

Объединенный институт ядерных исследований дубна

5147 -81

19/x-81 P15-81-518

В.С.Евсеев, Т.Н.Мамедов, В.С.Роганов, М.В.Фронтасьева

ДЕПОЛЯРИЗАЦИЯ ОТРИЦАТЕЛЬНЫХ МЮОНОВ В ОСНОВАНИЯХ И КИСЛОТАХ

Направлено в "Журнал физической химии"

Полученные к настоящему времени экспериментальные данные по деполяризации отрицательных мюонов, останавливающихся в различного рода органических и неорганических соединениях 1, не могут быть объяснены на основе теории деполяризации в мезоатомном каскаде для изолированного атома 2. В работах 3.4 развита феноменологическая теория деполяризации для случая конденсированных сред, позволяющая качественно, а в ряде случаев количественно, интерпретировать измеренные величины остаточной поляризации мюонов P_{μ} , в предположении химических взаимодействий мю-мезоатомов со средой.

Данная работа предпринята с целью продолжения начатых нами ранее систематических исследований зависимости деполяризации отрицательных мюонов от свойств среды. Проведены измерения величины P_{μ} на кислороде в основаниях и кислотах с общей формулой $\Im_k O_m H_n$ элементов II—VI периодов. Часть результатов опубликована ранее без подробного обсуждения 5 .

Эксперименты проводились на сепарированном пучке отрицательных мюонов с импульсом 150 МэВ/с мезонного канала⁶⁷ синхроциклотрона ЛЯП ОИЯИ /с примесью остановок отрицательных пи-мезонов менее 0,2%/. Величина P_{μ} , измерялась методом прецессии спина мюона в слабом поперечном /к направлению спина/ магнитном поле⁷⁷. Аппаратура для определения P_{μ} и методика обработки экспериментальных данных описаны в⁷⁸. В полученные на опыте значения коэффициентов асимметрии электронов μ^- «е – распада "а" /пропорциональные величинам P_{μ} / вносились поправки на энергетический порог регистрации электронов и неэквивалентность толщин мишеней; учитывался также фон электронов от распада мюонов, останавливающихся в сцинтилляционных счетчиках.

Электроны распада мюонов из 18 -состояния мезоатома кислорода мишеней выделялись по времени жизни $r_{\mu}(Z)$. Исключение составляли мишени $H_{2}C_{2}O_{4} \cdot 2H_{2}O$ и HNO_{3} , где вклады С и N соответственно не отделены от вклада 0, поскольку время жизни мюона в углероде и азоте близки к значению в кислороде. Однако доля мюонов, захватившихся атомами С и N, значительно меньше, чем атомами кислорода, поскольку в этих молекулах на один атом углерода или азота приходится три атома кислорода.

Мишени изготавливались из реактивов с маркой X4 и 4ДА. Содержание основных компонент для большинства реактивов, согласно техническим данным, составляло не меньше 97% /специального ана-

1

Таблица

Фогмула соединения	Z	Относитель- ная оста- точная поля- ризация в/а _с	Степень ионности связи Э-(ОН)	Первый потенциал ионизации атома Э /13/(эВ)
I	2	3	4	5
LIOH	3	0,2I <u>+</u> 0,02	0.89	5.39
B(OH) 3	5	0,30 <u>+</u> 0,06	0,63	8,30
^н 2 ^с 2 ⁰ 4•2 н ₂ 0	6	0,46+0,05	0,43	II.26
HNO3	7	0,74 <u>+</u> 0,I0	0,22	14.54
^H 2 ⁰ 2	8	0,83 <u>+</u> 0,03 ^{/4/}	0,06	13,61
NaOH	II	0,2I <u>+</u> 0,03	0,91	5.14
Mg(OH) ₂	12	0,30 <u>+</u> 0,03	0,86	7.64
Al (OH) 3	13	0,3I <u>+</u> 0,05	0,79	5,98
H ₂ SiO ₃	14	0,48 <u>+</u> 0,06	0,70	8,15
H ₃ PO ₄	15	0,50 <u>+</u> 0,05	0,59	IO.55
$H_2 SO_4$ (300 [°] K)	16	0,65 <u>+</u> 0,03	0,43	I0.36
$H_{2}SO_{4}$ (270 K)		0,65 <u>+</u> 0,03		
$H_{2}SO_{4}$ (77°K)		0,36 <u>+</u> 0,03		
HC 104	17	0,67 <u>+</u> 0,05	0,22	13,01
КОН	19	0,I6 <u>+</u> 0,02	0,92	4,34
Ca(OH) ₂	20	0,I4 <u>+</u> 0,07	0,89	6,II
^H 2 ^{Ti0} 3	22	0,35 <u>+</u> 0,05	0,79	6,83
H ₃ VO ₄	23	0,49 <u>+</u> 0,04	0,76	6,74
Cr(OH) ₃ •2 H ₂ 0	24	0,55 <u>+</u> 0,03	0,76	6,76
Co(OH) ₂	27	0,24 <u>+</u> 0,I0	0,70	7,86
Co(OH) ₃	27	0,4I <u>+</u> 0,05	0,70	
Ni (OH) ₂	28	0,I6 <u>+</u> 0,08	0,70	7,63
Ni (OH) 3	28	0,28 <u>+</u> 0,06	0,70	
Cu(OH) ₂	29	0,57 <u>+</u> 0,04	0,67	7,72
^H 2 ^{SeO} 3	34	0,29 <u>+</u> 0,09	0,47	9,75
H2 ^{SeO} 4	34	0,49 <u>+</u> 0,05	0,47	
$Sr(OH)_2 \cdot 8 H_2O$	38	0,I4 <u>+</u> 0,03	0,89	5,69
² r(OH) ₄	40	0,I4 <u>+</u> 0,07	0,82	6,84
^H 2 ^{MOU} 4	42	0,33 <u>+</u> 0,06	0,70	7,13

I	2	3	4	5
Cd(OH)2	48	0,58 <u>+</u> 0,07	0,74	8,99
H2TeO4	52	0,62 <u>+</u> 0,05	0,59	9,0I
нĴo ₃	53	0,66+0,04	0,43	IO,44
н ₅ јо ₆	53	0,70 <u>+</u> 0,06	0,43	
CsOH	55	0,20 <u>+</u> 0,05	0,93	3,89
Ba(OH) 2•8 H20	56	0,19 <u>+</u> 0,05	0,9I	5,8I
H ₃ TaO ₄	73	0, 42+0, 10	0,79	7,7
Howo	74	0,36 <u>+</u> 0,06	0,74	7,98
тіон	8I	0,50 <u>+</u> 0,05	0,70	6,II
Pb(OH)2	82	0,70 <u>+</u> 0,09	0,70	7,42
ві (он) 3	83	0,54 <u>+</u> 0,04	0,70	7,29

Таблица /продолжение/

лиза химического состава мишени не производилось/. Ряд реактивов содержал некоторое количество воды. Например, концентрация реактивов Н ClO₄, H₂SeO₄, LiOH, H₃PO₄, KOH, H₂SO₄ составляла \gtrsim 70%, \approx 80%, \gtrsim 80%, \gtrsim 85%, \sim 92%, \sim 92,5%, соответственно.

Полученные результаты по зависимости величины относительной остаточной поляризации $a/a_c / a/a_{\overline{e}}P_{\mu}/P_{\mu}'$; a_c , P_{μ}' - значения а, P_{μ} для графитовой мишени/ от атомного номера элемента представлены в таблице и на рис.1. Абсолютное значение величины остаточной поляризации в графите измерено нами ранее^{/3/} $P_{\mu}' = 0,194\pm0,011$.

Из этих данных следует, что имеет место периодическая зависимость a/a_e от Z. Величина a/a_e линейно возрастает от начала каждого периода к его концу, и эта зависимость является общей для оснований и кислот / для переходных элементов IV периода эта зависимость выражена хуже/. Наклон прямых, проведенных через экспериментальные точки, уменьшается при переходе от второго к шестому периоду.

Объяснить отмеченные выше особенности можно на основе представлений $^{/3,4/}$ о быстрых химических реакциях свободного мезоатома кислорода, имеющего электронную оболочку атомарного азота и обозначаемого далее символом "N /мезоазот/. При этом будем полагать, что для каждого из соединений, представленных в таблице, время вступления мезоазота в химическую реакцию τ_0 при комнатной температуре существенно меньше времени деполяризации $\tau_{\rm CB}$ за счет сверхтонкого взаимодействия магнитных моментов мюона и парамагнитной электронной оболочки свободного мезо-

Рис.1. Зависимость относительной остаточной поляризации а/а_с от Z / - кислоты, - основания/; для Со, Ni и Se нанесены данные для соединений с высшей валентностью.

азота. Заметим, что если положить $r_0 > r_{\rm CB}$, то величина $a/a_{\rm c}$ не могла бы быть более 0,3.

Предположение $\tau_0 < \tau_{\rm CB}$ /при $\rm T \geq 270~K/$ основывается на результатах обработки экспериментальных данных по температурной зависимости a/a_c для мезоазота в H_2O и $H_2O_2/cm.^{/1,4/}$ /: величина a/a_c возрастает с ростом температуры и выходит на плато при T ≥ 270 К. В этом случае на плато $a/a_c \sim W_d / (W_d + W_p)$, где W_d и W_p - вероятности образования диамагнитных и парамагнитных соединений, включающих мезоазот. Как хорошо известно/9/ реакции атомарного азота имеют практически нулевую энергию активации. В опытах по деполяризации μ^- -мезонов в $\mathrm{H}_2\mathrm{O}_2$ также были получены для реакции $_{\mu}$ N + $\mathrm{H}_{2}\mathrm{O}_{2}$ ightarrow $\mathrm{H}_{\mu}\mathrm{NO}$ + OH значения энергии активации порядка 0,2 ккал/моль/1,4/. Поэтому рост $a/a_{
m c}$ с увеличением температуры при ${
m T}{<}\,270$ К обусловлен конкуренцией между деполяризацией за счет сверхтонкого взаимодействия магнитных моментов мюона и электронной оболочки свободного мезоатома и прекращением деполяризации при вступлении мезоатома в химическую реакцию с образованием диамагнитного продукта, содержащего мезоатом.

В настоящей работе температурная зависимость а/а_с в области 77-270 К и плато в области Т≥270 К найдены также и для H₂SO₄ /см. <u>таблицу</u>/. Для других соединений температурная зависимость а/а_с не исследовалась.

В результате быстрой химической реакции свободного мезоазота с молекулой Э_кО_mH_n возможно образование как диамагнитных, так и парамагнитных соединений мезоатома. При отрыве группы ОН

4

возможно /энергетически выгодно $^{\prime 10\prime}$ / образование, например, диамагнитных молекул H- $_{\mu}$ N =0 , H- $_{\mu}$ N⁺-0. При отрыве атома H возможно образование парамагнитных соединений Э-O- $_{\mu}$ N, Э-O= $_{\mu}$ N, $_{\mu}$ NH и диамагнитного Э- $_{\mu}$ N=0.Реакции, ведущие к образованию NO, энергетически невыгодны $^{\prime 10\prime}$ B принципе возможны также реакции присоединения с образованием парамагнитных соединений Э-O- $_{\mu}$ N-H или Э- $_{\mu}$ N-OH.

Вербятность образования того или иного соединения зависит /11,12/ в первом приближении от характера связей между атомами исследуемых соединений, определяемого свойствами электронной оболочки центрального атома Э. Объяснение периодического характера измеренной зависимости a/a_{c} от Z основывается на предположении, что при вступлении в реакцию мезоатома с отрывом группы ОН образуются преимущественно диамагнитные соединения, а с отрывом Н - преимущественно парамагнитные, и, кроме того, на представлениях об изменении /11,12/ характера связей)--ОН и H с остальной частью молекулы при переходе от начала периода к его концу: связь Э- (ОН) при этом становится более ковалентной, а связь О-Н - более ионной. Поскольку ионная связь является более сильной, следует ожидать, что при переходе от начала периода к его концу растет разность $\Delta \mathbf{E}$ = = E_H-E_{OH} энергии связи Н и ОН с остальной частью молекулы. Это приводит к росту относительной вероятности образования, например, такого диамагнитного соединения $_{\mu}N$, как $H - _{\mu}N = 0$ и, следовательно, к росту величины a/a_c .

Следует подчеркнуть, что интерпретация полученных нами результатов не зависит в первом приближении от того, реагирует μ N с радикалами, образующимися в результате радиолиза среды вблизи места образования мезоатома^{/1/}, или с неповрежденными молекулами $J_k O_m H_n$, поскольку вероятность разрыва связей при радиолизе также зависит от их характера. Чем слабее связь $3^{-}(OH)$,тем с большей вероятностью образуются свободные радикалы OH и тем более вероятным будет образование диамагнитного соединения $H - \mu N = 0$; чем сильнее связь $3^{-}(OH)$, тем с большей вероятностью могут образоваться, например, радикалы H, с которыми мезоатом может дать парамагнитное соединение μ NH.

Объяснение полученных данных по a/a_c в гидроокисях не зависит также и от некоторой доли горячих реакций мезоазота, величина которой не противоречит наблюдаемым температурным зависимостям a/a^{/1/}, поскольку вероятность "подхвата" ОН или Н также будет обратно пропорциональной энергии их связи.

Экспериментальные данные по $E_{\rm H}$ и $E_{\rm OH}$ в кислотах и основаниях, к сожалению, весьма скудны $^{/10/}$ для того, чтобы проверить наличие корреляции между $a/a_{\rm c}$ и $\Delta E_{\rm c}$ С физической точки зрения $^{/11/}$ изменение энергии связи Э-ОН является следствием изменения разности значений первых потенциалов ионизации $\Delta I = I_{\rm c} - I_{\rm c}$

<u>Рис.2.</u> Зависимость a/a_c от степени ионности связи i.

атомов кислорода и элемента. Нам представляется вероятным поставить в причинную связь изменение от периода к периоду наклона прямых, проведенных через экспериментальные точки /см. <u>рис.1</u>/ с изменением значения энергии связи E_{9-0} , вызванным изменениями значения I_3/I_3 приведены в пятом столбце таблицы/ центрального атома. Известно^{/13/}, что

при переходе от II к VI периоду амплитуда изменения I_Э в пределах периода уменьшается.

Однако лучшей, с точки зрения интерпретации данных по a/a_c , характеристикой химической связи \Im -OH является степень ее ионности i. На <u>рис.2</u> показана зависимость a/a_c от i/четвертый столбец <u>таблицы</u>/ для всех периодов. Значения i взяты по Полингу ^{/14}. Из <u>рис.2</u> видно, что имеется плавная зависимость, удовлетворительно описывающая величину остаточной поляризации отрицательных мюонов в гидроокисях по всей таблице элементов.

Значения a/a_c для соединений некоторых переходных элементов IV периода заметно ниже соседних по i. Это обстоятельство может быть понятно, если допустить для соединений этих элементов наличие медленной /сравнимой с временем $\tau_{\mu}(0)$ / релаксации спина мюона, наблюдавшейся нами ранее для ряда окислов переходных элементов и некоторых органических соединений^{15/}. Тогда используемый нами в настоящей статье способ обработки временной зависимости регистрации электронов мо-распада, дающий усредненное по времени измерения значение величины остаточной поляризации, приводит к заниженным значениям a/a_c .

Этот аргумент, так же как и применение теоретических значений i, может быть использован и для объяснения некоторого разброса значений a/a_c относительно плавной зависимости от i. Поскольку такого масштаба изменения в величине a/a_c соответствуют времени релаксации нескольким мкс, а на основании статистики, набранной в настоящих измерениях, точное определение таких времен релаксации невозможно, в дальнейшем будут поставлены специальные эксперименты для определения времени релакса-ции спина мюона в некоторых гидроокисях.

6 ∴

Заметим также, что отмеченные нами в^{/16/} эффекты - возможная небольшая деполяризация в высоковозбужденных состояниях мезоатома для изоляторов, деполяризация при завершении каскада вследствие задержки в мезоатоме заполнения электронами дырки в К-оболочке и др., вряд ли могут быть причиной периодического характера зависимости a/a_c от Z.

В предыдущих рассуждениях не принималось во внимание наличие определенного количества воды в некоторых реактивах, в том числе в кристаллогидратах. Наличие большого количества кристаллизационной воды /например, в случае Sr(OH), 8H "O или ${
m Ba(OH)}_2 \cdot {
m 8H}_2 {
m O}$ / не нарушает линейной зависим $m ilde{o}$ сти $m ilde{a}$ / ${
m a}_{
m c}$ от Z для гидроксидов внутри соответствующих периодов /рис.1/ и зависимости а/а_с от i /<u>рис.2</u>/. Если эти соединения рассматривать как гомогенные смеси Sr(OH)2 или Ba(OH)2 с 8H2O, то следовало бы ожидать значения а/а, близкими к а/а, для воды, равными 0,40+0,02^{/3,4/}. Однако а/ас для этих соединений, по крайней мере, вдвое меньше, чем для воды. Эти результаты для кристаллогидратов не противоречат представлениям /17/ о возможной "диссоциации" молекул воды и потере ими индивидуальности в соединениях, с преимущественно ионным характером связей. То есть водные Н,ОН в кристаллогидратах в отношении их взаимодействия /в данном случае с $-\frac{1}{\mu}N$ / могут вести себя как соответствующие группы, входящие в состав молекул гидроксидов.

По-видимому, аналогичная ситуация имеет место и в других исследованных нами гидроксидах, содержащих некоторое количество воды. Однако более подробный анализ роли гидратированной воды при взаимодействиях мезоатома в кристаллогидратах требует проведения дополнительных измерений, как, например, измерения зависимости a/a_e от количества гидратированной воды.

ЛИТЕРАТУРА

- Евсеев В.С. Материалы IX зимней школы ЛИЯФ. Л., 1974, ч.3, с.367; Evseev V.S. In: Muon Physics. Acad.Press, New York, 1975, v.III, p.235.
- 2. Shmushkevich J.M. Nucl.Phys., 1959, 11, p.419; Джрбашян В.А. ЖЭТФ, 1959, 36, с.277.
- 3. Евсеев В.С. и др. ОИЯИ, Р14-4052, Дубна, 1968; Джураев А.А. и др. ЖЭТФ, 1972, 62, с.1167, 1424, 2210; ЯФ, 1972, 16, с.114.
- 4. Джураев А.А. и др. ОИЯИ, Р14-7213, Дубна, 1973.
- Goldansky V.I. et al. Abstract Cont. Papers, VI Int.Conf. HEPS NS, Santa-Fe, 1975, p.158.
- 6. Варламов В.Г. и др. ОИЯИ, 1-4084, Дубна, 1968.

- 7. Garvin R.L. et al. Phys.Rev., 1957, 105, p.1415.
- 8. Бабаев А.И. и др. ЖЭТФ, 1966, 50, с.877.
- 9. Фомин О.К. Успехи химии, 1967, 36, с.1701.
- Энергия разрыва химических связей. Потенциалы ионизации и сродство к электрону. "Наука", М., 1974.
- 11. Химия. Под ред. Г.Сиборга. "Мир", М., 1971, гл.16 и 20.
- 12. Слейбо У., Персонс Т. Общая химия. "Мир", М., 1979, гл.6 и 18.
- 13. Лурье Ю.Ю. Справочник по аналитической химии. "Химия", М., 1965.
- Pauling L.C. The Nature of the Chemical Bonds and the Structure of Molecules and Crystals. Cornell Univ.Press, Ithaca, N.Y., 2-nd ed., 1960.
- 15. Евсеев В.С. и др. Письма в ЖЭТФ, 1978, 27, с.249; Баландин М.П. и др. ХВЭ, 1980, 14, с.71; ОИЯИ, Р1-80-380, Дубна, 1980.
- 16. Евсеев В.С. и др. Препринт ИАЭ, 3242/2, М., 1980.
- 17. Макатун В.Г., Цеглов Л.Н. Успехи химии, 1972, 61, с.1937.

Рукопись поступила в издательский отдел 29 июля 1981 года.