

СООбщения Объединенного института ядерных исследований дубна

13/1-84 P15-83-736

1983

О.Е.Крафт*, Ю.В.Наумов*, С.С.Паржицкий, В.М.Сигалов*, И.В.Сизов

ИССЛЕДОВАНИЕ СТРУКТУРЫ РЕЗОНАНСОВ В РЕАКЦИЯХ ВЗАИМОДЕЙСТВИЯ ПРОТОНОВ С ЯДРАМИ ⁵⁸Ni и ⁶²Ni ПРИ НИЗКИХ ЭНЕРГИЯХ

* Ленинградский государственный университет

1. ВВЕДЕНИЕ

В настоящее время накоплен большой экспериментальный материал о свойствах неаналоговых протонных резонансов: их энергиях, квантовых характеристиках, ширинах. Однако о структуре этих резонансов пока известно мало. Считалось, что неаналоговые протонные резонансы, так же как и нейтронные, имеют статистический характер. В то же время есть данные, указывающие на нестатистический характер этих резонансов /1/.

Прямым доказательством нестатистической природы неаналоговых протонных резонансов было бы обнаружение промежуточной структуры в сечениях реакций с протонами^{/2/}. Простейшее ее проявление наличие максимума в распределении квадратов приведенных ширин резонансов в зависимости от энергии возбуждения. Однако такие максимумы в приведенных ширинах обнаружены не были^{/3-5/}. В распределениях протонных ширин отчетливо проявляются только аналоговые состояния. Такая же ситуация наблюдается и для у-ширин.

В работе^{/6/} был проведен анализ знака смеси δ_1 спиновых каналов в реакции неупругого рассеяния протонов на ⁴⁴Ca. Изучение угловых распределений неупруго рассеянных протонов и последующего γ -излучения позволило авторам работы^{/6/} сделать вывод о наличии нестатистических эффектов в области энергий протонов $E_p = 2,7 \div 2,8$ МэВ. Однако интерпретация этих эффектов не была сделана.

В $^{7/}$ был предложен метод поиска промежуточной структуры, основанный на анализе знака величин смеси мультипольностей δ для γ -распада резонансов. Было показано, что если γ -переходы с ряда резонансов одинакового спина и четности на определенные уровни ядра имеют одинаковые знаки, то такая корреляция в знаках означает существование промежуточной структуры.

Этот вывод сделан на основе анализа величины

 $\phi = \sec tg \delta/\alpha$, /1/ где $\alpha = \frac{\sqrt{\Gamma(E2)}}{\sqrt{\Gamma(M1)}}$. Согласно статистической теории для величины ϕ равновероятны все значения в интервале углов $|-\frac{\pi}{2}, +\frac{\pi}{2}|$. Наблюдаемые отклонения от такого распределения свидетельствуют о нали-

чии промежуточной структуры. Величины и знаки δ определяются в результате измерений угловых распределений у-переходов в реакции (p,y),идущей через <u>резонансы составного</u>ядра.

3 1 North Contraction (* 1

and the state

Анализ знаков δ в реакции ⁶⁰Ni(p,y)⁶¹Cu для у-переходов с резонансов в ⁶¹Cu на уровни этого ядра с известными квантовыми характеристиками показал, что в протонных резонансах со спином 3/2⁻ в ⁶¹Cu существует промежуточная структура^{/7/}. Косвенным подтверждением наличия промежуточной структуры были данные изучения множественности у-распада неаналоговых протонных резонансов ^{/8/}. В работе ^{/8/} было показано, что множественность распада протонных резонансов в ⁶¹Cu невелика и мало меняется с энергией.

В /7/ эффект проявления промежуточной структуры был интерпретирован как распределение силы гигантского резонанса Гамова-Теллера по резонансным состояниям более сложной формы. До появления работы /7/ детально исследовались либо косвенные эффекты, связанные с существованием гигантского резонанса Гамова-Теллера /1/, либо процессы заселения этого резонанса в прямых зарядовообменных реакциях (p, n) в конечном ядре при энергии протонов от 100 до 200 МэВ /9/. Было обнаружено /9/, что ширины резонансов Гамова-Теллера составляют 2-4 МэВ. Возникает вопрос: могут ли наблюдаться компоненты тонкой структуры резонанса Гамова-Теллера при возбуждениях в составном ядре, в реакциях захвата протонов и упругого или неупругого их рассеяния. При распределении силы резонанса Гамова-Теллера по резонансам составного ядра со сложной структурой /образование тонкой структуры резонанса Гамова-Теллера/ должна наблюдаться промежуточная структура в протонных резонансах. Однако поскольку характерные для резонансов Гамова-Теллера ширины составляют 2-4 мэв. то наблюдение такой промежуточной структуры оказывается затруднительным с экспериментальной точки зрения. Поэтому в /7/ и был предложен новый способ идентификации широко распределенных промежуточных структур в реакции радиационного захвата протонов.

В настоящей работе предприняты исследования структуры протонных резонансов, проявляющейся в реакциях взаимодействия протонов с ^{58,62}Ni.

2. ИССЛЕДОВАНИЕ РЕЗОНАНСОВ, ВОЗНИКАЮЩИХ В РЕАКЦИЯХ 58 Ni(p, γ) И 58 Ni(p, $p'\gamma$)

Условия эксперимента

В исследуемых реакциях протоны ускорялись электростатическим генератором Лаборатории нейтронной физики ОИЯИ. Мишени ⁵⁸ Ni /95% обогащения/ имели толщину 10-20 мкг/см², у-излучение регистрировалось Ge(Li) -детектором объемом 40 см³ с энергетическим разрешением 8 кэВ для у-линий с энергией 7 МэВ. В реакции (p,y) при данной энергии протонов измерялись у-спектры под углами 0°, 30°, 60° и 90° к направлению падающего пучка. В реакции (p,p'y) интенсивность у-перехода определялась для 10 углов в интервале от 0° до 90°. Одновременно определялись интенсивность пучка протонов и интегральная интенсивность у-лучей, зарегистрированных кристаллом NaI(T1), расположенным под углом 90° к пучку, что позволяло нормировать интенсивность как на число прошедших через мишень протонов, так и на число испущенных из мишени у-квантов. Нами было изучено 28 резонансов в реакции (p,y) и 8 резонансов в реакции (p,p'y).

Определение спинов резонансов в (р,у) -реакции

Для определения смесей мультипольностей y-переходов нам было необходимо знать спины резонансов, возбуждаемых в 59 Cu. Значения спинов ряда резонансов приведены в работе $^{/10/}$. Они определены на основании результатов измерения анизотропии yизлучения в предположении, что все y-переходы являются чистыми дипольными переходами. Спины 7 резонансов ранее не были известны. Для определения спинов резонансов мы изучили угловые распределения y-переходов с резонансов на известные уровни 59 Cu со следующими энергиями /кэВ/ и спинами: 0, 3/2⁻; 491, 1/2⁻; 912, 5/2⁻; 1398, 7/2⁻; 1868, 7/2⁻, 5/2; 1987, 5/2⁻; 2265, 3/2⁻; 2318, 1/2⁻; 2324, 3/2; 2707, 5/2; 3025, 3/2; 3116, 5/2.

В результате измерения угловых распределений определялись коэффициенты разложения A_2 и A_4 при полиномах Лежандра. Для каждого углового распределения была построена величина χ^2 в зависимости от смеси мультипольностей δ в у-переходе с изучаемого резонанса на известный уровень ⁵⁹ Cu. Угловое распределение для одного перехода часто не позволяет однозначно определить спин резонанса. Однако в случае, когда были зарегистрированы несколько переходов, совместный анализ угловых распределений для этих переходов позволял более точно установить спин резонанса. При определении четности резонанса использовался тот факт, что в данной области энергий не было обнаружено смеси E1-и M2-переходов, в то же время полученные нами значения δ отличались от нуля, что говорило о наличии смеси E2-и M1-переходов. Определенные таким образом спины и четности резонансов в реакции (P, y) приведены в табл.1 наряду с данными работы /10/.

Анализ смесей мультипольностей у-переходов в реакции ⁵⁸ Ni(p,y)

Поиск промежуточной структуры производился для резонансов со спином 3/2⁻⁻ в области энергий протонов от 2120 до 3460 кэВ, анализировались также резонансы, спин которых определялся неоднозначно /в тех случаях, когда мы не могли на основе наших измерений сделать выбор между спинами 3/2 и 5/2, мы использовали значение 3/2/.

Epes.	ז״	J [#]	Epes.	Jª	J [#]
K9B	Hame Ham.	pao.	KSR	HERE HISM.	pao.,,
2136	5/2	5/2+	2668	3/2-	3/2-
2161	5/2,3/2	5/2-	2704	3/2	-
2210	3/2-	-	2721	3/2-	3/2
2232	5/2,7/2-	3/2-,7/2- 🛎	2756	3/2-,5/2-	-
2256	I/2 ~+ 5/2 ~	5/2	2831	3/2-	(9/2+)
2269	5/2-	3/2-	2869	3/2-	-
2332	5 /2 -	5/2-	2938	3/2-	3/2
2338	3/2-,5/2	3/2-	2960	3/2-,5/2-	3/2-
2480	5 /2	5/2-,3/2-	2978	3/2-	5/ 2 -
25 12	3/2-	3/2-	2999	3/2-	3/2+
2529	7/2	5/2	3051	5/2,3/2	3/2
2548	5/2	-	3062	3/2	3/2-
2574	3/2,5/2		3106	3/2-,5/2-	3/2-
2603	5/2	-	3453	3/2",5/2 **	-

Таблица 1

Значение спина – из работы $^{/12/}$. Значение спина – из $^{/11/}$.

**

В табл.2 приведены значения δ , определенные нами. Заметим, что при вычислении величины δ получаются два значения. Из физических соображений можно отбросить значение δ , соответствующее почти чистому Е2 -переходу, так как его использование приводит к неправдоподобно большим значениям В(Е2),Таким образом, мы получаем δ с определенным знаком.

Переходы $3/2^{-}$ - $3/2^{-}$. Для всех 25 исследованных переходов этого типа в интервале энергий протонов $E_p = 2130-3450$ кэВ величина δ оказалась положительной. Однако, по данным работы $^{/12/}$, смесь мультипольностей для распада резонанса 1883 кэВ имеет другой знак. То же самое наблюдается для резонанса 1424 кэВ. Нами было проведено контрольное измерение у-распада резонанса 1883 кэВ и получено значение $\delta = -0,25$, что в пределах погрешности совпа-дает с $\delta = -0,18$ из работы /12/. С точки зрения определения промежуточной структуры /13/ как нарушения предположений статис-

								Табли	ца 2	
Eyp.	Epes.	لم	^E pes.	б	Epea.	б	Epea.	م	Epea.	S
0, 3/2	2161	+0,35(8)	22I0	+0,81 ⁺⁴⁴	2338	+0,4I(I2)	2512	+0,45(9)	2574	+0,77(12)
	2668	+0,63(6)	272I	+0,76 ^{+I3}	2756	+0,23(9)	2831	+0,II(8)	2869	+1,29 ⁺⁰
	2938	+0,19(5)	2960	+0,88 ^{+4I}	2978	+0,80 ⁺⁴⁹	2999	+0,21(5)	305I	+0,61(9)
2265, 3/2	3453 2574	+0,02 ⁺¹⁴ +0,62 ⁺⁵⁸ +0,62 ⁺⁵⁸	2668	+0,70+59	2338	+0,35+23	2960	+0,67 <u>+53</u>	2978	+0, 38+32
•	3062	$+0.54^{+45}$		}		I		1		}
2324, 3/2	2338	+0,67+33	2512	+0,51 ⁺⁷⁵	3062	+0,45 ⁺²⁷				
491, 1/2	2668	+0,12(9)	2704	+0,IO(8)	272I	-0,06(II)	2756	-0,06(I0)	283I	+0,08(5)
	2869	-0,02(4)	2938	(4)60*0+	3960	+0,03(3)	2978	+0,06 ^{+2I}	2990	+0,I5(4)
	3062	-0,02(7)	3I06	+0 , I6(9)	3453	+0,30 ⁺²⁵				
912, 5/2 ⁻	2978	-0,34-11	2999	-0,17(13)	3062	+0,12 ⁺²¹	3106	-0,45(9)		
1967, 5/2 ⁻	2338	-0,58 ⁺¹⁵	2668	+0,11+79	1881)	+0,02 <u>+4</u>	2938	-0,28(II)	306I	-0,20(14)
	3453	-0,61 ⁺²⁷								
2707, 5/2	2338	-0 .4 0+13	2869	-0,25(10)	3106	-0,19(23)				
2927, 5/2 3TT6_5/2	2908 2938	-0,I8(9) -0,33(20)	3453	-0,55_9						,
- 10 60440	2									

Распределение величины $\phi = \operatorname{arc} \operatorname{tg}(\delta/a)$ для. распада 25 резонансов 3/2⁻ в реакции 58Ni(p,y)⁵⁹Cu. Пунктирная линия распределение согласно статистической модели.

тической модели в локализованной энергетической области данный результат может быть понят как выход за пределы этой области. Второе объяснение этого эффекта - в изменении знака мат-

ричного элемента при переходе через центр резонанса Гамова-Теллера.

На рисунке приведено распределение величин δ , вычисленных по формуле /1/ ($1/\alpha = 1,42$) для 25 наблюдаемых у-переходов. Пунктирная линия соответствует равномерному распределению, предсказываемому статистической моделью. Видно, что имеется резкое различие между представленными распределениями, прежде всего из-за отсутствия отрицательных значений δ .

Переход $3/2^{-} - 1/2^{-}$. Величина смесей δ для переходов на уровень 491 кэВ /1/2^{-/} по абсолютному значению близка к 0. В 9 случаях получены положительные значения δ . Остальные 4 случая в пределах погрешностей не противоречат этому знаку.

Переходы $3/2^- - 5/2^-$. Из 16 изученных распределений такого типа в 13 случаях получен отрицательный знак δ . В трех случаях, для которых знак δ оказался положительным, погрешности измерений очень велики, так что эти данные нельзя считать значимыми для возражений против предположения о наличии промежуточной структуры.

Резонансы в реакции (р,р'у) на ⁵⁸ Ni

В данной работе мы провели также анализ углового распределения *y*-перехода $2^{+}-0^{+}$ в ⁵⁸ Ni, получающегося за счет неупругого рассеяния протонов. В ^{/6/} было показано, что, исследуя угловое распределение неупруго рассеянных протонов и последующего *y*-перехода, можно на основе двух уравнений определить δ_1 /смесь спиновых каналов/ в резонансах со спином 3/2⁻. Однако для случая резонансов со спином 5/2⁻ достаточно углового распределения *y*-перехода, так как в этом случае два уравнения для δ_1 можно получить, используя определенные из углового распределения A_2 и A_4 -коэффициенты при полиномах Лежандра. Мы исследовали угловые распределения гамма-лучей переходов для 8 резонансов, из них два /2831 и 2938 кэВ/ имеют спин 3/2⁻. Спин остальных определить пока не удалось.

В табл.3 приведены коэффициенты A₂ и A₄ для измеренных резонансов.

Epes	. 2831	2938	3134	3385	3453	3506	3750	3907
A2	0,21(12)	0,05(12)	-0,33(13)	-0,24(11)	-0,73(14)	-0,60(14)	-0 ,93 (I6)	-0,72
Å4	0	0	-0,21(13)	-0,24(16)	0,40(14)	-0,27(13)	0,27(12)	0,23(12)

3. ИССЛЕДОВАНИЕ РЕЗОНАНСОВ, ВОЗНИКАЮЩИХ В РЕАКЦИИ ⁶²Ni (р, у)

Условия эксперимента

Резонансы ⁶³Cu возбуждались в реакции ⁶²Ni(p, γ).Мишени ⁶²Ni /95,6% обогащения/ имели толщину 10-20 мкг/см². Угловые распределения измерялись так же, как и в реакции (p, γ) на ⁵⁸Ni.Фоновые условия позволили для резонансов ⁶³Cu измерить множественность *у*-распада. При измерении множественности использовались два сцинтилляционных детектора, один размером 100х100 мм², второй - 150х100 мм².

Методика определения множественностей *у*-лучей для резонансов описана подробно в работе^{/8/}. Нами были изучены угловые распределения для 19 резонансов в области энергий $E_p = 2230 \div 2730$ кэВ и измерена множественность для 12 наиболее сильных резонансов в области энергий $E_p = 2490 \div 2917$ кэВ. Для определения спинов резонансов в ⁶³ Сu исследовались *у*-переходы на следующие уровни: 0, 3/2⁻; 668, 1/2⁻; 962, 5/2⁻; 1410, 5/2⁻; 1547, 3/2⁻ и 2012, 3/2⁻. Полученные нами спины приведены в табл.4.

Таблица 4

Epes.	Ja	E _{pes} .	フ‴	E _{pes} .	Jª
223I	3/2-, 5/2	2584	3/2-, 5/2	2682	3/2-, 5/2
2238	3/2-	2613	3/2-, 5/2	2690	3/2-
2251	3/2-, 5/2	2620	3/2-, 5/2	269 6	3/2-
2268	3/2-	263 5	3/2 ⁻ , 5/2 1/2	2710	3/2-
2275	I/2 + 5/2	2642	3/2-	2722	$3/2^{-}(1/2, 5/2)$
2285	I/2 + 5/2	2675	3/2-	2730	3/2-
2512	5/2, 3/2-				

Анализ смесей мультипольностей у-переходов

Так же. как и в случае с ⁵⁸Ni, поиск промежуточной структуры производился для резонансов со спином 3/2-, угловые распределения которых были изучены нами. В данный анализ включены также резонансы, спин которых определялся неоднозначно.

В табл.5 приведены δ смеси мультипольностей для изученных переходов. Выбор наименьшего 👌 делался на тех же основаниях. что и для⁵⁸Ni.

Переходы 3/2 - 3/2. Для всех 28 переходов в области энергий от 2230 до 2730 кэВ получено положительное значение δ.

Переходы 3/2- - 1/2-. Из 9 значений & только три значительно отличаются от нуля. Это переходы на уровень 668 кэВ /1/2-/ с резонансов 2512 кэВ /3/2-, 5/2/, 2584 кэВ /3/2-, 5/2/ /8-отрицательно/ и с резонанса 2642 ков /3/2-/ / 8-положительно/. Поскольку спины резонансов 2512 и 2584 кэВ определены неоднозначно, расхождение в знаке δ не может служить основанием для отбрасывания гипотезы о промежуточной структуре. Необходимо отметить. что знак δ для резонанса 2643 кэВ совпадает со знаком δ для переходов 3/2⁻ - 1/2⁻ в ⁵⁹Cu.

Переходы 3/2 - 5/2 - Из 10 переходов этого типа только для двух переходов величины δ отличны от нуля. Знак δ совпадает со знаком, полученным для ⁵⁹ Cu.

Изучение множественности распада резонансов в ⁶³Си

Поскольку методика измерения множественности с помощью двух сцинтилляционных кристаллов подробно описана в /8/.мы приведем только окончательную формулу:

$$M_{p} = \frac{N_{COB\Pi.}}{N_{1} \epsilon_{2}} + 1 = \frac{N_{COB\Pi.}}{N_{2} \epsilon_{1}} + 1.$$

где M_n - множественность гамма-лучей распада резонанса, N₁, N₉ одиночный счет в первом и втором кристалле, N_{COBU} - число зарегистрированных совпадений, с, и с, - эффективности кристаллов с учетом телесного угла. Для нормировки эффективностей использовался резонанс с $E_p = 2659$ кэВ, схема распада которого хорошо известна $^{/14/}$. Вычисленная по этой схеме распада множественность у -распада резонанса 2659 кэВ равна 2,117. В табл.6 приведены множественности распада резонансов в области энергий протонов от 2495 до 2917 кэВ. Рост /в среднем/ множественности распада резонансов в 63 Си по сравнению с 61 Си, видимо, связан с увеличением энергии возбуждения и плотности состояний.

-0,33^{+I3} -0.39^{+24}_{-41} 0,21⁺¹⁵ 0,65¹15 0,42⁺¹⁰ -0,03+7 0,21-0 5 2696 2675 Fpes. 2620 2722 2690 2275 2620 0.03+35 -0.04(I5) -0,04¹⁰ 0,33⁺²⁴ 0,13¹¹⁰ 0<mark>97</mark>68*0 0,85-40 0,55(8) 1,29⁺⁹ 5 Fpes. 2696 2730 2584 2730 **3**8 8 2682 2613 8922 2613 0,00^{±15} -0, IT^{+I5} -0,28,13 -0,07(8) 0,55<mark>-</mark>16 0,76⁺⁵³ 0,37,37 0,69⁺⁹ 5 8°.1 Epes. 2584 2110 2285 2620 2675 2722 2584 2584 2251 -0,I4(II) 0, 10⁺¹¹ 0, 13⁺²¹ 0,05^{+2I} 0, 49^{+4I} I,29⁺⁴⁹ 0,46⁺⁹ 0,58⁺¹⁵ 1,29+47 0,57⁺¹⁴ 5 Fpes. 2238 2613 2675 2690 2512 2696 2512 2642 0112 2212 8622 0, I3⁺¹⁶ 0°-00°0 0,19+27 0,44 -24 0,55⁺⁷ 0,49^{+I3} 0,56112 0,55⁺¹⁶ -0,04⁺7 0,72¹²² 0,21⁺¹⁴ 6 2690 2238 Epes. 2238 2635 2584 2238 223I 2696 2635 2285 2231 (5/2⁻) (I/2_) I4I0 (5/2⁻) 1547 (3/2⁻) 2012 (3/2⁻) (3/2 Eyp. ദ്ദ 88

0

ŝ

Таблица

Таблица 6

Epes.	Mp	^Е рез.	м _р	E _{pes} .	M _p
2495	2,9(6)	2659	2,117	2728	3,2(10)
2504	2,8(10)	2675	2,8(6)	2779	4,0(6)
2512	2,6(4)	2688	3,1(5)	2807	3,5(7)
2612	3,3(9)	2711	2,7(6)	2917	2,8(6)

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Данные для смеси мультипольностей переходов с резонансов. в особенности для переходов 3/2 - 3/2, говорят о наличии явно выраженного нестатистического вклада в структуру протонных резонансов как для ⁵⁹Cu, так и для ⁶³Cu, В ^{/77} подобный эффект был обнаружен для ⁶¹Сu. Совпадение знаков δ в этих ядрах указывает, видимо, на сходство промежуточной структуры в них. В /7/ этот эффект объяснялся наличием резонанса Гамова-Теллера /тонкая структура резонанса Гамова-Теллера/. В настоящей работе может быть выдвинуто аналогичное объяснение. В /1/ проводились оценки положения резонанса Гамова-Геллера в изотопах Св. Они сделаны в схематической модели с учетом остаточного взаимодействия Гамова-Теллера. При значении константы спин-изоспинового взаимодействия G₁ = 0,7-0,9 МэВ резонанс Гамова-Теллера оказывается вблизи или ниже /на 1-2 МэВ/ аналога основного состояния. Сравнение результатов расчетов с данными различных экспериментов в рамках схематической модели /15/ показывает, что значение G₁ = G₀ = 1 МэВ /предел супермультиплетной симметрии/ оказывается более предпочтительным. В этом случае резонанс Гамова-Теллера будет расположен вблизи или выше /на 1-2 МэВ/ соответствующего аналога. Отметим, что в расчетах /1/ не учитывалась конфигурация f 7/2 - f 5/2, не существенная при *y*-распаде аналогов, а при вычислении систематических тенденций в распределении силы В_{ст}в работе /15/ учитывались все конфигурации. Поскольку ширины резонанса Гамова-Теллера составляют 3-4 МэВ, можно сделать вывод о возможном проявлении его тонкой структуры в изученной в данной работе области энергий возбуждения. Интересно отметить, что в изучаемых нами ядрах резонанс Гамова-Теллера оказывается близким по энергии к аналогу основного состояния, в отличие от ситуации в более тяжелых ядрах, где он расположен на несколько МэВ выше аналога. Возможно, что нестатистический эффект поведения знака смеси спинов каналов, обнаруженный в ^{/6/} на ⁴⁴Ca, также объясняется наличием промежуточной структуры типа резонанса

Гамова-Теллера. Отметим также, что возможна ситуация, когда знак смеси δ может измениться при переходе по энергии возбуждения составного ядра через центр гигантского резонанса. Согласно модели тонкой структуры $^{/16/}$ знак амплитуды смешивания двух конфигураций, одна из которых распределена по энергии, а вторая расположена при энергии E_0 , меняется при переходе через эту энергию. Поэтому, если предположить, что каждая из мультипольностей связана со своей простой конфигурацией, знак δ будет различным. в зависимости от положения резонанса относительно E_0 .

В случае распределения простой конфигурации по сложным естественно предположить, что смесь мультипольностей обусловлена переходами с простой конфигурации и изменения знака при E_0 происходить не будет.

Недавно появилась работа $^{/17/}$, в которой измерена величина B_{CT} в (р.п)-реакции на⁵⁸ Ni при больших энергиях протонов. Если предположить, что добавление нечетного нейтрона существенно не изменит распределение B_{CT} то в ⁵⁹ Cu можно ожидать первого максимума на высоте, которая на 0,9 МэВ выше аналога основного состояния, т.е. на высоте 4,8 МэВ, что соответствует резонансу $E_p = 1424$ кэВ /область применения знака δ /. Следующий максимум должен быть на высоте ~7,4 МэВ по энергии возбуждения, то есть в области, где проводились измерения неупругого рассеяния авторами данной работы.

Большая часть B_{GT} для ⁵⁸Cu сконцентрирована в области, которая на 9-13 МэВ выше аналогового состояния. Это связано с большой силой М1-резонанса в изотопах Ni и возбуждением аналога М1 резонанса в изотопах Cu , а также существенным вкладом конфигураций с T = 2. При переходе к более тяжелым изотопам Cu сила аналога М1-резонанса должна оставаться примерно одинаковой, а сила собственно резонанса Гамова-Теллера вблизи аналога основного состояния должна увеличиваться из-за увеличения нейтронного избытка.

ЛИТЕРАТУРА

- 1. Наумов Ю.В. и др. ЭЧАЯ, 1978, т. 9, с. 1282.
- 2. Lane A.M. Ann. Phys., 1971, vol. 63, p. 173.
- 3. Bilpuch E.G. et al. Phys.Rev., 1976, vol.28, p. 145.
- 4. Hossain M.D. J. Phys., 1975, vol. G1, p. 962.
- 5. Arai E., Ogawa H., Sato H. Nucl.Phys., 1976, vol.A256, p.127.
- Mitchell G.E., Dittrich T.R., Bilpuch E.G. L.Phys.A, 1979, vol. 289, p. 211.
- 7. Быков А.А. и др. Изв. АН СССР, сер.физ., 1981, т. 45, с. 822.
- 8. Сигалов В.М. и др. Изв. АН СССР, сер.физ., 1983, т.47, с. 66.
- 9. Gaarde C. et al. Nucl. Phys., 1981, vol. A396, p. 258.

- 10. Hossain M.D. Nuovo Cim., 1980, vol. 60A, p. 157.
- 11. Schiffer J.P., Moore M.S., Glass C.M. Phys.Rev., 1956, vol. 104, p. 1661.
- 12. Trentelman J.P. et al. Nucl. Phys., 1975, vol. 246, p. 475.
- Mahaux C., Weidenmuller H. Nucl. Phys., 1969, vol. A130, p. 481.
- 14. Крафт О.Е. и др. Изв. АН СССР, сер.физ., 1975, т. 39, с. 1268.
- 15. Наумов Ю.В., Быков А.А., Изосимов И.Н. ЭЧАЯ, 1983, т. 14, с. 420.
- 16. Бор О., Моттельсон Б. Структура атомного ядра, т. 1,2 /пер. с англ./. "Мир", М., 1971.
- 17. Rapoport J. et al. Phys.Lett., 1982, vol. 119B, p. 61.

Рукопись поступила в издательский отдел 21 октября 1983 года.

Крафт О.Е. и др.

P15-83-736

P15-83-736

Исследование структуры резонансов в реакциях взаимодействия протонов с ядрами ⁵⁸ Ni и ⁶² Ni при низких энергиях

Экспериментально обнаружена промежуточная структура протонных резонансов, проявляющаяся в том, что относительные знаки δ смеси мультипольностей γ -распада резонансов одинаковы. Величина и знак δ определяются на основе анализа угловых распределений γ -переходов в реакциях 58 Ni(p, γ) 59 Cu и 62 Ni(p, γ) 63 Cu через резонансы составного ядра. Для 58 Ni изучены также угловых распределений γ -переходов в реакциях 58 Ni изучены также угловых распределения γ -переходов в реакции 58 Ni изучены также угловых распределения γ -переходов в реакции 58 Ni изучены также угловые распределения γ -переходов в реакции 58 Ni ($p, p'\gamma$) через резонансы в 59 Cu , a для 62 Ni - множественность γ -переходов в реакции 62 Ni(p, γ). Эти данные не противоречат выводу о существовании промежуточной структуры. Эффект проявления промежуточной структуры интерпретируется как распределение силы гигантского резонанса Гамова-Теллера по резонансным состояниям более сложной формы.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Kraft 0.E. et al. P1 Investigation of Resonance Structure in the Interactions of Protons with ⁵⁸ Ni and ⁶² Ni Nuclei Reactions at Low Energies

An intermediate structure of proton resonances has been experimentally observed that manifests itself as relative signs of δ of the mixture of multipolarities of resonance γ -decay appeared to be the same. The value and sign δ are determined on the basis of analysis of angular distributions of γ -transitions through the resonance of a compound-nucleus in the ⁵⁸Ni(p, γ)⁵⁹Cu and ⁶²Ni(p, γ)⁶³Cu reactions. For ⁵⁸Ni angular distributions of γ -transitions have been studied in the ⁵⁸Ni(p, $p'\gamma$) reaction through a resonances in ⁵⁹Cu, as well as multiplicity of γ -transitions in the ⁶²Ni(p, γ) reaction. These data do not contradict to the conclusion as to the intermediate structure existence. This structure is interpreted as a distribution of the strength of the Gamov-Teller resonance over the resonance states of a more complicated structure.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С. Виноградовой