл. I.

Таблица I

ядра-мишени			ядра-продукты				
изотоп	состав	oforan.,%	изотоп	The	Ex, KOB	Ĩ,%	
51V 65 <i>Cu</i> 76 <i>Ge</i> 93Nl 170lr	V ₂ 05 Cu (HAT) Ge 0 NG0 Br203	99,75 30,9 77,0 100 98,0	47 <i>Sc</i> 61 <i>Co</i> 72 <i>Zn</i> 89mY 166 <i>Dy</i>	3,42дн. I,7час 46,5час I6с 3,40лн.	159,4 67,5 144,8 909 82,5	73 86 83 99	
IBI Ta	Ta (Hat)	100	177 <u>L</u> u	6,71дн.	208	II	

Характеристики ядер-мишеней и ядер-продуктов реакции (χ, α)

Измерения для каждого из исследуемых ядер проводились периодически в течение нескольких дней, чтобы убедиться, что убывание активности регистрируемой У-линии соответствует значению периода полураспада ожидаемого продукта. В случае короткоживущего продукта реакции – ⁸⁹mY ($\mathcal{T}_{\underline{k}}$ =16 с) использовалась методика быстрой транспортировки облученного образца с помощью пневмопочты. Большое внимание было уделено учету вклада от интерферирующих реакций на примесях других элементов (или изотопов исследуемых элементов) в облучаемом образце. Содержание этих примесей определялось при облучении образцов быстрыми и тепловыми нейтронами на реакторе. Во всех случаях вклад от этих примесей не превышал нескольких процентов.

3. Экспериментальные результаты

Выход реакций (ζ', α) на исследуемых ядрах при различных граничных энергиях тормозного излучения определялся относительным методом путем сравнения площадей пиков ζ' -лучей ядер-продуктов (табл.I) и аннигиляционного излучения ($E_{\zeta'}=511$ кэВ) ядра⁶⁴Си ($T_{\zeta'}=12,7$ ч), образующегося в реакции ⁶⁵Си (ζ', n). Зависимость выхода этой реакции от граничной энергии тормозного излучения хорошо известна (1-3,7). Для определения выходов реакций (ζ', α) таким методом использовалось соотношение

 $Y_i(E_{ymax}) = \frac{S_i(1-e^{-t_y}\tau_i)e^{-t_y}\tau_i}{t_{ii} E_{ii} I_i N_i} \sum_{m} (1-e^{-t_y}\tau_i)e^{-t_y}\tau_i} Y_m(E_{ymax}),$ (I) гце S- площаць пика в y-спектре, \mathcal{E} - эффективность регистрации измеряемой y-линии, \overline{I} - её интенсивность, отнесенная на оцин акт распаца, N- число яцер исслецуемого изотопа в образце, t_1, t_2 и t_3 - соответотвенно времена измерения, облучения и выцержки до измерения, T_i и T_m времена жизни яцра-процукта и монитора. В остальных обозначениях iотносится к изучаемому ядру, в индекс $m - \mathbf{x}$ монитору. Опрецеленные таким способом значения выходов реакций (γ,∞) при различных эначениях граничных энергий тормозного излучения приведены в табл.2. Для ядер ${}^{65}C_{4}$, ${}^{93}N\ell$ и ${}^{181}7_{4}$ получены значения выходов при граничной энергии 25 МэВ, а для ядер ${}^{51}V$, ${}^{76}Ge$ и ${}^{170}\ellr$ – при нескольких граничных энергиях в циалазоне 18,5 – 25 МэВ.

Таблица 2

Выходы реакций ()	γ,∝) при ра	азличных	граничных
энергиях тор	омозного из	злучения	مراجع والمراجع

				Выход, (м	оль-Р) ⁻¹	f .	a strange
МәВ	٠	51 _V -	65 <i>Cu</i>	⁷⁶ Ge	93 _{NE}	170gr	^{I8I} Ta
25,0		I,0·I0 ⁴	2,0.104	3,7.103	3,9·I0 ³		2,5-102
24,5	-	9,4·I0 ³		,		2,8·I0 ³	, –
23,0		_		I,8•I0 ³			
2I,5		5,2-I0 ³		I,I·I0 ³		5,2-I0 ²	
20,5		2,9 I0 ³		ta tua a		1,7-102	
I8,5		5,8 IO ²		1,0·10 ²		I,4-I0 ^I	

Абсолютная ошибка приведенных в табл.2 выходов составляет IO-I5%. Она опрецеляется ошибкой значений выходов мониторов, статистической погрешностью счетов в пике измеряемой у-линии и неопределенностями фона и эффективности регистрации у -излучения. В то же время относительная ошибка выходов для одной и той же реакции, но при разных граничных энергиях тормозного излучения не превышает I-2%.

Измеренные выходы реакций (y, α) при выбранной граничной энергии тормозного излучения связаны с сечениями $G'(\mathcal{E}_y)$ известным интегральным соотношением:

$$Y(E_{ymax}) = \int G(E_y) N_{\theta}(E_{\theta}) dE_{\theta}, \qquad (2)$$

где E_{nop} – пороговая энергия реакции, $N_{g'}(E_{g'})$ – интенсивность тормозного излучения при энергии E_{g} . Поэтому если измерен выход лишь при одном значении $E_{g'}$ то из него можно определить интегральное сечение реакции:

$$G_{unm}(E_{ymax}) = \int_{E_{rop}}^{E_{ymax}} G(E_y) dE_y . \tag{3}$$

При этом У(Еутах) и бинт (Еутах) связены соотношением

$$Y(E_{Smax}) = \frac{G_{unm}(E_{Smax})}{E_{Smax} - E_{nop}} \int_{E_{nop}}^{E_{Smax}} N_{s}(E_{s}) dE_{s} .$$
(4)

Для реакций (ζ, α) порог принимался равным сумме энергии связи α частицы (\mathcal{B}_{α}) и её кулоновского барьера (\mathcal{E}_{α}^{K}). Хотя α -частицы и испускаются из ядра с энергиями ниже кулоновского барьера за счет туннельного эффекта, вклац этого процесса в интегральное сечение, как буцет видно ниже из функций возбуждения, невелик. Полученные таким способом интегральные сечения при граничной энергии тормозного излучения 25 МэВ, а также значения \mathcal{B}_{α} , рассчитанные из масс ядер⁵, и \mathcal{E}_{α}^{K} , взятые из расчетов по оптической модели⁶, представлены в табл.3. При этом в качестве реперного использовалось интегральное сечение реакции 65 си (ζ, n)⁶⁴си при $\mathcal{E}_{\text{има}}$ =25 МэВ, равное I, I2 МэВ барн⁷⁷. В случае реакции ⁹ Ж(ζ, α) приведенное в табл. 3 сечение относится лишь к образованию ядра ⁸⁹ в изомерном состоянии (основное состояние стабильно), поэтому полное сечение этой реакции выше.

Таблица З

Реакция	В ≪ МэВ	<i>Е</i> к МэВ	G _{инт} , цанная работа <i>Еумах</i> =25М <u>э</u> В	МэВ•мбарн другие	работы
^{5I} V (y,a)	-10,6	6,6	4,8(1,4)	4,3(1,0) 5,5(2,0)	24,5MəB ^{/3/} 32 MəB/I/ 22 MəB/2/
⁶⁵ Cu (Y,x) ⁷⁶ Ge (Y,x) 93NE (Y, x)	-6,3 -7,5	8,2 9,0	9,2(2,0) I,3(3) I,2(2)	10(20)	32 MəB/I/
$170 gr (y, \alpha)$ $181 Ta (y, \alpha)$	-1,2 0 I,5	17,6 18,4	0,5(2) 0,055(I5)	0,14(3)	32 _{МэВ} /I/

Интегральные сечения реакций (у. α)

В случае ядер 51 V, 76 Ge и 170 Gr, для которых выходы измерены при нескольких граничных энергиях тормозного излучения, можно, пользуясь выражением (2), определить сечения при различных энергиях J-излучения и построить функцию возбуждения реакции (J, α). Малое число экспериментальных точек позволяет судить об общем ходе сечений с ростом энергии J-излучения и об их величине. Поэтому при определении сечений использовалась усредненная кривая, полученная из экспериментальных эначений выходов методом наименьших квадратов в предположении гладкой зависимости $G'(J,\alpha)$ от E_J . Значения сечений получены методом "минимизации направленной расходимости" , который наиболее эффективно применяется при нахождении функций возбуждения вблизи порогов реакций J'. Реакции (J, α) в исследуемой области энергий относятся именно к такому типу.

Полученные таким методом функции возбуждения представлены на рис.I. Для всех них характерен быстрый рост с увеличением энергии у -излучения, а затем выход на плато. При этом область плато сдвигается в сторону больпих энергий с ростом атомного номера ядра. Для реакции ^{5I} ((у, с) наблюдается слабый спад сечения при энергиях у-излучения выше 20 МэВ.

Рис. I. Функции возбуждения реакций: I $- {}^{65}Cu(\gamma, n) {}^{64}Cu$, 2 $- {}^{51}V(\gamma, \alpha) {}^{47}Sc$, 3 $- {}^{76}Ge(\gamma, \alpha) {}^{72}Zn$, 4 $- {}^{170}gr(\gamma, \alpha) {}^{166}Dy$.

Стрелками указаны пороги реакций $\mathcal{B}_{\alpha} + \mathcal{E}_{\alpha}^{\kappa}$.

4. Обсуждение результатов

Другой особенностью реакций (γ, α) являются их малые сечения по сравнению с цругими реакциями с вылетом α -частиц, например (n, α) или (α, α) . На рис.2 представлена зависимость от Z сечений реакций (γ, α) при энергиях γ -излучения 23 – 25 МэВ и реакций (n, α) при энергиях нейтронов I4,7 МэВ^{/10}/ Эти энергии γ -квантов и нейтронов приводят к близким энергиям возбуждения составного ядра. Из рис.2 видно,

что сечения реакций (J, α) значительно меньше сечений реакций (n, α) , и эта разница растет с увеличением Z, достигая цвух порядков. Известные интегральные сечения реакций (J, α) для других ядер также подтверждают эту закономерность. Такое поведение сечений может означать, что играющие

Рис.2. Зависимость от атомного номера (Z) сечений реакций (n, α) -• и (y, α) наши цанные - •, работа $^{10/-4}$.

5

большую роль в реакции (n, \ll) прямые процессы значительно слабее проявляются в реакции (χ, \ll). Подобное заключение следует и из сравнения сечений реакций (χ, \ll) и (χ, ρ) – сечение последних, где вклад прямых взаимодействий велик, заметно больше.

Малый вклац прямых процессов в реакциях (j', α) позволяет использовать для их описания статистическую теорию яцерных реакций. Поэтому представляет интерес провести сравнение отношений сечений реакций (j', α) и (j', n), основываясь на представлениях этой теории. Отношение сечений этих реакций определяется отношением приведенных парциальных ширин уровней для испускания α -частицы и нейтрона:

$$\frac{G(H,\alpha)}{G(H,n)} = \frac{f_{\alpha}}{f_{n}}.$$
(5)

Отношение парциальных ширин в статистической теории описывается выражением, которое при учете массовых чисел и спиновых множителей испускаемых частиц имеет вид/II/

$$\frac{\Gamma_{\alpha}}{\Gamma_{n}} = \frac{2\sigma^{E-B_{\alpha}}\rho_{f}(E-B_{\alpha}-E_{\alpha})E_{\alpha}G(E_{\alpha})dE_{\alpha}}{\sigma^{E-B_{n}}\rho_{2}(E-B_{n}-E_{n})E_{n}G(E_{n})dE_{n}},$$
(6)

где E – энергия возбуждения составного ядра, $\rho_t(E-R_u - E_u)$ и $\rho_2(E-R_n - E_n)$ – плотности уровней конечных ядер после испускания соответственно α -частицы и нейтрона с кинетической энергией E_u или E_n и энергией связи B_α или B_n , $\mathcal{S}(E_\alpha)$ и $\mathcal{S}(E_n)$ – сечения обратных реакций для этих частиц (использованы расчеты сечений по оптической модели для α -частиц⁶/и нейтронов¹²). При этом предполагалось, что в ядре имеются сформированные α -частицы (подобно протонам или нейтронам).

Конечные ядра после испускания α' -частиц и нейтронов находятся в разных энергетических циапазонах: в первом случае 3 – 8 МэВ, во втором 8 – 18 МэВ. Поэтому цля вычисления α' – и нейтронной ширин привлекаются различные модельные представления и, соответственно, разные выражения цля плотностей уровней ⁽¹³⁾. Эти выражения для модели с постоянной температурой (при $E < B_n$) и для модели ферми-газа (при $E > B_n$) имеют вид

$$\rho(E) = \frac{1}{T} \exp\left(\frac{E-\delta}{T}\right),\tag{7}$$

$$\rho(E) = \frac{\sqrt{\pi}}{24a^{3/4}(E-\delta)^{5/4}} \exp\left\{2\sqrt{a(E-\delta)}\right\}, \quad (8)$$

где 7 – температура ядра, a – параметр плотности уровней в модели ферми-газа, 5 – энергия спаривания.

На основе выражений (6 – 8) были рассчитаны отношения $\frac{1}{7\pi}$ для яцер ^{5I}V, ⁷⁶Ge и ¹⁷⁰Gr в измеряемом циапазоне энергий возбуждения. В этих расчетах были использованы средние расстояния между уровнями ($2\sim \frac{1}{5}$) при энергиях связи нейтрона и значения параметров T, α и δ , полученные из анализа нейтронных резонансов ^(14,15) (таблица 4).

Таблица 4

Параметры статистической моцели, используемые цля расчетов '							
Яцро	Реакция	<i>Bn</i> MəB	Д,эВ (E=Bn)	а МэВ ^{-I}	Т МэВ	б МэВ	
$\begin{array}{c} 47 S_{c} \\ 50_{V} \\ 72 z_{n} \\ 75 G_{e} \\ 166 D_{y} \end{array}$	5IV(X,d) 5IV(X,n) 76Ge(X,n) 76Ge(X,n) I70Gr(X,d)	I0,8 9,3 8,9 8,5 7,I	5.10 ³ 3.10 ³ 5.10 ³ 8.10 ³ 8.10 ¹	7,2 II,8	I,I 0,8 0.6	1,7 0 2,5 1,3 1,5	
10984	170 Gr(y,n)	7,2	1.102	21,8	- ,	0,8	

Рассчитанные отношения $\sqrt[6]{n}$, а также экспериментальные, полученные из отнощений сечений реакций (γ, α) и (γ, n) (последние приведены в работе $\sqrt{16}$) при энергиях возбуждения 20 и 24 МэВ, представлены в табл.5. Видно удовлетворительное согласие расчетных и экспериментальных отношений $\sqrt[6]{n}$, что указывает на применимость статистической модели с принятыми в ней параметрами для описания функций возбуждения и значений сечений реакций (γ, α) в области гигантского дипольного резонанса.

Таблица 5

Pac	четные и экс	периментальн	ые значения	10/Fn	
Яцро	$E_{\delta} = 20$	О МэВ	$E_{\chi} = 25 \text{ MaB}$		
	экспер.	расчет	экспер.	pacver	
$5I_V$	1,8-10-2	2,2.10-2	2,5.10-2	3,9.10-2	
, ⁷⁰ Ge	I,9.10 ⁻³	I,2·10 ⁻³	6,I·I0 ⁻³	5.5·10 ⁻³	
ITO Br	2,0.10-4	8,0-I0 ⁻⁵	1,5-10 ⁻³	7,5-10-4	

Некоторое превышение экспериментальных отношений \mathcal{U}_n над расчетными для ядра $170 \, g_r$ могло бы указывать на заметный вклад прямых реакций в случае больших Z, однако его можно устранить небольшим изменением (не выходящим за рамки принимаемых в других расчетах) параметров плотностей уровней.

В заключение авторы выражают благоцарность Г.Н.Флерову и D.Ц.Оганесяну за поццержку работы, А.Г.Белову за облучение образцов на микротроне, В.Е.Жучко и А.Тончеву за помощь в измерениях и обработке результатов, D.M.Ципенюку за полезные обсуждения.

Литература

Barat di

- 1. Erdos Pag, Scherrer P., Stoll Pag. Helv. Phys. Acta, 1957, 30, p.639.
- 2. Carver J.H. Proc. Phys. Soc., 1961, 77, p.417.
- 3. Daul P., Hummel H. Phys. Rev., 1959, 115, p. 1264.
- Lederer CTM., Shirley V.S. Tables of Isotopes, 7th Ed., John Wiley, 1978.
- 5. Wapstra A.H., Audi B. Nucl. Phys., 1985, A432, p.1.
- 6. Igo G. Phys. Rev., 1959, 115, p. 1665.
- 7. Katz L., Cameron A.G. Can. J. Phys., 1951, 29, p.518.
- 8. Тараско М.З. Препринт ФЭИ № 156, Обнинск, 1969.
- 9. Жучко В.Е. ЯФ, 1977, 25, с.299.

. . .

101 12

- 10. McLane V., Dunford C.L., Rose P.F. Neutron Cross-Section, v. 2, Acad. Press, 1988.
- 11. Блатт Лж., Вайскопф В. Теоретическая ядерная физика. ИЛ, М., 1954.
- Dostrovsky I., Fraenkel Z., Friedlander G. Phys. Rev., 1959, 116, p. 683.
- 13. Игнаток А.В. Статистические свойства атомных ядер. Энергоатомиздат. М., 1983.
- 14. Baba H. Nucl. Phys., 1970, 159, p.625.
- 15. Dilg W., Schantl W., Vonach H., Uhl M. Nucl. Phys., 1973, 217, p. 269.
- 16. Bergman B.L. Atom. Data Nucl. Data Tables, 1975, 15, p. 319.

Рукопись поступила в издательский отдел 6 мая 1989 года.