ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

М.Абузейд, Ким Сын Нам, Г.М.Осетинский, Я.Тыкэ, Б.Фрыцин

tessen un bi mit unness

2685/2-73

C3439

A-17

исследование реакции 15 N (t, α) 14 C

P15 - 7

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИНИ

P15 - 7128

М.Абузейд, Ким Сын Нам, Г.М.Осетинский, Я.Тыкэ, Б.Фрыщин

ИССЛЕДОВАНИЕ РЕАКЦИИ 15 N (t, α) 14 C

Настоящая работа выполнена с целью исследования механизма реакции, определения дифференциальных и полных сечений реакции ${}^{15}N(t, a_0){}^{14}C, {}^{15}N(t, a_1){}^{14}C^*$. В задачу эксперимента также входило исследование функции возбуждения этих реакций с целью обнаружения резонансных уровней ядра ¹⁸0 в доступном для нас интервале энергий возбуждения 16.5 - 17.2 Мэв. До настоящей работы этот интервал энергий возбуждения для указанного ядра мало исследовался. Полученные данные по дифференциальным сечениям представляют дополнительный интерес в связи с проводимым нами в настоящий момент исследованием реакции ¹⁵N(³He, a₁)¹⁴N*. Получающиеся в результате этих реакций конечные ядра ¹⁴С и ¹⁴N* принадлежат одному мультиплету по изотопическому спину, в связи с чем определение отношения дифференциальных сечений этих реакций поможет дать сведения остепени сохранения изотопического спина.

Методика эксперимента

Работа выполнялась на электростатическом генераторе ЭГ-2 ОИЯИ. Схема опыта представлена на рис. 1. Ионы трития, ускоренные на ЭГ и проанализированные по импульсам магнитным анализатором, пройдя коллиматор длиной 100 мм, диаметром 2 мм, попадали на газовую мишень, установленную в центре камеры реакции.

В работе использовались газовые мишени двух типов: "длинная" - для абсолютных измерений дифференциальных сечений, и "точечная" - для измерений угловых распределений. Мишень наполнялась азотом с концентрацией ¹⁵ N - 99,2% до давления 30-35 мм. рт.ст. Давление измерялось микроманометром с погрешностью <u>+</u> 0,5%. Конструкция камеры и мишени описана ранее /1/.

При измерении абсолютных значений дифференциальных сечений продукты реакции детектировались кремниевым поверхностно-барьерным детектором, установленным под соответствующим углом. Измерение угловых распределений осуществлялось двумя кремниевыми поверхностно-барьерными детекторами. Один из них, неподвижный, устанавливался под углом 45° к пучку и являлся монитором. Другой детектор располагался на кронштейне, который мог устанавливаться под различными углами в интервале углов О - 155°. Энергетическое разрешение обоих детекторов составляло 25 - 30 кэв по а -частицам²³⁸ Ри. Импульсы от детекторов усиливались малошумящими усилителями и детектировались 128-канальным амплитудным анализатором. Для уменьшения ошибок просчетов импульсы от основного детектора и детектора монитора с помощью электронной схемы направлялись на один и тот же 128-канальный анализатор импульсов. Блок-схема устройства представлена на рис. 1.

Информация по дифференциальным сечениям и угловым распределениям извлекалась из определения площади энергетических спектров *а* -частиц, измеренных при различных углах и энергиях. Для исключения попадания в детектор тритонов, упруго-рассеянных на ядрах ¹⁵ N и фольге мишени /в случае использования точечной мишени/ между мишенью и детектором помещалась алюминиевая фольга. Толщина подбиралась минимально необходимой для надежного поглощения падающего пучка тритонов.

Результаты измерений

Абсолютные измерения дифференциальных сечений под углами 45°, 90° проводились на "длинной" газовой мишени через интервалы энергий 20 кэв. Для исключения ошибок, связанных с определением геометрического фактора, чистоты пучка, выход a -частиц из реакции нормировался по выходу a -частиц реакции $D(t, a)n^{1/2}$.

В таблице 1 представлены ошибки эксперимента.

Ошибки эксперимента	Реакции ${}^{15}N(t, a_0)^{14}C$	¹⁵ N(t, a ₁) ¹⁴ C*
1. Определение выхода реакции с учетом фона	1,5% при E_t =1,02 Мэв 8% при E_t = 0,86 Мэв	2,5% при $E_t = 1,62 M эв$ 10% при $E_t = 0,86 M эв$
2. Определение числа атомов ¹⁵ N в мишени	0,5%	0,5%
3. Определение числа частиц, падающих на мишень	1%	1%
4. Определение числа атомов D_2 в мишени	1%	1%
5. Сечение реакции $D(t, a)n^{/2/}$	2,5%	2,5%
6. Статистическая ошибка при определении выхода реакции	D(t,a)n 1%	1%
7. Полная квадратичная ошибка определения дифференциальных сечений	3, 5% при <i>E_t</i> =1,62 Мэв 9% при <i>E_t</i> =0,86 Мэв	4% при E _t =1,62Мэв 10% при E _f =0,86Мэв

Таблица

Ошибка в определении энергии тритонов в центре мишени находится в пределах 2,5-1,5% при энергиях O,82-1,62 *Мэв* соответственно. Разброс по энергиям тритонов во входном окошке мишени - не более 20 кэв.

На рис. 2 и 3 представлены дифференциальные сечения реакции для каналов a_0 и a_1 , измеренных под углами 45°, 90° в л.с. Ошибки на кривых - статистические.

На рис. 4 представлены результаты измерений угловых распределений для канала a_0 . Измерение проводилось с шагом 5÷1О градусов в диапазоне углов 1,2° -155° в лабораторной системе координат. Значение минимального эффективного угла, при котором возможны измерения, получено расчетным путем по методу, изложенному в работе /3/. Ошибки каждой точки угловых распределений включают как ошибки в определении выхода реакции, так и ошибки нормировки кривой выхода по известной кривой абсолютных дифференциальных сечений под углом 90°. Их значения при всех энергиях изменялись от 4% до 7% при изменении углов от 0° до 155° соответственно /ошибки на графике не указаны/.

Угловые распределения реакции ${}^{15}N(t,a_1){}^{i4}C^*$ не измерялись из-за больших погрешностей в определении площади пика a_1 , при малых /O-35° / и больших /11O--135° / углах. Полные сечения реакции ${}^{15}N(t,a_0){}^{14}C$ представлены в таблице II.

Обсуждение результатов

Как видно из рисунков, дифференциальные сечения реакции ${}^{15}N(t, a_0){}^{14}C$, ${}^{15}N(t, a_1){}^{14}C^*$, измеренные подуглами 45°, 90° в интервале энергий 0,82 - 1,62 *Мэв*, с ростом энергии растут. То же самое можно сказать о кривой полных сечений реакции ${}^{15}N(t, a_0){}^{14}C$. Полные сечения принимают значения 3,8±0,2 *мбарна* при энергии 1,16 *Мэв*, плавно достигая значений 17,6±0,5 *мбарн* при энергии 1,45 *Мэв*. Резонансной структуры на кривых возбуждения не наблюдается. Угловые распределения *а* -частиц реакции ${}^{15}N(t, a){}^{14}C$ имеют явно выраженный несимметричный относительно 90° ха-

<i>E_t</i> Мэв 1,16 1,19 1,29 1,37 1, σ _t мбарн 3,8 4,65 9,67 13,4 17,6 ±∆σ _t мбарн 0,2 0,16 0.4 0.4 0.5	ŗ	Taб	лица II			
<i>о</i> , мбарн 3,8 4,65 9,67 13,4 17,6 ±∆ <i>о</i> , мбарн 0,2 0,16 0,4 0,5	E, Mab	1,16	1,19	1,29	1,37	1,45
±Δσ _г мбарн 0,2 0,16 0,4 0,5 0,5	σ_t мбарн	3,8	4,65	9.67	13.4	17.6
	$\pm \Delta \sigma_t$ мбарн	0,2	0,16	0.4	0.4	

6

рактер. Они вытянуты под малыми углами во всем интервале энергий и имеют устойчивый, по форме слабо меняющийся с энергией, характер. Последнее указывает на возможную роль прямого механизма реакции, анализ которого может быть проведен в борновском приближении с искаженными волнами /БПИВ/. Вместе с тем расчет плотности уровней составного ядра¹⁸ О, проведениый по формулам работы /4/, показывает, что она достаточно велика /расстояние между уровнями 8-5 кэв при $E_t =$ =1,0 и 1,6 Мэв соответственно/, что указывает на возможность статистического подхода к расчету вклада механизма составного ядра. Этот вклад в сечение реакции рассчитывался по теории Хаузера-Фешбаха.

Предполагая, что сечение реакции является некогерентной суммой вкладов от каждого из указанных механизмов реакции, определение спектроскопического фактора можно провести по формуле вида:

$$<\frac{d\sigma(\theta)}{d\Omega}>=Nc^{2}S_{ej}\frac{\beta\Pi \mathcal{U}B}{\sigma_{ej}}+H\frac{\lambda^{2}}{8\pi(2i+1)(2J+1)\Gamma_{0}\rho_{0}}<\sigma^{\times},$$

где скобки < > обозначают усреднение по области энергин ΔE , большей ширины уровней составного ядра, N - константа нормировки, принятая нами, /21/. Эта величина используется для реакции типа (${}^{3}He,a$)/ 5 / Для реакции типа (t,a) значение N может несколько отличаться, что, однако, не влияет на окончательные выводы нашей работы.

- *J, i* спины начального ядра и падающей частицы;
 - С изоспиновый коэффициент Клебша-Гордона;
- S_{еј} спектроскопический фактор;

БПИВ

- σ_{ℓ,j} приведенное дифференциальное сечение реакции прямого подхвата;
 - Н коэффициент ослабления;
- l₀, ρ₀ средняя ширина и плотность уровней со спином O;

σ^{х-φ} - приведенное дифференциальное сечение, рассчитываемое по теории Хаузера-Фешбаха.

1/2

В рамках БПИВ среди различных комбинаций оптических потенциалов в выходном и входном каналах выбиралась такая комбинация, которая дает угловые распределения по форме, самые близкие к экспериментальным. Оптические потенциалы задавались в виде

$$U(r) = U_{c}(r) - Vf(x) - i Wf(x') + V_{s0} \chi^{2}_{\pi}(\vec{e} \sigma) \frac{1}{r} \frac{d}{dr} f(x),$$

где

Ł

;

$$f(x) = (1 + e^{x})^{-1} \qquad \chi = \frac{r - r_0 A^{1/3}}{\frac{\sigma}{r} A^{1/3}}$$
$$f(x') = (1 + e^{x'})^{-1} \qquad \chi' = \frac{r - r_0 A^{1/3}}{\frac{\sigma}{r}}$$

- - \vec{l} орбитальный момент в единицах \hbar ;
 - $\vec{\sigma}$ величина, связанная со спином тритона соотношением $\vec{\sigma} = 2\vec{s}$ где \vec{s} - спин протона в единицах \hbar ;
- $U_c(r)$ кулоновский потенциал однородно-заряженной сферы радиуса $r_c A^{1/3}$.

Расчеты проводились на электронно-вычислительной машине БЭСМ-4 по программе /7/. В расчетах использовалось приближение нулевого радиуса взаимодействия с локальным потенциалом без применения радиального обрезания. Волновая функция связанного состояния протона вычислялась в потенциале Вудса-Саксона с параметрами приведенного радиуса $r_0 = 1,25 f_m$, диффузностью $a = 0,65 f_m$ и спин-орбитальным членом в форме Томаса /8/ с $\pi = 25$. Глубина потенциальной ямы подгонялась таким образом, чтобы обеспечить правильное значение энергии связи протона в ядре $^{15} N$. В расчете БПИВ предполагался подхват протона в состоянии $1p_{1/2}$. Представленные в таблице *III* параметры для входного канала /тритонный потенциал/ взяты из работы $^{/9/}$, для выходного / a -потенциал/ - наиболее глубокий

8

ða D	£	0,582	0,555
<u>B</u>	£	1,81	1,375
U AeM		1,6	θ,3
ر <i>م</i> ا	E	1,4	1,2
° 1		0,829	0,000 0
70'T		0,99	0/01
V Mab		150 185	001
Частица		а г	

Таблица III

потенциал, опубликованный в работе /10/, измененный нами в соответствии с соотношением $Vr_0^n = Const$, указанном, например, в работе /11/.

Расчет дифференциального сечения по методу Хаузера-Фешбаха проводился на БЭСМ-4. Используемые в расчете $\sigma^{x-\phi}$ значения коэффициентов трансмиссии $T_{\ell} = l - |\eta_{\ell}|^2$ /где η_{ℓ} - коэффициент отражения ℓ парциальной волны/ были получены из расчетов по программе БПИВ с использованием тех же оптических параметров, которые используются при описании реакции подхвата. Значение параметра отсечки по спину σ , используемое в расчетах $< \sigma^{x-\phi} >$, получено расчетным путем согласно работе /4/, и равно ≈ 2 .

На рисунке 5 представлены угловые распределения реакции ${}^{15}N(t, a_0){}^{14}C$ при двух значениях энергии. Сплошные кривые представляют расчетные угловые распределения, полученные поформуле / 1/. На этом же рисунке представлены угловые распределения, рассчитанные по методу Хаузера-Фешбаха. Полученное, согласно уравнению /1/, значение экспериментального спектроскопического фактора, а также его теоретическое значение, взятое из работы ^{/12/}, представлены в таблице *IV*. В этой же таблице в целях сравнения приведены данные экспериментальных спектроскопических факторов, относящихся к зеркальной реакции ${}^{15}N({}^{3}He, a_1){}^{14}N*{}^{/6, 15, 16/}$. Как видно из таблицы, экспериментальные спектроскопические факторы, полученные в нашей работе, значительно больше теоретических. Они также больше экспериментальных спектроскопических факторов для зеркальной реакции $^{15}N(^{3}He, a_{1})^{4}N*$. В целях выяснения причин столь сильного несогласия, дополнительно был проведен анализ угловых распределений реакции ${}^{14} N(t, a_0) {}^{13} C$, тых из 7/13/, с привлечением параметров оптического потенциала, используемых при исследовании реакции $^{15}N(t,a_{0})^{14}C.$

Результат подгонки показан на рис. 5, где сплошной линией нанесены угловые распределения, полученные согласно формуле /1/. Полученные нами значения экспериментальных спектроскопических факторов S представлены в таблице *IV*. В этой же таблице приведены теорети-

10

11
_
ЦE
NL
ğ
Ĕ

Тип реакции	Е _г Мэв	S эксп. Данные настояш. работы и рабиты/13/	S эксп. S др.раб. У теор.
¹⁵ N(t, a ₀) ¹⁴ C	1,05 1,51	3 , 82 6,39	1,50 ^{/6/} , 2,00 ^{/15/} , 1,253 ^{/12/} 1,50 ^{/16/} ,
¹⁴ N(t, a ₀) ¹³ C	1,40 1,88	1,20 1,37	1,38 ^{/12/} 1,60 ^{/17/} 1,86 ^{/19/} 1,98 ^{/20/} 1,52 ^{/18/} 1,64 ^{/21/}

ческие значения S, а также экспериментальные спектроскопические факторы, полученные для реакции ${}^{14}N({}^{3}He, a){}^{13}N, {}^{14}N(p, d){}^{13}N$

Как видно из таблицы, полученные экспериментальные значения спектроскопических факторов для реакции ${}^{14}N(t,a_0){}^{13}C$ разумно согласуются между собой.

Поскольку обе реакции измерялись при мало отличающихся друг от друга энергиях, имеют близкие значения и одинаковые значения ℓ , j для подхваченной час-Q тицы, и так как при описании их БПИВ, используются одни и те же параметры оптических потенциалов, несогласне в канале ${}^{15}N(t, a_o){}^{14}C$, по-видимому, вызвано не неудачным выбором комбинаций оптических параметров, а существенным вкладом других механизмов реакции. Поскольку ядро¹⁵ N не является а -кластерным ядром /обменные механизмы играют небольшую роль/ большие значения сечения реакции /и, следовательно, завышенные значения спектроскопического фактора/ следует приписывать большой роли в реакции ${}^{15}N(t, a_0)^{14}C$ опрелеленных уровней составного ядра 180. Такая точка зрения возникла на основании полученных нами предварительных результатов по исследованию зеркальной реакции $^{15}N(^{3}He, a_{1})^{14}N^{*}$, где большое сечение связано с широким "резонансом" /ширина ≈ 0,9 Мэв/, наблюдаемым в диапазоне энергий Ез_н, от 2 до 4 Мэв. /Данные по этой реакции будут опубликованы/.

Авторы благодарны И.Тыкэ за помощь в обработке экспериментальных результатов и М.В.Савенковой - за приготовление газовых мишеней. Авторы благодарят С.Хойнацкого за интерес к работе и помощь.

Литература

1. Г.М.Осетинский, Цзей Пай Гун, Н.А.Чепурченко. Препринт ОИЯИ, 1172, Дубна, 1961.

- 2. А.П.Кобэев, В.И.Салацкий, С.А.Тележников. Ядерная физика, т. 3 /1966/ стр. 1060.
- 3. Я.Тыкэ, И.Тыкэ, Б.Сикора. ОИЯИ, Б2 15-61, Дубна, 1971.

12

- 4. P.E.Hodson. Nuclear Reactions and Nuclear Structure, Clarendon Press, Oxford, 1971.
- 5. P.H.Bassel. Proc. Symp. on Direct Reactions with ³He (September, 1967, Tokyo IPCR Cyclotron Progress Report Supplement).
- 6. W.Bonne, H.Homeyer, H.Lettau, H.Morgenstern, J.Scheer, F.Sichelschmidt. Nucl.Phys., A154, 105 (1970).
- 7. К.А.Гриднев, Л.В.Краснов, И.Н.Кухтана, В.К.Лукъянов, В.И.Никитина, В.И.Фурман. ОИЯИ, 2458, Дубна, 1965.
- 8. B.Mertens, G.Mayer-Boricke, H.Kattenborn. Nucl. Phys., A158, 97 (1970).
- 9. G.H.Herling, L.Cohen, J.D.Silverstein. Phys. Rev., 178, 151 (1969).
- 10.B.T.Lucas, D.R.Ober, O.E.Johnson. Phys.Rev., 167, 990 (1968).
- 11. L. Mc. Fadden and G.R. Satchler. Nucl. Phys., 84, 177 (1966).
- 12.S.Cohen, D.Kurath. Nucl. Phys., A 101, 1 (1967).
- 13.R.B.Schwardz, H.D. Halmgren, L.M.Cameron, A.R.Knudson. Phys.Rev., 134, B577 (1964).
- 14. J. Nurzynski. Nucl. Phys., A141, 257 (1970).
- 15.G.C.Ball, J.Cerny. Phys.Lett., 21, 57 (1966).
- 16.L.Snelgrove, E.Kashy. Phys.Rev., 187, 1259 (1969).
- 17.R.L.Kozub, L.A.Kull, E.Kashy. Nucl. Phys., A99, 540 (1967).
- 18.D.Bachelier, M.Bernas, I.Brissand, P.Radvanyi, M.Ray. Nucl. Phys., 88, 307 (1966).
- 19. W. W. True. Phys. Rev., 130, 1530 (1963).
- 20.M.A.Nagarayan. Nucl. Phys., 42, 454 (1963).
- 21.G.Ripka, B.Girand.

Частное сообщение, упомянуто в работе /17/

Рукопись поступила в издательский отдел З мая 1973 года.

1

Рис. 1a. Схема опыта. 1 - предусилнтель; 2 - усилитель; 3 - дискриминатор; 4 - пропускатель; 5 - амплитудный анализатор АИ-128; 6 - монитор; 7 - детектор; 8 - интегратор тока; 9 - экран; 10 - точечная мищень.

•

Рис. 16. Типичный спектр a -частиц из реакции ${}^{15}N(t,a)$ ${}^{14}C$ под углом 45° на "длинной" мишени $E_t = = 1,35$ Мэв.

Рис. 2. Дифференциальные сечения реакции $N(t, a_0)^{14}C$ для углов 45° и 90° в лабораторной системе координат в интервале энергий $E_t = 0,82 - 1,62 M 3 e$.

Рис. 3. Дифференциальные сечения ${}^{15}N(t,a_1){}^{1t}C^*$ для углов 45° и 90° в л.с.к. в интервале энергий $E_t = 0,82 - 1,62 M 3 e$.

Рис. 4. Угловые распределения a -частиц из реакции ${}^{15}N(t,a_0){}^{14}C$. По оси абсцисс - угол в системе центра масс. По оси ординат - дифференциальные сечения в мб/стерад.

18

Рис. 5. Сравнение экспериментальных угловых распределений реакций ${}^{14}N(t,a_0){}^{13}C{}^{/13/}{}^{15}N(t,a_0){}^{14}C$ с угловыми распределениями, рассчитанными согласно формуле /1/. /Сумма вкладов механизма прямого взаимодействия и механизма составного ядра, учитываемого методом Хаузера-Фешбаха/. Обозначения: ^О - экспериментальные данные, Δ - кривая, полученная по формуле 1, \times - вклад в сечение механизма составного ядра, учитываемый методом Хаузера-Фешбаха. По оси абсцисс угол в системе центра масс. На оси ординат - дифференциальное сечение в мб/стерад в этой же системе.