СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C3432 F-621

24/41-74

P15 - 8218

С.Л.Голубев, Г.М.Осетинский, Б.Фрыщин

4910/2-74

ИССЛЕДОВАНИЕ РЕАКЦИИ $14 N(^{3}He, \alpha)$ 13 N

ΛΑБΟΡΑΤΟΡИЯ ΗΕЙΤΡΟΗΗΟЙ ФИЗИНИ

P15 · 8218

.

С.Л.Голубев, Г.М.Осетинский, Б.Фрыщин

.

ИССЛЕДОВАНИЕ РЕАКЦИИ 14 N(3 He, α) 13 N

ВВЕДЕНИЕ

За последние годы опубликовано несколько экспери-ментальных работ $^{/1-7/}$, в которых рассматривается вопрос о том, насколько реакции типа (³ He, p), (³ He, d), (³He, a) в области малых энергий /< 5 МэВ/ могут оказаться полезными для понимания механизма реакции и проверки правильности принятой в расчетах структуры ядер, участвующих в реакции. Предполагая отсутствие интерференционных эффектов между различными механизмами, наблюдаемый механизм реакции рассматриваем как результат некогерентной суммы вкладов двух процессов - механизма составного ядра и прямого взаимодействия. Механизм реакции, идущий с образованием составного ядра, описывается по статистической теории Хаузера-Фешбаха. Прямой процесс взаимодействия - по приближению вскаженныме волнами борновскому С /БПИВ/. И если применимость теории Хаузера-Фешбаха D₀ <2 в областе малых энергий при выполнении условий -/D₀- расстояние между уровнем со спином нуль, Г - средняя ширина уровней/ больших сомнений не вызывает, то использование БПИВ в этой же области энергий не является бесспорным и изучено недостаточно подробно. Проведение дальнейших исследований в этом направлении, несомненно, представляет теоретический интерес. Этой задаче в значительной степени посвящено проведенное нами исследование реакции ¹⁴ N (³ He, a)¹³ N. В интервале энергий 2-4.1 МэВ измерены угловая и энергетическая днфференциальных сечений, выделены уг-**3ABHCHMOCTE** ловые зависимости, соответствующие прямому механизму реакции, и определены /методом БПИВ/ спектроскопические факторы.

Получение при E < 5 МэВ подробных данных по дифференциальным и полным сечениям для различных каналов реакции может оказаться полезным для введения поправок при исследованиях различных ядерных реакций, где бывает трудно исключить присутствие примесей азота и где реакции на этом азоте создают ненужный фон.

До настоящей работы исследованию реакции $^{14}N(^{3}He,a)^{13}N$ посвящена одна единственная работа Кнудсена и др.^{/8/}, выполненная в интервале энергий 2,5 ÷ 8,5 *МэВ*. В работе измерены дифференциальные сечения под углами 50, 90, 165° для группы a_0 , a_1 , $a_{2,3}$, угловые распределения измерены лишь для энергий 4,5; 5,5; 7,0 *МэВ*.

2. МЕТОДИКА ИЗМЕРЕНИЙ

Измерения проводились на пучке ускоренных нонов электростатического генератора ОИЯИ. В работе использовались газовые мишени двух типов: "длинная " для измерений дифференциальных сечений в "точечная" - для измерений угловых распределений ^{/9 /}. Мишени напол-¹⁴ N до давления 40-50 *Тор*. Измерения кривых нялись возбуждения проводились одновременно тремя низкоомными поверхностно-барьерными детекторами, расположенными под углами 45°, 90° и 135° в лаб. системе координат. Измерения угловых распределений проводились пятью детекторами. Один из них - монитор. фиксировался под углом 30°. Остальные располагались на коонштейне, который мог вращаться относительно осн камеры, обеспечивая измерения выхода реакции в интервале углов 2°÷165° в л.с. координат.

Схема опыта, блок-схема регистрации импульсов, методика измерений и методика расчетов дифференциальных сечений и угловых распределений аналогичны указанным ранее /9/.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Измерены дифференциальные сечення реакцин 14 N(3 He, a) 13 N для групп a_0 , a_1 под углами 45, 90, 135° в л.с. координат. Измерения проводились в интервале энергий 2÷4,1 *МэВ* с шагом ≈50 кэВ. Результаты измерений представлены на *рис. 1.* Представленные на рисунках ошибки - статистические. Как видно из рисунков, кривые возбуждения для групп a_0 , a_1 имеют плавный характер, "резонансной " структуры на кривых возбуждения не наблюдается. Средняя квадратичная ошибка измерений для группы a_0 составляет не более 5%. Она слагается из статистической ошибки при измерении вы-

Рис. 1. Дифференциальные сечения реакции $^{14}N(^{3}He, a)$ ¹³ N для группы a_0, a_1 , под углами 45°, 90°, 135° в лабораторной системе координат. По оси абсиисс - энергия в МэВ. По оси ординат - $d\sigma/d\Omega$, в мб/стерад. Сплошная кривая - данные Кнудсона и др.⁸. Приведенные ошибки статистические.

4

Рис. 2. Типичный энергетический спектр a-частиц из реакции ${}^{14}N({}^{3}He,a){}^{13}N$, измеренный под углом 90° при ${}^{E_3}He^{=}3,4$ МэВ.

хода реакции с учетом фона, ошибок в определении числа падающих частиц /1%/, числа атомов мишени /1%/ и в определении геометрического фактора / ≈2,5%/. Средняя квадратичная ошибка для канала а1 составляет ≈15%. Ее большая величина связана с ошибкой выделения пика a_1 на фоне непрерывного спектра реакции ${}^{14}N({}^{6}H_{e,pa}){}^{12}C$ /см. рис. 2/. Значения дифференциальных сечений при θ = 90° сравниваются с данными работы Кнудсена /8/. Для канала a₀ они на 10% ниже данных Кнудсена, для канала a_1 - совпадают /см. рис. 1/. На рис. 3 приведены угловые распределения реакцив ¹⁴ N(³He, a_0) ¹³N , измеренные при пяти значениях энергии в интервале углов 2° ÷170° в с.ц.м. Ошибки на графиках статистические. На рис. 4 представлены полные сечения этой реакции, полученные интегрированием угловых распределений. Средняя квадратичная ошибка полных сечений находится в пределах 5-6%. Ошибка в определении энергии пучка в центре мишени не превышала ≈30 кэВ. Разброс по энергии при прохождении пучком входного окошка мишени составляет для "длинной" мишени ≈ 20 кэВ, для "точечной" - 40 кэВ.

Рис. 3. Угловые распределения а -частич реакции ¹⁴N(³He, a)¹³N.По оси абсцисс - угол в системе центра масс. По оси ординат - дифференциальные сечения в мб/стерад в той же системе. Приведенные ошибки - статистические.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Структура кривых возбуждения и форма угловых разпределений указывают на сложность механизма реакции, которую, как уже упоминалось, можно представить в виде некогерентной суммы двух процессов, идущей через составное ядро, и прямого процесса взаимодействия. В аналитическом виде:

$$\left(\frac{\mathrm{d} \sigma}{\mathrm{d}\Omega}\right)^{3\mathrm{KCR}} = \left(\frac{\mathrm{d} \sigma}{\mathrm{d}\Omega}\right)^{\mathrm{npsM}} + \left(\frac{\mathrm{d} \sigma}{\mathrm{d}\Omega}\right)^{\mathrm{COCT}} + \left(\frac{\mathrm{d} \sigma}{\mathrm{d}\Omega}\right)^{\mathrm{COCT}}$$

Рис. 4. Проинтегрированные по углам полные сечения реакции ¹⁴N(³He, а)¹³N в диапазоне углов 2÷162°. По оси абсцисс - энергия в МэВ. По оси ординат - полные сечения реакции в миллибарнах.

$$= N C^{2} S_{\ell j} \left(\frac{d\sigma}{d\Omega}\right)^{\text{ETIVB}} + H \frac{\lambda^{2}}{8\pi(2i+1)(2J+1)} \cdot \frac{D_{0}}{\Gamma} \times \left(\frac{d\sigma}{d\Omega}\right)^{X-\Phi}, \qquad /1/$$

где N - константа нормировки N = 21, S_{li} - спектроскопический фактор, C² - изоспиновый коэффициент Клебша-Гордона, $(\frac{d\sigma}{d\Omega})$ БПИВ - дифференциальное сечение прямого механизма реакции, рассчитываемое по борновскому приближению искаженных волн /БПИВ/, $(\frac{d\sigma}{d\Omega})^{X-\Phi}$ - дифференциальное сечение реакции, ндущей через составное ядро и рассчитываемое по теории Хаузера-Фешбаха, Г, D₀- средняя ширина уровней и расстояния между уровнями со спином 0, i, j - спины падающей частицы и ядра мишени соответственно, H - фактор ослабления.

Анализ дифференциального сечення по формуле /1/ проводился без усреднения угловых распределений по энергиям. Обоснованность такого подхода подтверждается рядом экспериментальных работ /11-15/, в которых получаемая спектроскопическая информация согласуется с данными, где это усреднение проводилось. Введение фактора ослабления необходимо, поскольку расчет дифференциального сечения по теории Хаузера-Фешбаха не принимает во внимание вклада в сечение реакции от прямого процесса взаимодействия. Это приводит к завышенному значению ($\frac{d\sigma}{d}$)^X-Ф. Умножением($\frac{d\sigma}{d\Omega}$)^X-Ф на фактор ослабления ^H можно учесть это завышение/¹⁰/ Поскольку теоретическое описание коэффициента затруднено, его величина определяется из эксперимента.

Согласно работе /16/, использовалась следующая методика оценки Н. Вначале определялось его значение для такого канала реакции¹⁴ N+ ³He, где можно быть уверенным в преобладающей роли составного ядра в процессе взаимодействия. В качестве таковой был выбран канал а1, угловое распределение которого измерено Кнудсоном ^{/8/} н др. при Е $_{3_{\text{He}}} = 4,5$ МэВ. Преобладание вклада указанного механизма для этой реакции вытекает из структуры начального ^{/8-19/} и конечного состояний ^{/20/}. Особенно важна работа ^{/21/}. Значение Н находилось по менемуму эксперементального углового распределения так, чтобы расчетная кривая по теории Хаузера-Фешбаха, умноженная на Н, касалась минимальной точки экспериментальной кривой. Полученное нами значение H=0,35 использовалось в качестве начальной точки для энергетической экстраполяции этой величины в области наших энергий. Энергетическая зависимость H = H(E) была получена на основании угловых распределений группы а,, рассматриваемой реакции методом, указанным в работе /16/ с последующей нормировкой этой зависимости к значению H=0,36 при E = 4,5 МэВ. Такой метод оценки величины Н является некоторым прибли-

жением. Однако использование его не приводит в конечном итоге к существенному изменению результатов анализа по БПИВ, являющейся основной целью настоящей работы.

Расчет дифференциального сечения по теории Хаузера-Фешбаха проводился по программе "LIANA" /23/на ЭВМ CDC-6200 с включением в нее входных данных /энергия, масса, спины, четности, параметры оптических потенциалов/ для уровней всех открытых каналов реакции, по которым может распасться компаунд-ядро при данной энергии его возбуждения. Рассматриваемые каналы реакции, а также число учитываемых уровней представлены в *пабл. 1*.

Применимость теория в нашем случае определялась выполнением условия $\frac{D_0}{\Gamma} < 2^{/10}$, где Γ - средняя ширина уровня: D_0 - расстояние между уровнями со спином О.

Рис. 5. Угловые распределения реакции ${}^{14}N({}^{3}He,a){}^{13}N$. Пунктирная кривая получена в результате расчета по Хаузеру-Фешбаху. Сплошная кривая - сумма вкладов сечений реакции, рассчитанных по БШИВ + Хаузер-Фешбах. Точки - экспериментальные данные. По оси абсииссугол в системе центра масс, по оси ординат - $\frac{d\sigma}{d\Omega}$ мб/ стерад. $\overline{S} = 1.49$.

Исследуе реакция	Mar Otro			+ N _{ħ1}	³ He	Taŭ	типа 1	,
pea	не канал кцил	TT - T	c, He)M	W(He, P) 6	$\left \frac{W}{M(H_{c,d})^{B}} \right $	$M(H_{c,d})^{n}O$	"" " N(He, h	12 L
число ур учитывае программ	овней, Мых Ой	(m) (m)		£₽	17	ω	н	1
	Частица	>	ٽ <u>م</u> ا	ά	M	Taбли	لع 2	
		МэВ	t w	fm	Яем	3 5	چې د	V _{Sc}
Входной канал	³ He	I 50	0,99	0,829	I6,0	I,8I	0,592	
Выходной канал	d	54	T , I 7	0,75	п,8	ц, ж	0,51	
	٢	80	I,25	0,65	5,75	I,25	0, 70	ວ,ວ
	ס	25	I,I 5	0,87	8,5	I,37	0,70	
	کر	200	I,37	5 0 , 555	8,93	т,35	I,375	0,55

среднее S значение	I,49 I,93
3,96	2,I6 2,83
3,51	I,27 I,86
3,16	I,33 I,84
3,07	0,93 I,39
2,34	I,74 I,74
E _{3He} wab	S Smax

ł

Параметры оптических потенциалов, необходимых для расчетов по БПИВ и теории Хаузера-Фешбаха для входного канала, взяты из работы ^{/22}. Для выходных каналов: из работы ^{/22}/для а-частиц/ и работ ^{/24-27}/для каналов с вылетом п, р, d -частиц/. Значения используемых параметров приведены в *пабл. 2*.

Расчеты $(\frac{d\sigma}{d\Omega})^{ETIVB}$ проводились на ЭВМ БЭСМ-4 по программе/28/При расчетах предполагается подхват $1_{P_{1/2}}$ нейтрона. Волновая функция подхваченного нейтрона рассчитывалась в потенциале Вудса-Саксона с обычными параметрами. Спектроскопические факторы для группы a_0 определялись по формуле /1/ путем сравнения расчетных значений дифференциальных сечений с экспериментальными под углом 5°.

На *рис.* 5 приведены экспериментальные н расчетные значения дифференциальных сечений, где в качестве спектроскопического фактора принималось среднее значение $\overline{S} = 1, 49$, полученное из анализа измеренных угловых распределений. Данные для S приведены в *пабл. 3.*

В этой же таблице приведены максимальные значения спектроскопического фактора (S_{max}), которые получаются в предположении отсутствия вклада механизма составного ядра. Как видно из таблицы, значение S = 1, 49хорошо согласуется с теоретическими значениями S = 1, 38и S = 1,2, опубликованными в работах $^{/6, 29}$, а также со значениями S, определяемыми экспериментально в ряде работ: $1,76^{/30}$, $1,3^{/19}$, $1,52^{/31}$, $1,44^{/32}$, и $1,62^{/18}$.

Полученное согласие экспериментально определяемых значеный спектроскопических факторов с теоретическими представляется интересным хотя и не неожиданным. При этих же энергиях и при таких же /или близких/ значениях оптических параметров аналогичное совпадение наблюдалось при исследованиях реакций

 $^{15}N(^{3}He, \alpha)^{14}N$, $^{15}N(^{3}He, d)^{16}O$, $^{15}N(^{3}He, p)^{17}O$ HT.J.

Таким образом, при надежном выделении прямого процесса взанмодействия метод БПИВ даже в области

1

က

Таблица

малых энергий может оказаться полезным для проверки правильности теоретических предположений относительно структуры возбужденных состояний ядер, участвующих в реакции.

Авторы выражают благодарность Я.Тыкэ, Сон Вон Наму, М.В.Савенковой за помощь в работе.

Литература

- 1. М.Абузейд, Ким Сын Нам, Г.М.Осетинский, Я.Тыкэ, Б.Фрыщин. Сообщение ОИЯИ, Р15-7128, Дубна, 1973.
- 2. Г.М.Осетинский, Я.Тыкэ, Б.Фрыщин. Сообщение ОИЯИ, P15-7515, Дубна, 1973.
- 3. Г.М.Осетинский, Я.Тыкэ, Б.Фрыщин. Сообщение ОИЯИ, 7156, Дубна, 1973.
- 4. М.Абузейд, Г.М.Осетинский, Я.Тыкэ, Б.Фрыщин. Сообщение ОИЯИ, P15-7216, Дубна, 1973.
- 5. R.Stock, R.Bock, P.David, M.M.Dumm and T.Tamura. Nucl.Phys., A104, 136 (1967).
- 6. S.Cohen, D.Kurath. Nucl. Phys., Alol, 1 (1967).
- 7. W.Bohne, H.Homeyer, H.Lettau, H.Morgenstern, J.Scheer, F.Sihelschmidt.Nucl.Phys., A128, 537 (1969).
- 8. A.K.Knudson, and F.C.Yong. Nucl. Phys., A149, 323 (1970).
- 9. М.Абузейд, Г.М.Осетинский, Я.Тыкэ, Б.Фрыщин. Сообщение ОИЯИ, P15-7121, Дубна, 1973.
- 10. P.E. Hodson. Nuclear Reactions and Nuclear Structure, Clarendon Press, Oxford, 1971.
- 11. R.C.Ritter, Eric Sheldon and Michael Strang, Nucl. Phys., Al40, 609 (1970).
- 12. J.Bomer, H.Fuchs, K.Grabisch, V.Janitski and G.Roschert. Nucl. Phys., A172, 618 (1971).
- 13. M.P.Etten and G.H.Lenz. Nucl. Phys., A179, 448 (1972).
- 14. P.D.Georgopolus, W.A.Lochstet and E.Bleuler. Nucl. Phys., A183, 625 (1972).
- 15. J.A.Cookson. Nucl. Phys., A180, 89 (1972).
- Г.М.Осетинский, В.М.Семенов, Сон Вон Нам, М.А. Фарук. Сообщение ОИЯИ, P15-8217, Дубна, 1974.
 S.Lie. Nucl. Phys., Al81, 517 (1972).
- 18. R.L.Kozub, L.A.Kull and E.Kashy. Nucl. Phys., A99, 540 (1967).
- 19. F.Hintenberger, G.Mairle, U.Schmidt, Rohr P.Turek, G.J.Wagner. Nucl.Phys., A106, 161 (1968).

- 20, W.W. True. Phys. Rev., 130, 1530 (1963).
- 21. H.V.Jager, H.R.Kissener and R.A.Eramzhian. Nucl. Phys., A171, 16 (1971)
- 22. C.H.Herling, L.Cohen and J.D.Silverstein. Phys.Rev., 178, 1551 (1969).
- 23. W.R.Smith. Computer Phys. Commun., 1, 181 (1969).
- 24. R.Weibezahn, H.Freisleben, F.Puhlhofer and R.Bock. Nucl. Phys., A(76, 645 (1971).
- 25. M.P.Etten and G.H.Lenz. Nucl. Phys., A179, 44s (1972).
- 26. B.D.Murphy, R.M.Strang and R.C.Ritter. Nucl.Phys., A168, 328 (1971).
- 27. R.C.Ritter, E.Sheldon and M.Strang. Nucl. Phys., A140, 609 (1970).
 - К.А.Гриднев, Л.В.Краснов, Н.М.Кухтина, В.К.Лукьянов, В.И.Никитина, В.И.Фурман. Препринт ОИЯИ, 2458, Дубна, 1968.
 - 29. S.Varma and P.Goldhammer, Nucl.Phys., A125, 193 (1969).
 - 30. M.Gailard, K.Bonche, L.Fenvrais, P.Gaillard, A.Guichard, M.Gusakov, J.L.Leonhardt, J.R.Pizzi. Nucl.Phys., All9, 161 (1969).
 - 31. D.Bachelier, M.Bernas, J.Brissand, C.Detzas, D.Radvanyl. Nucl.Phys., Al26, 60 (1969).
 - 32. I.S. Towner. Nucl. Phys., Al26, 197 (1964).

Рукопись поступила в издательский отдел 19 августа 1974 года.