

·B 878

P15-88-186

В.А.Втюрин, А.В.Гребнев*, В.А.Пшеничный*, И.Чадраабал

ИССЛЕДОВАНИЕ РЕАКЦИИ 123 Te(n, α)

ПРИ ЭНЕРГИИ НЕЙТРОНОВ 24,5 кэВ

* Институт ядерных исследований АН УССР, Киев

ВВЕДЕНИЕ

Настоящая работа является продолжением исследований усредненных по резонансам сечений реакции (n, a) на стабильных ядрах в области А ~ 100 в килоэлектронвольтной области энергий на фильтрованных пучках нейтронов /1-37. Данная работа проводилась на железном фильтре стационарного реактора ВВР-М ИЯИ АН УССР, изготовленном из разделенного изотопа ⁵⁶ Fe, позволяющем заметно понизить примесь нейтронов других энергий в фильтрованном пучке. Средние а-ширины реакции (n, a) на ядре ¹²³ Те измерялись ранее в области энергий нейтронов Е_n < 620 эВ в изолированных резонансах¹⁴ /. Иэмерялись также усредненные по резонансам сечения этой реакции^{/3,5/}. Средние α-ширины, полученные в работах^{13,5}, расходятся более чем в 4 раза. Причиной расхождения, помимо возможных погрешностей измерений, является малое число резонансов, по которым проводилось усреднение. Использование фильтрованного железом нейтронного пучка, имеющего полуширину около 2 кэВ, для измерения усредненных сечений в значительной степени уменьшает эту неопределенность.

МЕТОДИКА ИЗМЕРЕНИЙ

Пучок нейтронов со средней энергией 24,5 кэВ и шириной спектра на полувысоте 2 кэВ получен с помощью изотопного железного фильтра, разработанного в отделе физики реакторов ИЯИ АН УССР и смонтированного на горизонтальном канале реактора ВВР-М.

В отличие от железного фильтра из природной смеси изотопов ^{/6,7} /, использование разделенного изотопа позволяет получить большую величину потока нейтронов при лучших фоновых условиях. Фильтр помимо железа содержал алюминий, поглощающий нейтроны в районе 82 кэВ, серу, рассеивающую нейтроны с энергией свыше 90 кэВ, и 0,284 г/см² карбида бора, предназначенного для поглощения тепловых нейтронов. Толщина фильтра варьировалась в разных сериях. Параметры фильтров и условия измерений приведены в табл.1.

Все компоненты фильтра были вставлены в специальную систему коллиматоров из смеси парафина с борной кислотой и стали, осуществляющую формирование нейтронного пучка диаметром 42 мм на выхо-

воъсябненный институ" MACHINE BECOMMENSE 545 MAUTEHA

						Таблица1	
Номер серии	Состав фильтра	γ-фон бэр/ч	Режим спектрометра	Время изм., ч	Счет N _a	σ _{n, α} , мкб, экс.	
1	30 см Fe 15 см Al	1,0	с управлением P = 2,0 атм.	100	168±47	7 4,8±2,5	
	13 г/см² S						
	40 см Fe		без				
2	15 см Al	0,25	управления Р = 2,0 атм.	70,5	97±41	3,9±2,0	
	15 н/см² S						
	40 см Fe		без				
3	15 см Al	0,25	управления Р = 1,1 атм.	173	182±62	2 2,4±0,8	
	13 г/см² S		-				

де. Доля нейтронов с энергией, отличающейся от 24 кэВ, не превышает 7%. Мощность дозы γ-лучей составляет 300 мкР/ч. Фон нейтронов с энергией свыше 27 кэВ измерялся с помощью дополнительного титанового фильтра толщиной 15 мм. В этом случае проходило 3% нейтронов основной группы с энергией 24,5 кэВ и 70% — с энергией свыше 27 кэВ.

Измерения потока фильтрованных нейтронов со средней энергией 24,5 кэВ проводились при помощи Ge(Li)-детектора, измерявшего спектр радиационного захвата фильтрованного пучка на образце ¹⁰ В толщиной 3,39 10² ² ядер/см². Образец находился на расстоянии 1 м от внешнего края коллиматора. Эффективность регистрации линии с энергией 480 кэВ из реакции ¹⁰ В (n, *а* γ) определялась по стандартному источнику ¹⁵² Eu по выходам двух линий 334,3 и 778,9 кэВ. Она оказалась равной (0,497±0,011) 10⁻³. Сумма сечений реакций (n,*a*) и (n, *a* γ) при E_n = 24,5 кэВ равна 4 б. Отношение выходов реакций на ¹⁰ В с вылетом γ -кванта к суммарному сечению при данной энергией 24,5 кэВ, измеренный для первого варианта фильтра, составлял (4,42±0,12) 10⁶ н/см² с. На рис.1 показана схема эксперимента.

Альфа-спектр измерялся при помощи ионизационной камеры с двумя сетками, одна из которых отстоит от катода на расстоянии значительно меньше пробега исследуемых частиц в рабочем газе, что позволяет Рис.1. Схема эксперимента: 1 – горизонтальный канал реактора, 2 – биологическая защита, 3 – оправка фильтра, 4 – внешний коллиматор, 5 – борный фильтр, 6 – алюминиевый фильтр, 7 - серный фильтр, 8 – фильтр из ⁵⁶ Fe, 9 – гнездо для титанового фильтра, 10 – корпус

камеры, 11 – собирающий электрод, 12,13 – сетки, 14 – подложка мишени.

дискриминировать фон от слабоионизирующих частиц (так называемого индукционного телескопа, описанного ранее в работах^{(2,3/}).

Энергетическая калибровка *а*-спектра осуществлялась по *а*-пикам уранового источника, естественной активности самария и из реакции (n, a) на ¹⁴⁷Sm.

Защита камеры от нейтронного фона зала реактора была выполнена из борированного парафина и кадмия так же, как и в работе^{/3/}. В первой секции камеры устанавливалась мишень из обогащенного изотопа ^{1 2 3} Те, а во второй секции — мишень, служившая для калибровки сечения. В качестве калибровочной мишени использовался ⁶ Li и ¹⁴⁷ Sm. Опорные сечения ¹⁴⁷ Sm ($\sigma = (48 \pm 12)$ мкб) и ⁶ Li ($\sigma = (1 \pm 0.05)$ б) были взяты из работ^{/9,10/} соответственно.

Основные данные об использованных мишенях приведены в табл.2.

Для более эффективного использования нейтронного пучка мишени устанавливались под малым углом к пучку, так же, как и в работе^{/3/}.

Параметры фильтра и режим работы камеры варьировались в разных сериях. В первой серии камера работала в режиме индукционного телескопа, с отбором *а*-частиц в интервале углов 0÷60°. Во второй и третьей серии был использован более длинный фильтр, что снизило уровень фона пучка, но привело к падению потока нейтронов более чем в два раза.

Таблица 2

Мишень	Обогащение	Толщина, мг/см ²	Площадь мишени, см ²
TeO ₂ + Te	67% ^{1 2 3} Te	0,53±0,026	80
$\operatorname{Sm}_2 \operatorname{O}_3$	95,3% ^{1 4 7} Sm	0,22 ± 0,01	80
 LiF	3,65% ⁶ Li	0,1 ± 0,01	80

Рис:2. Экспериментальный спектр реакции ¹²³Te(n, a)¹²⁰Sn при энергии 24,5 кэВ – точки. Крестиками показан фоновый спектр, измеренный с титановым фильтром. На вставке представлен спектр после вычитания фона.

Поэтому камера работала в обычном режиме без отбора по углам и типам частиц. Использование разных режимов в отдельных сериях измерений позволяло уменьшить систематические ошибки методики. Условия измерений в разных сериях представлены в табл.1.

Измерения эффекта и фона пучка чередовались через 25 часов. Фон измерялся путем установки в пучок титанового фильтра толщиной 15 мм, который пропускает 3% нейтронов с энергией 24,5 кэВ. Фон быстрых нейтронов при этом ослабляется на 30%. Это несколько изменяло энергетическую зависимость фона, поэтому вклад фона в районе а-перехода из реакции на теллуре определялся линейной интерполяцией зависимости фона от энергии.

Предварительная обработка отдельных измерений проводилась независимо с целью проверки внутренней согласованности результата. Окончательный результат серии измерений был получен путем суммирования всех измерений, принадлежащих данной серии.

Экспериментальный спектр реакции ^{1 2 3} Te(n, α), полученный в первой серии измерений, приведен на рис.2. Крестиками показан фоновый спектр. На вставке показан участок спектра, полученный после вычитания фона в районе, где ожидается вклад исследуемой реакции. Экспериментальное усредненное сечение реакции определялось нормировкой на сечение ^{1 2 7} Sm или ⁶ Li при помощи известного выражения:

$$\sigma_{\mathbf{n}, \alpha} = \frac{\epsilon_{\mathbf{k}} N_{\mathbf{k}} n_{\mathbf{k}}}{\epsilon N_{\mathbf{k}} t n} \sigma_{\mathbf{n}, \alpha}^{\mathbf{k}}, \qquad (2)$$

где N, t, n — число зарегистрированных а-частиц, время измерений и число ядер мишени соответственно, а ϵ — эффективность регистрации. Индекс "k" относится к параметрам калибровочных измерений. Экспериментальные значения усредненного сечения реакции ¹²³ Te (n, a), полученные в отдельных сериях, приведены в последней колонке табл.1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Расчет величины сечения проводился на основе экспериментального значения средней а-ширины, полученной для s-резонансов в области $E_n < 2,5 ext{ кэB}$: $<\Gamma_{\alpha}> = (10 \pm 3) ext{ мкэB}^{/4.5}$. Вклад сечения от p-волновых резонансов рассчитывался в предположении статистической теории о равенстве средних приведенных а-ширин для s- и p-волновых резонансов. Проницаемости рассчитывались с использованием потенциала Иго^{/11} в предположении черного ядра.

В табл.3 приведено средневзвешенное значение экспериментального усредненного сечения, результаты оценки сечения на основе средних а-ширин, измеренных в^{/4,5/}, а также полученные из них средние а-ширины для захватных состояний со спином 0⁺ и теоретические оценки средней а-ширины по кластерной модели а-распада / 1 2 /. Можно видеть, что полученное значение средней а-ширины согласуется с результатами^{/3,4/}, но заметно меньше результата^{/5/}. Учет всех полученных к настоящему времени данных, кроме работы^{/3}, по реакции (n, a) на ^{1 2 3} Те дает новое средневзвешенное значение средней α -ширины $<\Gamma_{\alpha}>=$ = (3.7±0.8) мкэВ. Интересно отметить, что уменьшение значения средней а-ширины ¹²³ Те приводит к соответствующему увеличению оценки ралиационной силовой функции первичных мягких у-переходов этого ядра, получаемой из данных реакции (n, $\gamma \alpha$)^{/13/}. Уточненное значение радиационной силовой функции в предположении мультипольности E1 составляет (65 ± 30) МэВ⁻³. Данное значение согласуется с оценкой, полученной экстраполяцией "классического" гигантского дипольного резонанса^{/14/}, параметры которого, в случае ¹²³ Те, были измерены в работе^{/15/}. В то же время исследования мягких у-переходов на ¹⁴³ Nd^{/16/} показали, что M1-переходы в этой области энергий дают сравнимый вклад. Если предположить, что первичные мягкие у-переходы имеют мультипольность только М1, то значение радиационной силовой функции составляет (27 ± 13) МэВ⁻³.

Таблица З

^σ экс.' мкб	Оценка по ^{/4.5} , мкб	 Γ _α (0 ⁺), мкэΒ, экс.	Γ _α (0 ⁺), мкэВ ^{/4} /	Г _α (0 ⁺), мкэВ ^{/s /}	Γ _α (0 ⁺), мкэВ ^{/з} /	Г _а (0 ⁺), мкэВ ^{/12/}	Г _а (0 ⁺), мкэВ ^{/11/}
2,8 ± 0,7	9±5	3,2 ± 0,8	7,3 ± 3,7	13±6 14±5	< 4	2,4±0,4	3,5 ±0,5

В заключение авторы благодарят А.В.Мурзина за поддержку и внимание к работе, Ю.П.Попова за полезные обсуждения и Г.В.Замыслова за помощь в проведении измерений.

ЛИТЕРАТУРА

- 1. Втюрин В.А. и др. В кн.: Нейтронная физика, т.2, М.: ЦНИИатоминформ, 1984. с.342.
- 2. Втюрин В.А., Жак А., Чадраабал И. В сб.: Ядерная спектроскопия и структураядра, Л.: Наука, 1987, с.317.
- 3. Вертебный В.П. и др. ОИЯИ, РЗ-88-67, Дубна, 1988.
- 4. Во Ким Тхань и др. ОИЯИ РЗ-11644, Дубна, 1978.
- 5. Vtyurin V.A. et al. In: Neutron Induced Reactions, VEDA, Bratislava, 1980, c.423.
- 6. Вертебный В.П. В кн.: IV Межд. школа по нейт. физ. ОИЯИ, Д3,4-82-704, Дубна, 1982, с.66.
- 7. Анджеевски Ю. и др. ОИЯИ РЗ-13013, Дубна, 1980.
- 8. Lamaye G.P., Carlson A.D., Meier M.M. Nucl.Sc.Ing., 1975, v.56, p.94.
- 9. Анджеевски Ю. и др. ОИЯИ РЗ-87-568, Дубна, 1987.
- 10. Garber D.I., Kinsey R.R. Neutron Cross Section BNL-325, Third Edition, 1976, v.2.
- 11. Igo G. Phys. Rev. Lett., 1958, v.1, p.72.
- 12. Фурман В.И. и др. ОИЯИ Р4-8734, Дубна, 1975.
- 13. Втюрин В.А., Попов Ю.П. ОИЯИ Р2-82-309, Дубна, 1982.
- 14. Axel P. Phys. Rev., 1962, 126, p.271.
- 15. Lepretre A. et al. Nucl. Phys., 1976, A258, p.230.
- 16. Анджеевски Ю. и др. ОИЯИ РЗ-11381, Дубна, 1978.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4р. 50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р. 30 к.
Д 1,2 -84-599	Труды VII Международного семинара по проблемам физики высоких энергий. Дубна, 1984.	5 р. 5 0 к.
Д17-84-850	Труды III Международного симпозиума по избранным проблемам статистической механики. Дубна, 1984. (2 тома)	7 р. 75 к.
Д11-85- 791	Труды Международного совешания по аналитическим вычислениям на ЭВМ и их применению в теоретической физике. Дубна, 1985.	4 p , 00 κ.
Д13-85-793	Труды XII Международного симпозиума по ядерной электронике. Дубна, 1985.	4р.80к
Д4- 8 5-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3 р. 75 к.
Д3,4,17-86-747	Труды V Международной школы по нейтронной физике Алушта, 1986.	4р. 50 к.
_	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984. (2 тома)	13 р. 50 к.
Д1,2-8 6-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубна, 1986. (2 тома)	7 р. 35 к.
Д 9- 87-105	Труды X Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1986. (2 тома)	13 р. 45 к.
Д7-87-68	Труды Международной школы-семинара по физике тяжелых ионов. Дубна, 1986.	7 p. 10 κ.
Д2-87-123	Труды Совещания "Ренормгруппа - 86". Дубна, 1986.	4 р. 45 к.
Д4-87-692	Труды Международного совещания по теории малочастичных и кварк-адронных систем. Дубна, 1987.	4 р. 30 к.
Д 2- 87-798	Труды VIII Международного совещания по проблемам квантовой теории поля. Алушта, 1987.	3 р. 55 к.
Д14-87- 799	Труды Международного симпозиума по проблемам взаимодействия мюонов и пионов с веществом. Дубна, 1987	4 p. 20 κ.

Рукопись поступила в издательский отдел 21 марта 1988 года.

.6