

P15-82-18

Ю.П.Гангрский, М.Б.Миллер, Л.В.Михайлов

ДЕЛЕНИЕ ²³⁸U и ²³²Th ПОД ДЕЙСТВИЕМ **?**-ИЗЛУЧЕНИЯ, ИСПУСКАЕМОГО ПРИ РАДИОАКТИВНОМ РАСПАДЕ НУКЛИДОВ

Направлено в журнал "Вопросы атомной науки и техники", серия "Ядерные константы".

28

1982

Исследования ядерного деления под действием у-излучения получили широкое развитие и внесли весомый вклад в понимание этого процесса. В них, как правило, использовался либо непрерывный спектр у-лучей, либо дискретные у-линии с большим энергетическим разбросом /не менее 20 кэВ/. В результате имело место возбуждение большого числа уровней делящегося ядра, и определяемые делительные характеристики оказывались усредненными по достаточно широкому интервалу энергии.

В то же время известно, что сложная структура барьера деления и наличие квазистационарных состояний во второй потенциальной яме приводят к большому разбросу делительных ширин для различных возбужденных уровней. Поэтому представляло интерес исследовать деление ядер под действием монохроматических γ квантов, приводящих к возбуждению одного или нескольких уровней. Однако опыты в этом направлении еще не получили распространения. Известны лишь работы, где использовалось γ -излучение 60 Со /1/ и осколков деления /2/ /при этом наблюдался крайне низкий эффект/, а также γ -излучение, испускаемое при радиоционном сахрате тепловых пейтропов (${}^{2-4}$ / или протонов малых энергий /7/ /в этом случае низкая интенсивность γ -излучения позволяла работать только с энергиями выше 5 МэВ/.

В наших исследованиях запаздывающего деления⁷⁸⁷ наблюдался фон осколков из мишеней ²³⁸ U или ²³² Th, причиной которого являлось деление указанных ядер под действием β -- или у-излучения, испускаемого при радиоактивном распаде нуклидов, образующихся в реакциях тяжелых ионов с материалом подложки. Уровень этого фона позволил провести более детальное изучение явления. Полученные результаты представлены в данной работе.

Был измерен выход осколков из мишеней ²³⁸U и ²³² Th при облучении их β - и γ -лучами радиоактивных источников ⁶⁰Cu. 66 Ga , 74 Br /основное и изомерное состояния/ и 142 La. ⁶²Cu . Эти источники /их интенсивность составляла 10⁻² -10⁻¹ Ci получались в реакциях: ⁵⁸ Ni (a, 2n) ⁶⁰ Cu, $^{63}Cu(\gamma, n)$ $^{62}Cu.$ ⁶⁵Cu (¹²C, 3n) ⁷⁴Br, 238 U (y, 1) 142 La. $^{63}Cu(a, n)$ ^{66}Ga . Радиоактивные свойства источников /9/ /период полураспада полная энергия β -распада Q_{β} , энергии $E_{\gamma \max}$ и интенсивности $N_{\gamma \max}$ наиболее жестких γ -квантов/ представлены в табл.1. Следует отметить, что все эти источники имеют сложный спектр у -излучения, обычно несколько десятков у-линий /число у линий с энергией выше 3 МэВ указано в табл.1/.

1

Таблица 1

Характеристики распада изотопов

Изотоп	T	Q _В МэВ	E _{ymax} MəB	N _{уmax} Zpacп.	N.y /> 3 M9B/
⁶⁰ Cu	23 мин.	6,13	5,048	0,002	24
82Cu	90 мин.	3,91	3,860	0,0003	3
66 Ga	9,4 час.	5,18	4,807	1,5	17
⁷⁴ gBr	25 мин.	6,92	4,649	0,6	32
^{74m} Br	41 мин.	7,11	4,380	0,2	22
142La	92 мин.	4,52	4,182	0,1	26

Схема эксперимента представлена на <u>рис.1</u>. Фольги из урана или тория натурального изотопного состава толщиной около 20 мкм были помещены между диэлектрическими детекторами осколков и размещались вплотную к радиационным источникам /использовалось до 10 фольг с каждой стороны/. В качестве детекторов осколков применялся лавсан, его обработка после экспозиции проводилась по стандартной методике ^{/10/}, после чего под микроскопом производился визуальный счет треков. Детекторы осколков периодически менялись с тем, чтобы определить зависимость скорости счета осколков от времени.

Наблюдалось деление урана под действием радиоактивного излучения 60 Cu, 66 Ga и 74 Br и тория - 74 Br. Зависимость числа треков от времени соответствовала периодам полураспада используемых изотопов /одна из таких зависимостей представлена на рис.2/. Использование слоев урана, обогащенных изотопом 235 U, не показало увеличения эффекта, и это означает, что в мишенях

натурального изотопного состава деление под действием радиоактивного излучения испытывает изотоп ²³⁸U. Опыты с фильтрами,

поглощающими β -излучение, а также сравнение выходов осколков для источников с существенно разными интенсивностями и энергиями β - и у-излучения.

<u>Рис.1.</u> Блок-схема экспериментальной установки.

Рис.2. Зависимость числа треков (N_f) от времени (t) при облучении ²³⁸U радиоактивным излучением ⁷⁴ Br.

позволяют предполагать, что деление 238 U и 232 Th происходит под действием дискретных γ квантов, испускаемых после β распада. Выход осколков деления, отнесенный к полному потоку γ квантов из источника /этот

поток определялся с помощью Ge(Li)-детектора/, позволяет судить о сечении реакции деления ²³⁸U и ²³²Th монохроматическими у-квантами. Эти значения сечений /или их верхние границы/ представлены в <u>табл.2</u>.

Очевидно, однако, что деление ²³⁸U и ²³²Th вызывает не весь поток у-излучения, а сравнительно небольшое число у-квантов /один или несколько/, испытывающих резонансное поголощение в уране или в тории /когда имеет место случайное совпадение энергии у-кванта с энергией возбужденного уровня/. Чтобы выделить эти у-кванты, было изучено резонансное рассеяние уизлучения из ⁶⁶ Ga и ⁷⁴ Br на ядрах урана /методика эксперимента и полученные результаты приведены в работе ^{/11/}/. Оказалось, что для целого ряда у-пиний наблюдается резонансное рассеяние, причем дифференциальные сечения /под углом 90°/ лежат в диапазоне 0,1-1,0 мб/ср. Появление такого числа резонанснорассеянных у-квантов связано с тем, что доплеровское уширение у-излучения /до нескольких сотен эВ/ вследствие отдачи ядра при β -распаде существенно увеличивает вероятность появ-

Таблица 2

Сечения деления урана и тория

	σ _f , cm ²		
Источник	3238 U	232 Th	
⁶⁰ Cu	10-32		
⁶² Cu	<10-34		
66 _{Qa}	3 • 10 - 34	<10-34	
⁷⁴ Br	10 ⁻³¹	3 .10 -88	
142La	<3.10 ⁻³⁴	<10-34	

<u>Рис.3.</u> Зависимость вероятности деления от энергии γ -квантов. Кривая – данные работы /12/ для непрерывного спектра γ – лучей; о – γ – излучение ⁷⁴ Br, Δ – γ -излучение ⁶⁶ Ga.

ления резонансов. Наличие нескольких у-линий не позволяет связать наблюдаемый выход осколков с каким-либо одним возбужденным уровнем ²³⁸U. Можно лишь считать,что деление происходит с одного или нескольких уровней, соответствующих по энергии резонансно-рассеянным у-квантам. Энергия этих у-квантов 3410, 3790, 4095 и 4380 кэВ /для источника ⁷⁴ Br / и 3230 и 3780 кэВ (⁶⁶ Ga). Вероятности деления для каждого из

возбуждаемых уровней /отношения сечений деления к сечениям резонансного рассеяния/, полученные в предположении, что деление происходит только из этого состояния, представлены на <u>рис.3</u>. Для сравнения приводится зависимость вероятности деления от энергии γ -квантов, измеренная в работе $^{/12/}$ при использовании непрерывного спектра γ -излучения, и, следовательно, усредненная по достаточно большому числу возбужденных состояний /по интервалу энергии ~100 кзВ/. Из <u>рис.3</u> видно, что некоторые возбужденные состояния в интервале энергий 3-5 МэВ могут иметь делительные ширины, значительно большие, чем средние.

В заключение авторы выражают благодарность Г.Н.Флерову и Ю.Ц.Оганесяну за постоянный интерес к работе, Н.В.Пронину и А.Г.Белову за помощь при проведении облучений на ускорителях, С.П.Третьяковой и сотрудникам ее группы - за просмотр диэлектрических детекторов.

ЛИТЕРАТУРА

- 1. Иванов К.Н., Петржак К.А. АЭ, 1974, 36, с. 403.
- 2. Kunstander J.W. et al. Phys.Rev., 1953, 91, p. 594.
- 3. Manfreddini A. et al. Nucl. Phys., 1969, A127, p. 687.
- 4. Manfreddini A. et al. Nuovo Cimento, 1968, B48, p. 218.

- 5. Mafra 0.Y. et al. Nucl.Phys., 1972, A186, p. 111.
- 6. Mafra O.Y. et al. Nucl. Phys., 1974, A236, p. 1.
- 7. Yeh T.R., Lencman H. IEEE, 1981, NS-28. p. 1289.
- 8. Гангрский Ю.П. и др. ЯФ, 1980, 31, с. 306.
- 9. Lederer C.M., Shirle- V.S. Tables of Isotopes, 7th Ed., New York, 1978.
- 10. Капусцик А. и др. ПТЭ, 1968, №1, с. 80.
- 11. Гангрский Ю.П. и др. ОИЯИ, Р15-81-151, Дубна, 1981.
- 12. Жучко В.Е. и др. ЯФ, 1978, 28, с. 1165.

Рукопись поступила в издательский отдел 12 января 1982 года.

5

4

◄