

A 651

P15-87-529

87

Ю.Анджеевски, В.П.Вертебный*, Во Ким Тхань, В.А.Втюрин, Ле Банг Шионг, А.Л.Кирилюк*

ИССЛЕДОВАНИЕ АЛЬФА-СПЕКТРА РЕАКЦИИ ¹⁴⁹ Sm(n,a) ¹⁴⁶ Nd ПРИ ЭНЕРГИИ НЕЙТРОНОВ 2 кэВ

*Институт ядерных исследований АН УССР, Киев

введение

ļ

Исследования усредненных сечений реакции ¹⁴⁹ Sm(n, a)¹⁴⁶ Nd проводились нами в разных интервалах энергий резонансных нейтронов до 2 кэВ^{/1,2/}. Однако вследствие большой толщины использованной мишени^{/2/} или недостаточной статистики^{/1/} нам в этих работах не удалось получить спектры a-частиц. Оставались открытыми вопросы о постоянстве параметра $<\Gamma_a/D>$ и об отношении приведенных a-ширин переходов на возбужденные и основное состояния дочернего ядра. Второй из вопросов имеет большое значение как для проверки выводов статистической теории, так и для полумикроскопической теории и был исследован нами лишь для ядра 147 Sm $^{1,2/}$. Кроме того, 149 Sm лежит в области переходных ядер, и a-спектр распада компаунд-ядра 150 Sm /его коэффициент деформации β составляет 0,19 $^{/3/}$ может дать новую информацию о влиянии деформации на a-переходы.

С целью получения ответов на эти вопросы были проведены измерения с тонкой мишенью ¹⁴⁹Sm при энергии нейтронов 2 кэВ с помощью светосильного скандиевого фильтра.

ИЗМЕРЕНИЕ И РЕЗУЛЬТАТЫ

Методика измерений подробно описана в работе /2/ Для получения альфа-спектра реакции в методику было внесено два основных усовершенствования - изменен скандиевый фильтр и применена более тонкая самариевая мишень. В отличие от наших первых экспериментов, в которых использовался фильтр из чистого скандия толщиной 96 см, в настоящей работе длина скандия была уменьшена до 85 см. Для более эффективного подавления фона нейтронов с энергиями, отличными от основной линии, применялись дополнительные фильтры из алюминия, кобальта, ванадия и титана. Новый скандиевый фильтр, состоящий из 85 см Sc + 6 см A1 + 3 см Co + 0,65 см V + 0,2 см ті, хотя и обладал несколько меньшей интенсивностью по сравнению с прежним, но зато обеспечивал в три раза меньший фон быстрых нейтронов и более широкий спектр отфильтрованного пучка /до 800 эВ на полувысоте/. Это позволило нам в два раза уменьшить толщину исследуемой мишени из ¹⁴⁹Sm. Толщина мишени составляла 0,26 мг/ см². Объсявасновий институт

© Объединенный институр влерных исследований Дубна, 1987 БИБЛИОТЕНА

1

Таблица l

Измерения эффекта и фона проводились попеременно сериями по 20 часов. Суммарное время измерений эффекта составляло ~ 200 часов и фона ~70 часов.

На рис.1 показан экспериментальный спектр, а на рис.2 - спектр a-частиц реакции 149 Sm $(n, a)^{146}$ Nd после вычитания фона.

Разделение переходов на основное и первое возбужденное состояния проводилось методом, использованным в работе ^{/ 8/}.

Сечение реакции (n, a) номировалось на сечение реакции ${}^{6}Li(n, a)T$ и определялось по обычной формуле:

$$\langle \sigma_{n,a_{f}} \rangle = \frac{N_{a_{f}}n_{Li}t_{Li}\sigma_{n,a}^{Li}}{N_{a}^{Li}n_{Sm}t_{Sm}},$$

где N_{α} - площадь a -пика для перехода в конечное состояние f дочернего ядра, n - толщина мишени (ядро/см²), t - время измерений и $\sigma_{n,\alpha}^{Li}$ - сечение реакции ${}^{6}Li(n, \alpha)T$ при энергии нейтронов 2 кэВ, взятое из работы /4/.

В табл.1 приведены результаты обработки и полученные параметры (n, a) -реакции для Sm-149.

а-пер	e- N _{af}		σ _{n,af}		$<\Gamma_{a}/D>_{J}$	$<\gamma_{a_{1}}^{2}>$
ход	площал пика	ць наст. раб.	рассчита	анное	(10 ⁻⁸)	$\langle \gamma_{\alpha_0}^2 \rangle$
<i>a</i> 0	230 ±30	9,3±1,8	а	б	0,8±0,2	0.88±0.24
a ₁	205 ± 48	8,4 ±2,3			0,7±0,2	0,00 0,21
Σa _f	439 ± 61	17,9±3,6	15,7 ±2,8	21,6±8,1	1,5±0,4	

Параметр $<\Gamma_a$ /D> определялся по формуле $^{/5/}$

$$<\frac{\Gamma_{\alpha_{f}}}{D}>=\sum_{J}g_{J}<\frac{\Gamma_{\alpha_{f}}}{D_{J}}>=\frac{<\sigma_{n,\alpha_{f}}>}{2\pi^{2}\chi^{2}\frac{<\Gamma_{n}>}{<\Gamma>}}F,$$

где g_J - статистический фактор исходного состояния со спином J: χ - длина волны нейтронов; Γ_n и Γ - нейтронная и полная ширины соответственно; F - фактор усреднения / при $E_n = 2$ кэВ F = 0,7 для Sm -149/.

Отношение средних приведенных α -ширин рассчитано из экспериментальных данных по выражению^{75.7}

$$\frac{\langle \gamma_{a_{1}}^{2} \rangle}{\langle \gamma_{a_{0}}^{2} \rangle} = \frac{N_{a_{1}}}{N_{a_{0}}} \frac{g_{3}^{2} \cdot P_{0,3}}{g_{3}^{2} \ell_{3}^{2} p_{1,\ell_{3}} + g_{4}^{2} \sum_{\ell_{4}} p_{1,\ell_{4}}},$$

где p_{f,ℓ_J} - проницаемость α -частиц с моментом ℓ_J для перехода из состояния J на конечное состояние f.

Следует заметить, что в погрешность наших результатов входят практически только экспериментальные ошибки / статистическая ошибка неопределенности толщины мишени, разделения площадей а-переходов/. Погрешностью, связанной с конечным числом резонансов, можно пренебречь, поскольку она определяется эффективным числом степеней свободы $^{/5/}$, в данном случае равным ~250 и ~790 соответственно для a_0 - и a_1 -переходов.

Следовательно, она составляла ~ 9% для $<\frac{\Gamma_a}{D}>$ и 3% для $(\frac{<\gamma_a^{<}>}{<\gamma_a^{2}>})$

В табл.1 для сравнения представлены сечения, рассчитанные в предположении о постоянстве средней *а*-ширины: а/ по кластерной модели, б/ по данным, полученным непосредственным усреднением альфа-ширин отдельных резонансов ^{/6/}.

Рис.3. Гистограмма – результат розыгрыша по методу Монте-Карло отношения выходов α -частиц в α – и α_0 -переходах ($R = N_{\alpha_1}/N_{\alpha_0}$). Рядом показано экспериментальное значение R_{ρ} с ошибкой.

Видимо, наш результат неплохо описывается в предположении о постоянстве средней а-ширины. Что касается отношения приве-

денных а-ширин для переходов на первое возбужденное и основное

состояния, то впервые мы получили его величину, равную 0,88 \pm 0,24. Интересно сравнить указанное отношение ядра ¹⁴⁹Sm и ядра ¹⁴⁷Sm со статистической теорией ядерных реакций. С этой целью был проведен "математический эксперимент" / розыгрыш по методу Монте-Карло/ для анализа выхода *а*-частиц из реакции ¹⁴⁹Sm(n, *a*)¹⁴⁶Nd на основании статистической теории, описанной подробно в работе /7/

Данные для такого "эксперимента" взяты из компиляции $^{/8'/}$: $D_J = \frac{D_H}{g_J} = 5,03$ эВ для резонанса со спином 3⁻ $S_0 = 4,6 \cdot 10^{-4}$, $<\Gamma_V > = 62$ мэВ.

Проницаемости для α -частиц рассчитаны по потенциалу Иго. Результат розыгрыша показан на рис.3 и в табл.2. Здесь использованы обозначения работы ^{/7 /}. $R = N_{\alpha_1} / N_{\alpha_0}$ - отношение

выходов альфа-частиц на первое возбужденное и основное состояния дочернего ядра $^{146}\,\rm Nd;\,R_e$ – экспериментальное, и $<\rm R>$ – среднее, σ – среднеквадратичное отклонение величины $\rm R$. $\rm p(R>R_e)$ – статистическая достоверность, в рамках которой можно отбросить предположение о справедливости статистической теории.

Из табл.2 следует, что заметного расхождения со статистической теорией не наблюдается на уровне достоверности 0,5.

Несмотря на это наш результат не исключает возможности расхождения этих величин. Поэтому для получения более четкого вывода нужно проводить измерение α -спектра реакции $^{149}\,{
m Sm}({
m n},\,\alpha\,)^{146}\,{
m Nd}$ в других интервалах энергий нейтронов и повысить точность определения указанной величины. Так как основной вклад в погрешность дает статистическая ошибка, то с уверенностью можно надеяться на получение более точного результата.

В заключение авторы благодарят Ю.П.Попова за поддержку и внимание к работе, Т.С.Зварову за изготовление мишеней; В.А.Долгова и А.В.Мурзина за помощь при проведении измерений.

ЛИТЕРА ТУРА

- 1. Анджеевски Ю. и др.-ЯФ, 1980, т.32, вып.6.
- 2. Анджеевски Ю. и др. ОИЯИ Р3-80-779, Дубна, 1980.
- 3. Nuclear Data, 1965, v.1, No.1, Section A.
- 4. Neutron Cross Section Curves, 1976, v.2, BNL-325, Therd Ed.
- 5. Во Ким Тхань и др. ОИЯИ РЗ-12756, Дубна, 1979.
- 6. Балабанов Н.П. и др. ОИЯИ РЗ-8653, Дубна, 1975.
- 7. Анджеевски Ю. и др. ОИЯИ РЗ-81-144, Дубна, 1981.
- 8. Neutron Cross Section, 1984, v.1, BNL-325, Therd Ed.

Рукопись поступила в издательский отдел 10 июля 1987 года.

4

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы мож	ете получить по почте перечисленные ниже кн если они не были заказаны ранее.	иги,
Д7-83-644	Труды Мехдународной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р.55 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 p.00 ĸ.
Д13-84-63	Труды XI Международного симпознума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р.50 к.
Д2-84-366	Труды 7 Международного соведания по проблемам квантовой теории поля. Алушта, 1984.	4 р.30 к.
Д1,2-84-599	Труды VII Международного семинара по проб- лемам физики высоких энергич. Дубна, 1984.	5 р.50 к.
Д10,11-84-818	Труды V Международного совещания по проб- лемам математического моделирования,про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3 р.50 к.
Д17-84-850	Труды III Международного симпозиума по нзбранным проблемам статистической механики. Дубна,1984./2 тома/	7 р.75 к.
Д11- 85-791 .	Труды Международного совещания по аналити- ческим вычислениям на ЭВМ и их применению в теоретической физикс. Д.бла, 1985.	4 p.uu K.
Д13-85-793	Труды XII Международного симпознума по ядерной электронике. Дубна, 1985.	4 р.80 к.
Д4+85-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3 р.75 к.
Д3,4,17-86-747	Труды V Международной школы по иейтронной физнке. Алушта, 1986.	4 р.50 к.
	Труды IX Всесоюзного совещання по ускори- телям заряженных частиц. Дубна, 1984. /2 тома/	13 р.50 к.
Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубна,1986. /2 тома/	7 р.35 к.
Д9-87-105	Труды X Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1986. /2 тома/	13 р.45 к.
Д7-87-68	Труды Международной школы-семинара по физике тяжелых ионов.Дубна, 1986	7 р.10 к.
Д2-87-123	Труды Совещания "Ренормгруппа-86". Дубна, 1986	4 p.45 ĸ.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований.

P15-87-529 Анджеевски Ю. и др. Исследование альфа-спектра реакции 149Sm(n, a)¹⁴⁶Nd при энергии нейтронов 2 кэВ Проведено измерение a-спектра реакции ¹⁴⁹ Sm(n, a) ¹⁴⁶ Nd на квазимонохроматических нейтронах с энергией 2 кэВ, полученных с помощью скандиевого фильтра на пучке реактора ВВР-М АН УССР. Впервые получены а-спектры переходов на первое возбужденное и основное состояния дочернего ядра 146Nd и отношение приведенных а-ширин этих переходов. равное 0,88± 0,24. Уточнено усредненное сечение указанной реакции, равное (17,9±3,6) мкб. Работа выполнена в Лаборатории нейтронной физики ОИЯИ и Институте ядерных исследований АН УССР. Сообщение Объединенного института ядерных исследований. Дубна 1987 P15-87-529 Andzejewski J. et al. Investigation of Alpha-Spectra of the 149 Sm(n.a) 146 Nd Reaction at 2 keV Neutron Energy Alpha-spectra of the 149 Sm(n, a) 146 Nd were measured at a neutron energy of 2 keV achieved by using the Sc-filter on VVR-M reactor beam. The alpha-spectra to the first excited and ground states of the daughter 146 Nd nucleus as well as the ratio of reduced a-widths of these transitions equal to 0.88 ± 0.24 were obtained. The averaged cross section of the reaction was more precisely measured: (17.9± 3.6) μb. The investigation has been performed at the Laboratory of Neutron Physics, JINR and at the INR of the Ukrainian Academy of Sciences. Communication of the Joint Institute for Nuclear Research. Dubna 1987