СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

2,758

P15 - 8810 4/11-75

О.Е.Крафт, Ю.В.Наумов, С.С.Паржицкий, И.В.Сизов

ГАММА-РАСПАД Р 1/2, f 5/2, Р 3/2 АНАЛОГОВЫХ РЕЗОНАНСОВ В 63 Сu

P15 - 8810

ГАММА-РАСПАД Р 1/2, ^f 5/2, P 3/2 АНАЛОГОВЫХ РЕЗОНАНСОВ В ⁶³ Cu

Крафт О.Е., Наумов Ю.В., Паржицкий С.С., Сизов И.В. P15 - 8810 Гамма-распад $p_{1/2}$, $f_{5/2}$, $p_{3/2}$ аналоговых резонансов в 62 Cu

В работе исследован гамма-распад аналоговых резонансов в 63 Си. В функции возбуждения реакции 62 Ni(p, γ) 63 Си обнаружены резонансы при E p = 2481, 2546, 2556 и 2659 кэВ, которые идентифицированы как P1/2-, $^{f}_{5/2-\mu}$ P3/2-аналоги основного, первого и второго возбужденных состояний 63 Ni. Измерены γ -спектры каждого резонанса, определены парциальные и полные гамма-ширины.

Обсуждаются вопросы о переходах с аналога на антианалог и на состояния типа поляризации остова. Сравниваются вероятности аналоговых β – и γ – переходов.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований Дубна 1975

Kraft O.E., Naumov Yu.V., Parzhitsky S.S., P15 - 8810 Sizov V.I.

y -Decay of the Analog Resonances in 63 Cu

The gamma-decay of the analog resonances in⁶³ Cu was investigated. The measurements were performed with Van de Graaff accelerator ($E_{p\,ma\bar{x}}$ =5 MeV) of the Neutron Physics Laboratory of JINR. The resonances at the E_p =2481, 2546, 2556 and 2659 keV. were identified as $p_{1/2}$, $f_{5/2}$ (two components) and $p_{3/2}$ analog states of the ground, first and second excited states of 63 Ni. The gamma spectra were measured with GeLi detectors and partial gamma-widths were deduced.

It is found the concentration of the M1 strength in the excitation energy around 3-4 MeV. The strength of the analog-antianalog and analog-corepolarization state transitions are discussed. The analog β and y-transitions are compared.

Communication of the Joint Institute for Nuclear Research Dubna 1975 Изучение гамма-распада аналоговых резонансов позволяет получить богатую информацию о ядерной структуре. Это во многом определяется природой аналогового состояния, волновая функция которого хорошо известна, несмотря на большую энергию возбуждения. Данные о гамма-распаде аналогов можно использовать для определения волновых функций низколежащих состояний, на которые происходит распад. Анализ показывает, что информация о ядерной структуре, получаемая при изучении гамма-распада аналогов, качественно похожа на получаемую при изучении β -распада, но для значительно большего диапазона энергий возбуждения.

Исследование у -переходов типа аналог-антианалог дает сведения о свойствах одночастичных состояний. Из гамма-распада аналогов можно получить информацию о ядерных возбуждениях коллективного типа. Во многих ядрах интенсивно заселяются состояния, которые можно интерпретировать как состояния типа поляризации остова.

Гамма-распад аналогов привлек к себе внимание сравнительно недавно. Одним из первых обзоров по этому вопросу является работа $^{/1/}$. Краткий обзор основных проблем можно найти в $^{/2/}$ и $^{/3/}$.

Настоящая работа является продолжением цикла исследований, предпринятых для изучения гамма-распада аналогов в ядрах 2p1f - оболочки. В работах^{/4-7/} были изложены результаты исследований гамма-распада $p_{3/2}$, $f_{5/2}$ и $p_{1/2}$ -аналогов в 61 Си. Здесь приводятся данные о гамма-распаде $p_{1/2}$, $f_{5/2}$; $p_{3/2}$ -аналогов в 63 Си. Часть этих данных была опубликована нами в $^{/8-10/.}$

Эксперимент и результаты

Аналоги в ⁶³ Си возбуждались в реакции ⁶²Ni(p_γ)⁶³Cu. Мишень ⁶²Ni /95,6% обогащения/ толщиной 10 мкг/см² облучалась протонами, ускоренными на электростатическом генераторе ЛНФ ОИЯИ / $E_{p_{max}} = 5 M_3 B$ /. Токи составляли 5-10 мкА. Монохроматичность пучка была лучше 5.10⁻⁴.

Аналоги основного $(p_{1/2})$ и второго возбужденного /158 кэВ, $p_{3/2}$ / состояний ⁶³Ni в⁶³Cu были установлены в работе /11/при изучении реакции упругого рассяния протонов на ⁶²Ni. В этой работе измерялась функция возбуждения в реакции ⁶²Ni(pp₀) с высоким разрешением. Резонансы с большими протонными ширинами и значениями $J^{\pi} = 1/2^{-}$ и $3/2^{-}$ при энергиях протонов $E_{p} = 2481$ и 2659 кэВ были отождествлены авторами с аналогами $p_{1/2}$ и $p_{3/2}$ соответственно. Аналог первого возбужденного состояния ⁶³Ni / 88 кэB, $f_{5/2}$ / в реакции (pp₀) не проявился, что, по-видимому, объясняется большим центробежным барьером для $\ell_{p} = 3$. Аналог $p_{1/2}$ наблюдался также в работе /12/.

Так как энергин $P_{1/2}$ -и $P_{3/2}$ -аналогов с точностью 2-3 кэВ установлены в реакцин упругого рассеяния протонов, то идентификация их в реакцин (p_{γ}) не представляла большой трудности. Функция возбуждения изучалась нами с помощью кристалла Naj(Tl) размерами 100x100 мм. Порог дискриминации был выбран так, чтобы регистрировать γ -кванты с энергией > 3 МэВ. Участок функцин возбуждения в области энергий 2460-2490 кэВ представлен на рис. 1. При энергии E_p = = 2481 кэВ виден пик, соответствующий $p_{1/2}$ -аналогу. Таким же образом был идентифицирован $p_{3/2}$ -аналог при E_p = 2659 кэВ/см. рис. 1/.

Более сложным был понск $f_{5/2}$ -аналога, положение которого в реакции (pp 0) не установлено. Между тем в реакции (py) он мог быть обнаружен.

Примерное положение $f_{5/2}$ -аналога можно оценить, зная положение аналога основного состояния 63 Ni -Однако неопределенность этой оценки составляет ~ 30 -40 кэВ /она связана с неопределенностью величины

∆ Ес - разности кулоновских энергий членов изомультиплета/.

При измерении функции возбуждения в соответствующей энергетической области мы обнаружили три сильных резонанса с $E_p = 2546$, 2556 и 2586 кэВ. Характер их γ -распада позволяет считать, что резонансы с $E_p = 2546$ и 2556 кэВ являются компонентами расщепленного $f_{5/2}$ аналога. Для γ -распада этих резонансов характерно интенсивное заселение состояний со спинами 3/2, 5/2 и 7/2, в то время как γ -распад резонанса с $E_p =$ = 2586 кэВ характеризуется сильными переходами на уровни со спином 1/2.

Гамма-распад резонансов изучался с помощью GeLi детектора объемом 40 см³, помещенного под углом 90° к падающему пучку. Разрешающая способность составляла 10-12 кэВ для у -лучей с энергией ~ 8,5 мэВ.

Градунровка по энергин в области до 2,5 *МэВ* производилась по внутренним реперам. Такими реперами частично служили те *у*-переходы в ⁶³ Cu, энергии которых измерены с большой точностью при β -распаде ⁶³ Zn^{/13}/ частично *у*-линии, возникающие в различного рода реакциях на примесях, содержащихся в мишени или цилиндре Фарадея. При больших энергиях удобным репером служила примесная линия ¹⁶ O с энергией 6129 кэВ, получаемая по реакции ¹⁹ F (p,d) ¹⁶ O.

В спектре каждого резонанса наблюдалось более 100 линий, включающих как прямые у -переходы с аналогов, так и у -излучение, принадлежащее разрядке низколежащих состояний. При распаде аналогов прямыми переходами заселялись 40 уровней ⁶³ Сu с энергиями до ~4 *МэВ*. Для спектра каждого резонанса нами была построена схема распада, сбалансированная по энергии и интенсивности.

В таблице 1 приведены данные о прямом заселении с аналоговых резонансов уровней 63 Сu. В первой колонке даны их энергин, полученные из наших измерений, с указанием среднеквадратичной погрешности. Большая часть низколежащих состояний до 3100 кэВ наблюдалась при β -распаде 63 Zn $^{/13}$ / Исключением являются состояния с энергиями 2405, 2678, 2831, 2956 и 2978 кэВ. Эти уровни и уровни с более высокими энергиями возбуждения, наблюдаемые в наших измерениях, известны из реакции неупругого рассеяния протонов на⁶³ Cu^{/14,15/}. Уровень 3264 кэВ введен нами впервые. Значения квантовых характеристик в колонке 2 таблицы 1 взяты из работы /13/. Для остальных уровней значения J^{π} неизвестны.

В работе $^{/10}$ нами были определены резонансные силы и гамма-ширины переходов на основное состояние 63 Cu для $p_{1/2}$, $f_{5/2}$ - и $p_{3/2}$ -аналогов. Пользуясь результатами измерений относительных интенсивностей γ -переходов, мы вычислили парциальные гамма-ширины l_{γ}^{-} , приведенные в колонках 3,5,7 и 9 таблицы 1 для $p_{1/2}$, $f_{5/2}$ - и $p_{3/2}$ -аналогов. В колонках 4,6,8 и 10 приводятся величины B(M1) для соответствующих переходов. Значения гамма-ширин даны без учета углового распределения. Величины B(M1) найдены в предположении, что переходы являются чистыми M1-переходами. На *рис.* 2 представлено распределение M1 - силы для $p_{1/2}$, $f_{5/2}$ - и $p_{3/2}$ -аналогов.

Кроме данных о гамма-распаде аналогов, в работе получена информация о разрядке низколежащих состояний ⁶³ Cu

На рис. З приведена схема разрядки по данным наших измерений. Результаты по разрядке уровней, которые наблюдались также при β -распаде 63 Zn, в основном совпадают с результатами работы $^{/13/}$. Данные о разрядке остальных состояний получены нами впервые.

Обсуждение результатов

Подробный анализ результатов работы будет сделан позднее, после проведения полной программы исследований, в которую входит измерение угловых распределений γ -излучения.

Здесь мы ограничимся рассмотрением переходов с аналога на антианалог и на состояния типа поляризации остова и сравнением вероятностей γ -перехода с аналога на какой-то уровень и β -распада из материнского состояния на тот же уровень. Соответствующие β -и γ переходы называют аналоговыми.

		Ри/2-аналог		↓ 5½ - аналог				Рз/2- аналог	
Энергия	, प	Ep = 2	48I кэB	Ep = 25	46 кэВ	Ep = 2	656 кэ в	Ep = 265	9 кэВ
кэВ	J	Е _{рез} =8569,I <u>+</u> I,5 кэВ		,5 Е _{рез} =8631,7+ 2,0 кэ В		E _{pe3} =8640,6+		Е _{рез} =8743,3+ 1,5 кэВ	
		Гг.10 эВ	B(H1)18/2	F. 10 3B	B(MI).10,40	Frid aB	B(NI)102402	[r.10 3B	B(MI).10/102
I	2	3	4	5	6	7	8	9	10
0 668.3+0.5	3/2- 1/2-	22 II	3.0 I.9	I,8 0.25	0,24 E2	4,6 1.0	0,6I E2	6,0 5.0	0,77
961,6 1 0,5	5/2-	2,6	E2	2.0	0,38	2,8	0,56	7,9	1,45 F5
1410,4+0.5 1546,5+0,5	5/2- 3/2-	5,5 17	E2 4,3	1.1 2.3	0,25 0,55	2,9	0,66 0,63	4,6 1,8	I.0 0,4I
1860,0+1,0 2012,2+1,0 2060,0+1,0	$\frac{5/2}{3/2}$ $(1/2)$ - $1/2$ $(1/2)$ - $1/2$ $(3/2)$	3.7	I.I 2.4	1,4	0,28 0,41	0.8	0,24 E2	I.6	0,45
2080,0 1 1,5 2333,6 <u>1</u> 1,5	<u>5/2-(3/2-)</u> 3/2-5/2-(1/2-)	.,.	~,-			Ī 0,87	0,33 0,30	I.3 I.6	0,38 0,52
2405+3 2497,3+1,5 2533 7=2 0	$3/2^{-}$ 5/2-(3/2)	10,7	3.9			I,5	0,56	0,4	0,13
2677,9 <u>4</u> 1,8	T/070 /07	ě, é	4,2			õ,õ	ŏ, 32	Ĭ,7	ŏ,66
269/+2 2778+2 2831-2 5	$3/2^{1/2} 5/2^{-1/2} (1/2)$	-) 5,1	2,2	τo	0.99	I,2	0,51		
2860 1 2 2886 1 2 2956 1 3	$\frac{1/2^{-}}{1/2^{-}} \frac{3/2^{+}}{3/2^{+}} \frac{5/2^{-}}{5/2^{-}}$	3,3 3,3	I,6 I,6	1,0	0,00	0,7	0,32	2.4 0.8 I.I	I.0 0,30 0,49
2978,6 <u>+</u> 1,6 3042+3 3100+3	I/2 [±] 3/2 [±] 5/2 [±] I/2 [±] 3/2 [±] 5/2 [±]	2,6 3,5 4,4	1.3 1,8 2,3			I,6 0,9	0,78 0,46	0,9 0,4	0,40 0,43

			Tao	лица I (пр	OLO IR OFIC)		
3127+3 322473 326473 329274 330974 340673 342922	4,8 1,7 7,5 3,5	2,7 0,90 3,0 4,5 2,2	0,7	0,40	0,99 0,93 1,5	0,46 0,49 0,72 0,62 1,42	1,6 2,4 3,8	0,82 I,3 2,0
346174 347674 353573 365774 3774+4	3,7 4,4	3,2					4,2 I.8 I,6	2,4 I,I 0,78
3902+3 3960+3 4058+5 4119+5	2,0	2,0					2,0 1,8 2,2 4,6	I,5 I,4 I,8 4,0

x) Значения резонансных сил (2J + I) Гр Гу / Г определены с точностью 20% для угла 90° между у - излучением и падающим пучком. Величины Гу даны без учета углового распределе - ния.

10

П

Переходы типа аналог-антианалог

Положение антианалогового состояния ориентировочно определяется величиной изоспинового расщепления ядерных состояний. Разность энергий между Т – и Т – состояниями выражается формулой

 $E_{T_{>}} - E_{T_{<}} = 2T_0 \frac{V_1}{A}$, где T_0 - изоспин аналога, A - атомный вес ядра-мишени, $V_1 \cong 50 M \ni B$.

Иногда $T_{<}$ - компонента распределяется по нескольким ядерным уровням. Однако часто одно состояние несет значительную долю $T_{<}$ -компоненты. Такое состояние называют антианалоговым. Основой для идентификации антианалогового состояния является большой спектроскопический фактор в реакциях передачи протона.

В ядре ${}^{63}C_u$ антианалогами для $p_{1/2}$, $f_{5/2} - \mu p_{3/2}$ аналогов могут считаться уровни 668 кэВ, 962 и 1410 кэВ и О, имеющие большие спектроскопические факторы в реакции (3 He, d) ${}^{/15/}$.

Если рассматривать состояния типа частица плюс инертный остов, то для приведенной вероятности M1-перехода аналог-антианалог можно получить выражение /16/:

$$B(M1) = \frac{9}{8\pi} (2T_{i} + 1) < T_{i} M_{T} 10 | T_{f} M_{T} > 2 \times /1/$$

$$\times j(j+1) \{ \frac{1/2}{T_{f}} \frac{1/2}{T_{i}} + \frac{1}{0} \} (g_{p} - g_{n})^{2}, /1/$$

где Т₀ - изоспин остова, ј - угловой момент нечетной частицы, g_pи g_n - гиромагнитные отношения для протона и нейтрона, определяемые формулой

$$g_{p,n} = g_{\ell} \pm (g_s - g_{\ell}) \frac{1}{2\ell + 1}$$

Здесь g_{ℓ} и g_s - орбитальное и спиновое гиромагнитные отношения, выраженные в единицах ећ / 2 M_p с':

 $g_{\ell} = \{ \begin{array}{ccc} 1 \\ 0 \\ 0 \\ \end{array}, \begin{array}{ccc} g_{s} = \{ \begin{array}{ccc} 5,58 \\ -3,82 \\ \end{array} \\ \end{bmatrix}$ для протона,

Знаки \pm относятся к случаям $j = \ell \pm 1/2$.

Величина $(g_p - g_n)$ оказывает существенное влияние на вероятность перехода. В случае переходов между состояниями с $j > = \ell + 1/2$ получается максимальное значение $(g_p - g_n)$. Для переходов между состояниями с $j < = \ell - 1/2$ эта величина имеет минимальное значение. Поэтому М1 -переходы для состояний j > могут быть усилены в 20-200 раз по сравнению с М1 -переходами для j < .

Экспериментальные и рассчитанные по ф-ле /1/ значения величин B(M1) для переходов аналог-антианалог в 63 Си приведены в таблице 2. Видно, что предсказание одночастичной модели для абсолютных значений B(M1) выполняется по порядку величины в случае переходов $p_{1/2} - p_{1/2}$ и $f_{5/2} - f_{5/2}$ (j < -j <). Для $p_{3/2}$ -аналога наблюдается торможение перехода аналог-антианалог боеее чем на 2 порядка. Соответственно относительные интенсивности переходов типа j > -j > и j < -j < сильно отличаются от расчетных. Похожая ситуация наблюдалась для 61 Cu/4/.

Состояния типа поляризации остова

Анализ вероятностей переходов типа аналог-антианалог в ядрах sd-, $f_{7/2}$ - и fp -оболочек сделан в ряде работ /2,3,16,17/. Эффект заторможенности этих переходов для р 3/2 - аналогов в ядрах fp -оболочки связан с интенсивным заселением состояний типа поляризации остова /корполяризационных/, лежащих при больших энергиях возбуждений /3/.

Эффект концентрации переходов с $p_{3/2}$ -аналога на уровни с энергиями около З *МэВ* наблюдался в ядре 61 Cu/^{5/}. Сумма приведенных вероятностей M1 -переходов

Аналог	В(MI).10 ² М ₀ ² аналог-антианалог		
	эксперимент	теория	
P1/2	I , 9	7,7	
d 5/2	1,85	I,I	
φ 3/2 P 3/2	0,77	170	

Таблица З

Уровень	log ft	в(MI, 6).10 ²	B (MI).10 ²
63 Си	63Ni-63Cy	ル ²	Mo ²
0, 3/2-	ô ,5	0,0010	0,030

на уровни в этой области энергий составила 30% от общей наблюдаемой силы, а величина В (M1) для перехода аналог-антианалог - 15%. Для этого ядра $p_{3/2} - p_{3/2}$ переход был заторможен в 10 раз по сравнению с одночастичной оценкой.

В 63 Си концентрация переходов с $p_{3/2}$ -аналога приходится на область энергий 3-4 *МэВ*, причем степень концентрации в этом случае значительно больше, чем для 61 Си. Сумма величин В(M1) для переходов на уровни с энергиями 3-4 *МэВ* составляет 70% от наблюдаемой силы, в то время как В(M1) для перехода аналог-антианалог составляет всего 3%. Для этого ядра, как видно из таблицы 2, $p_{3/2} - p_{3/2}$ переход заторможен более чем в 200 раз по сравнению с одночастичной оценкой.

Заметим, что подобная же тенденция уменьшения вероятности м1-переходов типа аналог-антианалог с увеличением изоспина ядра наблюдалась для распада $g_{g/2}$ аналогов в ядрах $5^{9,61,63}$ Cu в работе /18/.

Аналоговые β^{-} и у - переходы

Ядро⁶³ Ni $(1/2^{-})$ распадается на основное состояние 63 Cu $(3/2^{-})$.

Аналоговым для этого β^- -перехода является γ -переход с $p_{1/2}$ -аналога на основное состояние ⁶³ Си.

Между величиной ft для гамов-теллеровского β -перехода и величиной B(M1) аналогового γ -перехода существует связь, выражаемая формулой

$$ft = \frac{11530}{T_0 B(M1, \sigma)}.$$
 /2/

Здесь T_0 - изоспин аналога, $B(M1, \sigma)$ - приведенная вероятность изовекторного $M1 \gamma$ -перехода. Выражение /2/ связывает величину ft только со спиновой частью оператора M1 -перехода, вкладом ℓ -части пренебрегаем. В таблице 3 дано значение $B(M1, \sigma)$, вычисленное из величины ft по ф-ле /2/, и значение B(M1) соответствующего у -перехода. Наблюдается значительное превышение величины B(M1) по сравнению с $B(M1,\sigma)$: $B(M1)/B(M1,\sigma)$ = =30.

Систематика отношений $B(M1)/B(M1, \sigma)$ для ряда ядер, приведенная в работе $^{/3/}$, показывает, что это отношение, как правило, больше 1: в большинстве случаев эта величина лежит в пределах от 1 до 5.

Значение отношения $B(M1) / B(M1, \sigma)$ для ⁶³ Си является самым большим. Из этого можно было бы сделать вывод о значительном вкладе ℓ -части в рассматриваемый переход. Однако нужно учесть, что для γ -перехода с $p_{1/2}$ -аналога на основное состояние ⁶³ Си с $J^{\pi} = 3/2^{-}$ не определено отношение смеси E2 / M1 Изучение углового распределения γ -лучей в этом случае не дает сведений о величине смеси, так как спин начального состояния, равный 1/2, приводит к изотропии γ излучения. Возможная неучтенная E2 -примесь в γ -переходе в данном случае может оказаться существенной, так как пренебрежение ею приведет к завышению величины B(M1), а это как раз и есть тот эффект, который мы наблюдаем.

Литература

- 1. S.Hanna. In: Isospin in Nucl. Phys.Ed.D.Wilkinson. North Holland. Amsterdam, 593, 1969.
- 2. Ю.В.Наумов, О.Е.Крафт. Изоспин в ядерной физике. Изд. Наука, Ленинград, 1972.
- 3. Ю.В.Наумов. Изв. АН СССР, сер. физ., 38, 1617, 1974.
- 4. О.Е.Крафи, П.П.Лебедев, Ю.В.Наумов, И.В.Сизов. Сообщения ОИЯИ, P15-7072, Дубна, 1973.
- 5. О.Е.Крафт, Ю.В.Наумов, И.В.Сизов. Сообщения ОИЯИ, P15-8201, Дубна, 1974.
- 6. О.Е.Крафи, Ю.В.Наумов, И.В.Сизов. Сообщения ОИЯЙ, P15-8202, Дубна, 1974.
- 7. О.Е.Крафт, Ю.В.Наумов, С.С.Паржицкий, И.В.Сизов. Прогр. и тезисы докладов на 25 Совещ. по яд. спектр. и структуре ат. ядра, стр. 56, Ленинград, "Наука", 1975.
- 8. О.Е.Крафт, Ю.В.Наумов, С.С.Паржицкий, Л.В.Романоыа, И.В.Сизов. Прогр. и тезисы докладов на 24 Совец. по яд. спектр. и структуре ат. ядра, стр. 55, Харьков, "Наука", 1974.

- 9. О.Е.Крафт, Ю.В.Наумов, С.С.Паржицкий, И.В.Сизов. Прогр. и тезисы 25 Совещания по яд. спектр. и структуре ат. ядра, стр. 63, Ленинград, "Наука", 1975.
- 10. О.Е.Крафт, Ю.В.Наумов, И.В.Сизов. Изв. АН СССР, сер. физ., 39, 70, 1975.
- 11. J.Browne, H.Newson, E.Bilpuch, G.Mitchell. Nucl. Phys., 153, 481, 1970.
- 12. K.Ramavataram, C.Yang, G.Mercier. G.St.-Pierre, d. Sykes. Phys. Rev., C9, 237, 1974.
- 13. A.Klaasse, P.Goudsmit. Zs. Phys., 266, 75, 1974.
- 14. M.Mazari, W.Buechner, R. de Figueiredo. Phys. Rev., 108, 373, 1957.
- 15. Nucl. Data. B2, No. 3, 1967.
- 16. S. Maripuu. Nucl. Phys., A123, 357, 1969.
- 17. H.Klapdor. Phys. Lett., 35B, 405, 1971.
- 18. J.Szentpetery, Y.Szücs. Phys.Rev., Lett., 28, 378, 1972.

Рукопись поступила в издательский отдел 18 апреля 1975 года.