СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P15 - 7121

М.Абузейд, Г.М.Осетинский, Я.Тыкэ, Б.Фрыщин

3205/2-73

......

ИССЛЕДОВАНИЕ РЕАКЦИИ ² Н (³ Не, р)⁴ Не

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИНИ

P15 - 7121

М.Абузейд, Г.М.Осетинский, Я.Тыкэ, Б.Фрыцин

ИССЛЕДОВАНИЕ РЕАКЦИИ ² Н (³ Не, р)⁴ Не

Введение

В связи с некоторым прогрессом в теоретическом рассмотрении процессов, протекающих при взаимодействии малодуклонных систем, весьма важно получение более полных и точных данных по угловым распределениям, дифференциальным и полным сечениям этих процессов. В этом смысле интересна реакция ²H(³He. p)⁴ He. Ее изучение представляет также дополнительный интерес. связанный с удобством использования ее для контрольных измерений на пучке ускоренных ионов ³ Не. Большсе сечение этой реакции, слабая зависимость выхода а частиц и протонов от углов и энергий, их монознергетичность, доступность приобретения дейтерия в качестве газа мишени - все это делает ее весьма полезной для эффективной проверки методики эксперимента и калибровки детекторной аппаратуры.

Известно, что исследованию реакции ²Н + ³Не /или *Не*+ ²*Н* / в энергетическом интервале до 5 Мэв посвяшено несколько экспериментальных работ /1-8/. Основная их часть выполнена на пучке ускоренных ионов дейтерия в различных и весьма узких интервалах энергий и посвящена в основном определению сечения и некоторых квантовых характеристик уровия ⁵ Li. Подробному нсследованию этой реакции в широком интервале энергий /0.24 - 3,56 Мэв/ посвящена всего одна работа Джар-нелла /8/ В работе определены квантовые характеристи-⁵Li, дана энергия резонанса, полное сечеки уровня ние в резонансе и измерены /с погрешностью 5%/ угловые распределення при зосьми значениях энергии в интервале углов 15-135° в лабораторной системе координат. Пересчет этих угловых распределений для ин-тересующей нас реакции ${}^{2}H({}^{3}He_{,p}){}^{4}He$ дает информацию для интервала углов 40-165°в системе центра масс, что для ряда применений явно недостаточно.

Учитывая это, мы провели исследование реакции ${}^{2}H({}^{3}He, p) {}^{4}He$ в интервале энергий 1,4 - 4,4 Мэв с целью получения более подробных данных по днфференциальным сечениям и угловым распределениям винтервале углов О-165° в лабораторной системе координат. Получение их позволило провести расчет коэффициентов разложения угловых распределения по лоликомам Лежандра в рассчитать полные сечения реакции.

2. Методика эксперимента

Работа выполнена на электростатическом генераторе ЭГ-5 Объединенного института ядерных исследований. Схема опыта представлена на рис. 1. Ионы Не, ускоренные на ЭГ и проанализированные по импульсам магиитным анализатором ЭГ, отклоняются раздаточным магнитом СП-1О на угол 45° и, пройдя участок нонопровода н коллиматор / ℓ_k = 100 мм, днаметр выходной днафраг мы 1.8 мм/, поладают на газовую мишень, установлениую центре камеры мишени. В работе использовались B газовые мишени двух типов: "длинная" - для абсолютных измерений дифференциальных сечений и "точечная" для измерений угловых распределений. Длинная мишень состоит из корпуса длиной 35 мм со съемными передней и тыльными стенками. В передней стенке имеется отверстие днаметром 4 мм, в тыльной - 6 мм. Обе стенки заклеиваются слюдяной фольгой толшиной О.12 -0,15 мг/см². Такая конструкция обеспечивает выпуск пучка частиц из мишени, что значительно умельшает нагревание газа, находящегося в ней. Для вывода продуктов реакции из мишени в корпусе мишени под углами 45, 90, 135° имеются щели шириной 2+О,1мм, высотой 6 мм. Щель закленвается органической пленкой, покрытой непрозрачным слоем алюминия. Толщина пленки 1 мг/см². Мишень изолировалась от корпуса камеры н присоединялась к цилиндру Фарадея. Перед входным окошком мишени установлена изолированиая днафрагма, которая /при подаче на нее потенциала - 600в/ обеспечивает задержку вторичных электронов, выбиваемых пучком.

Точечная мишень представляет собой цилиндр диаметром 5 мм. На расстоянин 5 мм от запаянного конца на поверхиости цилиндра с охватом ЗОО° имеется шель шириной 5 мм, закленваемая Ni фольгой толщиной O,7 - 1,0 мг/см². Число атомов в мишени определялось по измерению давления дейтерия в ней. При таком определении учитывалась чистота дейтерия, направляемого в мишени /в нашем случае 98,8 ± 0,5%/, температура его в, мишени и ее изменение при прохождении лучка ионов Не. Учитывалось также изменение изотопного состава

газа мишени при прохождении этого пучка.

Давление газа /в обычном режиме ~ 30 мм рл.ст/ нэмерялось дифференциальным микроманометром с погрешностью 0,2% /микроманометр калибровался по образцовому водяному манометру/. Температура газа н ее изменение определялись с помощью дифференциальной термопары малой теплоемкостн, введенной в мяшень. Измерение температуры газа мышени вдоль пучка не производилось. Установлена лишь допустимая верхняя гранца внтенсивности пучка, не вызывающая, в пределах ошябок измерений, изменения выхода реакции по сравнению с выходом при "нулевом" токе. Последний определялся экстраполяцией кривой зависимости выхода реакции от тока пучка, падающего на мишень к нулевому значению.

Указанные условня обеспечивались при бомбардировке мишени пучком с интенсивностью от 0,05 - 0,1мка.

Вляяние изотопного обмена в мишени /дейтерия на волород/, приводящего к уменьшению выхода реакции, было четко установлено путем сравнения выходов при одинаковых энергиях для мишени с дейтерием, проработавшей длительное время, в свеженаполненной. Измерекия, проводимые под тремя углами в течение 16часов непрерывного облучения, показали уменьшение выхода продуктов реакции на 0,4% на каждые 100 мккулон тока ³Не, падающего на мишени. Хотя указанное уменьшение концентрации дейтерия в мишени можно учесть, в целях уменьшения ошибок, связанных с ввеленнем такого роди поправок, газ мишени заменялся после прохождения 100 - 150 мккул ³Не.

Число атомов ³ *Re*, падающих на мишень, определялось по измерению тока пучка, падающего на цилиндр Фарадея. Измерение проводилось интегратором тока, линейность когорого в диапазоне токов O,I - O,5 мка была не хуже 1%. Для токов O,O5-O,OO2 мка это значение находилось в интервале 2 - 3%.

При использованчи полученных данных вводилась попрачка на образование двухзарядных ионов ³Не в пучке из-та перезарядки на остаточном газе в нонопроводе на участке от отклоняющего магнита СП-10 до мишени. Вклад компонент (НЯ)* и (ННЯ) + в пучке из-за малости этих величии не учитывался. Известно/9/, что компонента пучк. (ННН)⁺ в нормальных условнях работы высокочастотного ноиного источника в несколько раз меньше компоненты (НН) + . Величина же компоненты (НН) + определенная нами экспериментально, не превышала ~ 0.3%. Столь высокая чистота пучка объясияется, по-видимому, тем, что пучок с массой три, в составе которого находятся эти компоненты, при входе в камеру магнита СП-10 "очищается" за счет развала и последующей ионизации комплексов (ННН)⁺ и (НН)⁺ на остаточном газе в нокопроводе. Учет вклада дважды нонизированных нонов Не в измерение тока, падающего на цилиндр Фарадея. осуществлялся согласно полученной нами формуле:

$$Q \simeq 1 + \sigma_{12} N x - -\frac{1}{2} \sigma_{12} N^2 x^2 (\sigma_{12} - \sigma_{21}),$$

гле Q - эффективный заряд нонов в пучке³ Не в единицах заряда электрона; σ_{12} - сечение образования двухзарядных ионов ³ Не; σ_{21} - сечение процесса перехода ³ Не⁺⁺ в ³ Не⁺; N - число атомов остаточного газа в l см³ нонопровода; x - длина участка нонопровода, на котором учитывается перезарядка.

Величина Q-эффективное рассчитывалась для каждой эмергии и вводилась как поправка в формулы расчета дифференцияльного сечения. Величина Q не "ревышала 1,01 - 1,015 /например, при E = 4,4 Мэв, σ_{12} = = 2,4.10⁻¹⁷ см²/атом, σ_{22} = 0,036.10⁻¹⁷ см² /атом и при вакууме в ионопроводе ~ 3.10⁻⁵ мм рт. ст. Q = = 1,009/. При измерении кривых возбуждения протоны из реакции детектировались тремя кремниевыми поверхностнобарьерными детекторами с дрейфом лития, установленными под углами 45, 90, 135°. Измерение угловых распределений осуществлялось пятью летекторами этого же типа. Один из нкх /мокитор/ устанавливался под углом 45° /рис. i/. Четыре детектора устанавливались с угловым интервалом 45° на кронштейие, котсрый мог вращаться относительно оси камеры без нарушения вакуума в ней. Вращение фиксировалось через 5° и обсспечивало Измерение выхода в интервале углов О - 165° в лабораторной системе координат.

Перед детекторами на расстоянии 49,5 мм устанавливались диафрагмы с отверстием диаметром 4+0,01мм. Отверстия перекрывались фольгой, эбеспечивающей торможение упруго рассеянных ЗНе +Импульсы от летекторов через предусилители и пороговые усилители направлянись на амелитудный анализатор типа АИ-4096. где через специальную кодирующую систему поступали в разные группы магнитно-запоминающего устройства /МЗУ/анализатора /МЗУ анализатора разбивалось на 8 грулп по 512 каналов в каждой группе/. Аналогично на одну из групп МЗУ подавались имп. льсы от интегратора тока. Такой метод одновременной записи импульсов от детектора и интегратора тока исключает необходимость введения поправок на мертвое время анализатора при проведении как относительных, так набсолютных кзмерений.

Блок-схема измерений представлена на рис. 1. Данные по дифференциальным сечениям и угловым распределениям были получены на основании расчета площади пика протонов ка энергетическом спектре рассматриваемой реакции. Расчет дифференциального сечения проводился по формуле:

$$c = \frac{B \xi k Q}{\pi \Omega P G 6,25 \cdot 10^{-27}} LO^{-27} cm^2,$$

где В - число зарегистрированных частиц в выделенном спектре; Q - эффективный заряд пучка нонов ³Но⁴в еди-

ницах заряда электрона; k - постоянная интегратора, определяющая число отсчетов на мякрокудон заряда, измеренного им; n - отсчеты интегратора тока; \mathcal{L}_t число Лошмидта при температуре t; p - давление в мм. рт. ст.; G - геометрический фактор.

/Для нашего эксперимента геометрический фактор составлял 1,259.10⁻³ /. ξ - коэффициент, учитывающий чистоту пучка (ξ_1) и чистоту дейтерия (ξ_2) в газовой мишени. $\xi = \xi_1 \xi_2$ $\xi_1 = 1,003$, $\xi_2 = 1,018$, $\xi = 1,121$.

При измерении угловых распределений выход протонов под углом θ_i в относительных единицах нормировался по данным отсчета детектора монитора. Абсолютные значения диферекциальных сечений получались в результате нормировки данных относительных измерений по абсолютным измерениям под углом 90° в лабораторной системе координат.

Результаты измерений

На рис. 2а /1, 11, 111/ представлены данные по абсолютным значениям дифференциальных сечений под углами 45, 90 и 135° в лабораториюй системе координат в интервале 1,37-4,33 Мэв. Представленные на кривой ошибки - статистические.

Средняя квадратичная ошибка измерений дифференциальных сечений составляет <u>+</u>3%. Она получена на основании следующих ошибок эксперимента/см. таблицу I и рис. 26/:

1/ ощибки выделения пика протонов на энергетическом спектре - 1%;

2/ ощибки определения давления газа в мищени - 0,4%;

,

3/ ощнбки определения чистоты дейтерия в мишена -O,5%;

4/ ощибки определения постоянной интегратора тока - 0,8%;

5/ ощнбки определения геометрического фактора -2,5%;

6/ ошибки, вносимой в определение числа частии, падающих на мишень, из-за ошибки в определении чистоты пучка - 0,15%.

В таблице I представлены данные угловых распределений, измеренных в интервале углов 2,3 - 165° в лабораторной системе координат. Они получены на основаини представления экспериментальных данных в виде разложения по полиномам Лежандра:

$$f(\theta) = \frac{d\sigma}{d\Omega} = \frac{I}{k^2} - \sum B_L P_L(\cos\theta),$$

где Р_L - полиномы Лежандра; k - волновое число; В_L - коэффициенты разложения.

Выбор количества членов разложения определялся наилучшей подгонкой "теоретической" кривой к экспериментальным точкам, критерием которого являлся ми-

нимум $\frac{\chi^2}{n-m}$, где n число параметров, m число

точек. Расчеты проводились на электронно-вычислительной машине БЭСМ-4. Значение минимального угла измерения угловых распределений, соответствующего установке детектора под углом О°, получено расчетным путем с использованием методики, опнсанной в /10/.

Согласно измерениям, для углов 2,2-40° в системе центра масс, где далные отсутствовали, дифференциальные сечения сохраняют общую тенденцию возрастания при приближении к иулю градусов. При остальных углах, где экспериментальные данные известны /40-135°//8/, угловые распределения в пределах ошибок совпадают. Полные сечения реакций монотонио убывают, принимая значения от /157±19/ до /90±1/ мб при энергиях 2,141 -3,976 Мэв соответственно.

Средняя кгадратичная ошябка измерення угловых распределений составляет 4%. Она определяется:

1. Ошнбкой относительног хода кривой угловых распределений, вычисляемой при подгонке экспериментальных данных угловых распределений функцией $l(\theta)$. При вычислении матрицы ошнбок в программу расчета вводились. а/ ошибка измерения выхода реакции; в/ошнбка измерения выхода реакции при измерении монитором.

 Ошнбкой абсолютных значений кривой возбуждения под углом 90° в лабораторной системе координат.

Ошнбка в измерении энергии взаимодействия ускоренных нонов ³Не в центре мншени слагается из ощибки в определении энергий частиц, падающих на мишень /±0,5%/, в ошибки в определении толщниы входного окошка газовой мишени /±20 кув/, ошибки в определения потери энергии в газе мишени /~2 кув при измерениях на "точечной" мишени и 8 кув при измерениях на "длинной" мишени/. В интервале энергий 1,368 - 4,414 Мув ее величина монотонно изменяется от 1,5 до 0,6% соответствению.

В таблице 11 приьедены козффициенты разложения В. В. В. . Из анализа их энергетической зависимости можно заключить, что взанмодействие ² H + ³ He нельзя описать с помощью только одного механизма составного ядра, поскольку для возможности описания через этот механизм необходимо превноложить участие мниимум трех уровней /двух уровней одинаковой и одного противоположной четности/. Однако трулио себе прелставить наличие такого набора уровней иля япра ⁵Li /кстати не наблюдаемых экспериментально/, который мог бы дать столь монотонное поведение коэффициентов В₁ с энергней, как это вндно из таблицы. Очевидно, что в указанном процессе имеется существенный вклал механнэма прямого взанмодействия. Количественное опнсание вклада каждого из этих механизмов затруднительно нэ-за отсутствия надежного аппарата, учитывающего прямой процесс для малонуклонных систем.

Авторы благодарны М.В.Савенковой за помощь в обработке экспериментальных результатов.

Литература

- 1, T.W.Bonner, Y.P.Conner, A.B.Lilie, Phys. Rev., 88, 473 (1952).
- 2. A.B.Lilie, T.W.Bonner, Y.P.Conner. Phys.Rev., 86, 630 (1952).
- 3. G.Freiz, H.Holmgren. Phys.Rev., 93, 825 (1954).
- 4. W.E.Kunz, Phys.Rev., 97, 456 (1955).
- 5. А.П.Ключарев. ДАН СССР, 109, 737 /1956/.
- 6. D.L.Boeth, R.S.Hill. Proc. Phys.Soc., A70, 863 (1957)
- 7. Ван Нэм Мин, Б.Г.Новаиский, Г.М.Осепинский, И.А.Чепурченко, Цзей Нам Гун. ЯФ, п. 111, вып.б /1966/.

- 8. Y.L. Yarnell, R.H.Lovberg, W.R.Stratton. Phys. Rev., 90, 292 (1953).
- 9. А.М.Говоров, Ли Га Ен, Г.М.Осепинский, В.И.Салацкий, И.В.Сизов. ЖЭТФ, 41, 703 /1961/. 10. Б.Сикора, И.Тыкз, Я.Тыкз. Депонированное издание ОИЯИ, Б12-15-61 /1971/.

Рукопись поступила в издательский отдел 27 апреля 1973 года.

Рис. 2а. Дифференциальные сечения реакции² H(³He,p)⁴He в интервале энергий 1,4 - 4,4 Мэв под углами 45⁵/I/; 90[°]/11/; 135[°]/111/. По оси абсинсс - энергия ³He в Мэв. По оси ординат - дифференциальное сечение в мб/стерад.

Рис. 26. Полные сечения реакции в этом же интервале энергий. По осн абсцисс энергия ⁴ Не в Мэв. По осн ординат - полное сечение в миллибарнах.

Рис. 3. а/ Угловые распределения протонов реакции $^2\,{\rm H}({}^3{\rm He},\rho){}^3{\rm He}.$

Рис. 3. 5/ Энергетическая зависимость козффициентов разложения функции ⁽(в) по полиномам Лежандра.

E ₃ (Mas) He θ _{RC} ,	2,140	2,394	2,660	3,016	3,186	3,348
2	14,4	13,56	12,29		10,56	10,76
5	15,1	13,42	12,28		10,95	10,35
10				10,98		IO,45
15	14,92	13,32	12,31		10,85	
20				10,83		
25	14,6	13,11	11,99		10,54	
30				10,73		9,69
35	14,27	12,82	11,71		10,15	9,56
40				10,18		9,41
45	I4,I	12,82	11,11		9,45	9,00
50	I4.I	12,25	10,92	9,71	9,15	8,70
55						8,40
60	13,9	II . 79	10,61		8,65	
65				9,32		8,13
70	13,0	11,52			8,46	
75						7,83
80	12,45	11,12	9,99		8,15	
85				8,52		
90	12,3	10,9	9,60	8,40	7,70	7,30
95	11,9	I0.64	9,46		7,88	7,58
100						7,46
105	12,51	10,43	10,49		7,91	
115	11,9	10,3	8,9I		7,41	
120	11,55			7,71		
125	11,15	9,87			7,55	7,19
130	11,36		8,75	7,59	7,30	7 , I
135	10,76	9,9	8,75		7,54	
140		9,73	8,51	7,45	7,16	7,57
I45						
150	10,69	9,38			7,31	7,09
155				7,12		7,22
160	10,63	9,64	8,44		7,63	
165	10,86	9,41			7,20	7,14
	157 <u>+</u> 19	139 <u>1</u> 4	124±5	-110±25	104 <u>+</u> 5	I00 <u>+</u> 4
10.7H. MOI						

Таблина 1 Дифференциальные и поляме сеченая реакция ²Я(³Не_{гр})⁴Не

.

B , (Mass) ⁰ m.	3,454	3,664	3,770	3,870	3,976
2	10,26	10,21	9,97	10,14	10,04
5	10,39	10,06		10,27	10,17
10	-	-	9,92		
15	10,29	9,97	-	10,04	10,07
20	•	•	9,92		
25	9,85	9,65	-	9,45	9,22
30	-	-	9,30		
35	9,34	8,68	-	9,06	8,83
40			8,87	-	
45	6,78	8.33	8,72	8,24	8,52
50	8,48	8.40	8,06	8,07	6,22
55	•		7.64	-	-
60	8,23	7.79	•	7.47	7,6
65		•	7.50		•
70	7.82	7.29	•		6.76
75			7.32		• • •
80	7.52	6.90		6,80	6,59
85	•			•	•
90	7.40	6.70	6.80	6,70	6,70
95	7,29	6.80	• • • •	6.79	6,59
100	•	-	6.59	6,40	=
105		6.86	•	6,66	6,56
115	7.03	6.65		6.37	ũ.27
120	7,01	6,72	6,62	6,52	6,26
125	6,92	6,47		6,27	6,33
130	6,92	6,47	6,69	6,50	
135	6,92	6,40		6,36	6,48
140	6,93	6,57	6,77	6,44	6,49
I45		8,70	•		
150	6,99	6,56		6,43	6,54
155					
160	7,02	6,67		6,82	7,00
165	7,10		6,92	6,%	7,20
"	97 <u>+</u> 1,6	92 <u>‡</u> I,I	93 <u>+</u> 3	90 <u>+</u> 1,3	90 <u>1</u> 1

Таблица I /продолжение/ Диференцальные и полные сечения реакции ²М⁻³Ко,р⁴Но

. .

l

e ^s no	B 0	± Δ.Β ₀	- B ₁	18V7	B,	± ^ B2		: 18,
2 I 4I	0,0620	0,0074	0,0055	0,00082	0,0017	28000,0	€1000+0	8000*0
2394	0,0610	0,002	0,0058	0,0003	0,0029	0,0107	0,0003	6000*0
2660	0,0605	0,0025	0,006I	0,0006	0,0033	6000.0	61000°0	6000*0
3016	0,0609	0,003	0,0068	0,0007	0,0047	0,00086	1100 ⁴ 0	100,0
3186	0,0609	0,003	0,0076	0,0006	0,0068	6000*0	0,00034	800040
3269	0,0618	100*0	0,0071	0,0007	0,0051	8000,0	0,00016	6000*0
3348	0,0614	0,003	0,0082	0,0006	0,0076	0,0009	0,00049	8000°n
3454	0,0616	100'0	5800 ⁺ 0	0,0006	2800+0	0,0007	68000,0	8000*0
3558	0,0595	10010	040080	0,0005	0,0065	0,0007	0,0006I	8000,0
3664	0,0618	100*0	1800 [*] 0	0,0006	\$010,0	0,0007	0100,0	8000,0
3768	0,0642	0,002	0,0093	0,0007	II0,0	100,0	0,0021	100,0
3871	0,064I	6000*0	0600*0	0,0006	6110"0	0,0007	0,0012	8000,0
3976	0,070	0.0007	010,0	5000°0	0,140	0,0007	0,0035	6000'0

Таблица II Козффициситы разложения по полиномам Лежандра усповых распределений протонов из реакции "И' Истр/Мо

61

r