C 3436 **几-YOI** СООБЩЕНИЯ объединенного ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 325/2-73 CONTRACTOR OF THE OWNER

1972

Phile Phile

P15 - 6771

К.Джанобилов, В.В.Комаров, Морси С.Эль Тахави, Х.Р.Саад, И.В.Сизов

исследования реакции ¹¹ в(р. 3*а*)

P15 - 6771

К.Джанобилов, В.В.Комаров, Морси С.Эль Тахави, Х.Р.Саад, И.В.Сизов

ИССЛЕДОВАНИЯ РЕАКЦИИ

¹¹B(p, 3*a*)

Объедниемый институт прерым неследований БИЕЛИОТЕКА

уделяется изучению последние годы особое внимание B ядерных реакций с вылетом нескольких частиц. По сравнению с реакциями с образованием двух частиц, теоретическое рассмотрение реакций с вылетом трех и более частиц значительно сложнее. Кроме увеличения числа независимых кинематических переменных /например, до пяти в случае вылета трех частиц/ сложности в изучении квантово-механических систем из нескольких частиц возникают при попытке учета взаимодействия всех этих частиц. Тем не менее, информация, получаемая из исследований таких реакций, оказывается интересной и важной для понимания многих аспектов ядерной физики, например, таких, как вопрос о роли трехчастичных сил в многочастичном взаимодействии, о параметре рассеяния двух частиц, о характере потенциалов парного взаимодействия и т.п.

Интенсивно изучаются реакции с вылетом трех бесспиновых альфа-частиц, такие как ${}^{11}B(p,3a);$ ${}^{10}B(d,3a);$ ${}^{9}Be({}^{3}He,3a);$ ${}^{12}C(y,3a)/{}^{1-9}/.$ При бомбардировке ${}^{11}B$ протонами с энергией несколько Мэв образуются резонансные состояния ядра ${}^{12}C.$

В экспериментально наблюдаемых спектрах a -частиц проявляются пики, соответствующие взаимодействию двух a -частиц в возбужденных состояниях ядра ⁸ Be. Замечено, что ширина этих пиков не соответствует ширине резонансного рассеяния свободных a -частиц, а положение пиков в спектре совпадений двух a -частиц часто не согласуется с хорошо известными значениями энергии возбуждения первых уровней / 2. 3. 10/.

Многими авторами / 3.4. 11 – 14/ делались попытки интерпретировать эффективные сечения и корреляции в реакции ¹¹В (р, 3 а). в предположении двухступенчатого процесса распада возбужденного

ядра ¹² С^{*} → a + ⁸ Be → a + a + a или одновременного распада на три a -частицы: ¹² C^{*} → a + a + a . Однако даже самые удачные попытки такой интерпретации не дают полного удовлетворительного согласия теоретических расчетов с экспериментом.

В настоящей работе приводятся экспериментальные результаты исследования реакции ${}^{11}B(p,3a)$ при двух значениях энергии протонов $E_p = 2,0$ Мэв и $E_p = 2,65$ Мэв.

Дифференциальные сечения рассчитывались на основе теории многочастичного рассеяния ^{/ 15/} с учетом парного взаимодействия всех трех *a* -частиц в конечном состоянии.

Предполагая, что реакция ¹¹ B(p,3a) протекает через резонансное состояние ядра ¹² C с моментом J и четностью π и что в конечном состоянии существенную роль играют лишь парные взаимодействия между a -частицами, амплитуда вероятности распада составной системы $A(J^{\pi})$ пропорциональна амплитуде рассеяния трех a -частиц с произвольной конфигурацией импульсов в начальном состоянии. Амплитуда рассеяния трех попарно взаимодействующих частиц в рассматриваемом случае является суммой трех амплитуд, отличающихся взаимодействующей в конечном состоянии парой частиц:

$$A(J'') = const(\tau_{23} + \tau_{31} + \tau_{12}).$$

Обозначая характеристики состояний пар взаимодействующих в конечном состоянии частиц символами l_{23} , l_{31} , l_{12} , орбитальные моменты третьей частицы относительно двух взаимодействующих символами L_1 , L_2 , L_3 , полную амплитуду реакции в этих обозначениях можно записать в виде:

$$A(J^{\pi}) = const \left[\sum_{L_1} \sum_{l_{23}} T_{23}(l_{23}, L_1) + \sum_{L_2} \sum_{l_{31}} T_{31}(l_{31}, L_2) + \sum_{L_3} \sum_{l_{12}} T_{12}(l_{12}, L_3) \right].$$

$$/2/$$

Графическое изображение $A(J^{\pi})$ распада составной системы в состоянии J^{π} на три попарно взаимодействующих частицы можно представить схемой:

Δ

$$\frac{a_{23}}{[j^{\pi}]_{23}} \begin{pmatrix} 2\\ l_{23}\\ j \end{pmatrix} + \frac{a_{31}}{[j^{\pi}]_{31}} \begin{pmatrix} 3\\ l_{31}\\ l_{31}\\ l_{2} \end{pmatrix} + \frac{a_{12}}{[j^{\pi}]_{12}} \begin{pmatrix} l_{12}\\ l_{2}\\ l_{3} \end{pmatrix} = 3$$

B тех случаях, когда возможно резонансное взаимодействие двух
пар *a* -частиц /2,3/ и /3,1/ в состояниях с моментами l_{23}^{*} и
 l_{31}^{*} , спектр одной *a* -частицы, например, первой определяется
амплитудой:
 $A(J^{\pi}, l_{23}^{*}, l_{31}^{*}) = const \left[\sum_{L_{1}} T_{23} (l_{23}^{*}, L_{1}) + \sum_{L_{1}} \sum_{L_{31}} L_{2} \\ l_{31}L_{2} \\ l_{3}L_{3} \\ l_{2}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_{3} \\ l_{31}L_{2} \\ l_{31}L_$

+ $\sum_{L_2} \sum_{l_{23}} \sum_{L_1} B_{l_{23}}^{l_{31}} T_{23} (l_{23}, L_1)],$

где B - коэффициенты разложения волновой функции состояния $|l_{ij}^*, L_k >$ по всем возможным состояниям $|l_{ik}, L_j > : |l_{jk}, L_i >$ Сделанное выше предположение о составном ядре существенно упрощает расчет амплитуды. В этом случае амплитуды $T_{ij}(l_{ij}, L_k)$ отличаются друг от друга только функцией, зависящей от относительной энергии E_{ij} пары взаимодействующих частиц. Эта зависимость от E_{ij} может быть факторизована в $T_{ij}(l_{ij}, l_k)$ в виде множителя, являющегося амплитудой двухчастичного рассеяния и описывающего форму резонанса конечного взаимодействия.

В этом случае выражение /3/ примет вид:

$$\left(l^{\pi} \cdot l_{23}^{*} \cdot l_{31}^{*} \right) = const \left\{ \sum_{L_{1}} \left[a_{23} \left(E_{23} \cdot l_{23} \right) + \sum_{L_{1}} \sum_{L_{2}} B_{L_{1}L_{2}}^{l_{23}L_{1}} a_{3f} \left(E_{31} \cdot l_{31} \right) + \sum_{L_{1}L_{2}} \sum_{L_{1}L_{2}} B_{L_{1}L_{2}}^{l_{23}L_{1}} a_{3f} \left(E_{31} \cdot l_{31} \right) + \sum_{L_{1}L_{2}} \sum_{L_{1}L_{2}} B_{L_{1}L_{2}}^{l_{23}L_{1}} a_{3f} \left(E_{12} \cdot l_{12} \right) \right] + \sum_{L_{2}} \left[a_{31} \left(E_{31} \cdot l_{31} \right) + \sum_{L_{2}} \left[a_{31} \left(E_{31} \cdot l_{31} \right) + \sum_{L_{2}} \left[a_{31} \left(E_{31} \cdot l_{31} \right) \right] \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} \right) \right] \right] + C \left[a_{1} \left(E_{1} \cdot l_{31} \cdot l_{31} + C \left[a_{1} \cdot l_{31} + C \left[a_{1} \cdot l_{31} \cdot l_{31} + C \left[a_{1} \cdot l_{31} \cdot l_{31} + C \left[a_{1} \cdot l_{31} + C \left[$$

$$\sum_{l_{12}} \sum_{l_{3}} B_{l_{12}}^{l_{31}} \frac{L_{2}}{L_{3}} a_{12} (E_{12}, l_{12}) + \sum_{l_{23}} \sum_{L_{1}} B_{l_{3}}^{l_{3}*l_{2}} a_{23} (E_{23}, l_{23})] \{$$

Для численных расчетов по формуле /4/ необходимо знать значения

двухчастичных амплитуд a_{ij} и коэффициентов $B \frac{I_{ij}^* L_k}{I_{ij} L_k}$

Двухчастичные амплитуды для простоты расчета выбирались в виде известных амплитуд Брайта и Вигнера для резонансного рассеяния α -частиц без учета потенциального и кулоновского рассеяния. Это оправдано тем, что расчеты сечений проводились в области относительных энергий пар α -частиц около резонансного взаимодействия в d -состоянии ($l_{ij}^* = 2$), где вклад потенциального и кулоновского рассеяния менее существенен по отношению к резонансному.

Суммирование по орбитальным моментам L_k ограничивается по кинематическим соображениям значениями $L_k \leq 3$, l_{ij} определяются из законов сохранения момента и четности.

Техника эксперимента

Протоны ускорялись на электростатическом генераторе ЭГ-5 Лаборатории нейтронной физики ОИЯИ. Вертикальный пучок протонов после отклонения анализирующим магнитом на угол 90 проходил через фокусирующие квадрупольные магнитные линзы и выводилСя в экспериментальный зал, в котором он проходил через отклоняющий магнит, систему коллимирующих диафрагм и направлялся в камеру рассеяния цилиндрической формы, диаметром 190°мм. На съемной крышке камеры смонтированы два кронштейна для установки детекторов. Специальное поворотное устройство позволяет независимо для каждого детектора устанавливать необходимый угол относительно пучка бомбардирующих частиц и в одной плоскости с ним в пределах О ́ + +180 ́ для одного детектора и -30 ́ ⁺ -180 ́ для другого.

В экспериментах использовались кремниевые поверхностнобарьерные детекторы с рабочей поверхностью 50 мм², изготовленные из материала с удельным сопротивлением 250 - 300 ом.см. Детекторы устанавливались на расстоянии 55 мм от мишени. Коллиматоры перед детекторами ограничивали телесный угол для регистрируемых α -частиц в пределах ≈ 6.10⁻³ стерадиана. Мишень из самоподдерживающейся пленки бора, получаемая путем распыления бора естественного изотопного состава с помощью электронного луча, располагалась в центре камеры рассеяния. Толщина мишени составляла 80 + 100 мкг на см². С помощью коллиматора длиною 150 мм днаметр пучка протонов на мишень ограничивался до 1 + 2 мм. Энергетическое разрешение детекторов при регистрации а частиц с энергией 5,2 Мэв от а препарата составляло 30-40 кэв. В случае измерений спектра а -частиц из реакции ¹¹ В(р, 3 a) ширина пика на половине высоты для группы a. -частиц была в пределах 100-120 кэв и определялась толщиною применяемой мишени и телесным углом детекторов. Импульсы от детекторов подавались на предварительные усилители с раздельными трактами усиления. "Медленный" тракт - для измерений спектра и "быстрый" тракт - для отбора совпадений. Отбор совпадений обеспечивался с помощью преобразователя "время-амплитуда" в пределах 15-20 наносекунд. Описание применяемой в экспериментах электронной аппаратуры содержится в работах / 16-18 /

Для измерений двухмерных спектров использовался 4096канальный анализатор типа "Тензор" с распределением каналов 64х64 или 32х128 в режиме "амплитуда" - "амплитуда".

Измерения спектров совпадений для различных комбинаций углов вылета двух a -частиц / θ_1 и θ_2 / проводились при энергиях протонов, соответствующих возбуждению определенных состояний составного ядра ¹² С.С этой целью для данной конкретной мишени перед каждым измерением измерялись функции возбуждения с вы-

ходом *a*-частиц, соответствующих осповному состоянию конечного ядра ¹² С. Одновременно с этим осуществлялась энергетическая калибровка спектрометрических трактов регистрации спектров *a*⁻⁻частиц. Проверка калибровки повторялась в процессе измерений спектров совпадений. На рис. 1 показаны функции возбуждения для угла 120° л.с. Четко выраженные резонансные пики при E_p =2,0 Мэв и E_p = 2,65 Мэв соответствуют возбужденным состояниям составного ядра ¹² С с энергиями возбуждения 17,77 и 18,37 Мэв соответственно.

На рис. 2 показан двухмерный спектр *а*-*а* совпадений и его проекция на ось E_2 , где E_1 и E_2 - энергия вылетающих первой и второй альфа-частиц в лабораторной системе, регистрируемых детекторами под углами θ_1 и θ_2 соответственно. Кинематика трехчастичной реакции рассчитывалась с помощью программ на ЭВМ типа БЭСМ-4 и БЭСМ-6. Результаты нескольких таких расчетов приведены на рис. 3.

Экспериментальные результаты и обработка

Полученные экспериментальные данные приведены на рис.4-7. По оси абсцисс - энергия a -частиц в Мэв /л.с./ регистрируемых детектором под углом θ_l . По оси ординат - число регистрируемых совпадений в одном канале анализатора. Чтобы не усложнять рисунки, экспериментальные точки приведены без их статистических ошибок.

При энергии протонов 2,0 Мэв /уровень ядра ${}^{12}C - 17,77$ Мэв/ были измерены спектры совпадений двух а -частиц для трех комбинаций углов θ_1 и θ_2 Полученные экспериментальные результаты представлены на рис. 4 и 5. Расчеты сечений выполнены в предположении спина и четности уровня ядра ${}^{12}C J^{\pi} = 0^+$.

При энергии протонов $E_p = 2,65$ Мэв /уровень ядра ${}^{12}C$ -18,37 Мэв/ измерены спектры совпадений для шести различных комбинаций углов θ_1 и θ_2 . Теоретически рассчитывались сечения для этих комбинаций углов θ_1 и θ_2 для четырех значений $J^{\pi}=0^+$, I^- , 2^+ , 3^- . Экспериментальные результаты и рассчитанные кривые приведены на рис. 6 и 7. На рис. 6 кривые, обозначенные сплошной линией, соответствуют расчетам для $J^{\pi} = 2^+$, аштрихованной линией - для $J^{\pi} = 3^-$.

На рис. 7 сплошные линии приведены по экспериментальным точкам, штрихованные линии обозначают результаты расчетов

Рис. 2. Двухмерный спектр a-a-совпадений и его проекция на ось E_2 . $E_p = 2,65$ Мэв; $\theta_1 = 120^\circ$; $\theta_2 = -50$, N - номер канала анализатора. Ось абсцисс соответствует детектору для угла θ_2 , ось ординат - детектору для угла θ_1

H

£

Рис. 5. Спектр совпадений двух α -частиц и расчет сечений для $J^{\pi} = 0^{+}$.

Рис. 6. Спектры совпадений двух *a* -частиц и расчет сечений в предположении спина и четности ядра 12C. $J^{n} = 2^+$ - сплошная линия и $J^{n} = 3^-$ - штрихованная линия.

Рис. 7. Спектры совпадений двух α -частиц и расчетные кривые для $J^{\pi} = 2^+$ - штрихованная линия и $J^{\pi} = 3^-$ - штрих-пунктирная линия. Сплошные линии проведены по экспериментальным точкам.

в предположении $J^{\pi} = 2^+$. Для случая $\theta_1 = 120^\circ$ и $\theta_2 = -80^\circ$ штрих-пунктирной линией показаны результаты расчета для $J^{\pi} = 3^-$. Рассчитанные кривые для $J^{\pi} = 0^+$ и 1^- не приводятся из-за их больших отклонений от экспериментальных результатов.

Анализ полученных данных свидетельствует о том, что выбранная методика расчетов удовлетворительно воспроизводит основной характер спектров совпадений.

Сравнение экспериментальных данных с расчетами подтверждает, значение спина и четности уровня ${}^{12}C$ - 17,77 Мэв, равное O^{+ /2/}, и показывает, что наиболее предпочтительно значение спина и четности для уровня 18,37 Мэв - 2⁺.

Имеющееся расхождение между экспериментальными результатами и рассчитанной кривой для случая $E_p = 2,65$ Мэв $\theta_1 = 120^{\circ}$ и $\theta_2 = -50$ не устраняется предположением других значений J^{π} и требует дальнейшего детального рассмотрения.

В заключение авторы выражают признательность С.С.Паржицкому за предоставление комплекса аппаратуры и помощь в его использовании в настоящих измерениях, Н.И.Линькову за обеспечение работы электроники, М.И.Кривопустову за помощь в проведении измерений, В.И.Сизову за разработку программ для расчетов кинематики и сечений на ЭВМ БЭСМ-6 и помощь в проведении этих расчетов, группе эксплуатации ЭГ-5 под руководством И.А.Чепурченко за обеспечение бесперебойной работы ускорителя.

Литература

- I. T.L. Quebert and L. Marquez. Nucl. Phys., Al26, No. 3, p. 646 (1969).
- 2. T.D.Bronson, W.D.Simpson, W.R.Jackson and G.C.Phillips. Nucl.Phys., v. 68, No. 2, p. 241 (1965).
- 3. A.Giorni. Nucl. Phys., A144, No. I, p. 146 (1970).
- 4. W. Von Witsch, M. Ivanovich, D.Rendic, V. Valovic, G.C. Phyllips and K.Schafer. Nucl. Phys., A180, No. 2, p. 402 (1972).
- 5. T.P.Longegueue, T.F.Cavaignac, A.Giorni, R.Bouchez. Few Body Problems Light Nuclei and Nuclear Interactions. v. 2, p. 687 (1968).
- 6. F.Nusslin, J.Zimmerer, K.W.Martis, H.Werner. Nucl.Phys., A123, No. 2, p. 300 (1969).
- 7. E.Norleck, M.D.Mancusi and R.R.Carlson. Rev.Mod.Phys., v. 37, p. 354 (1965).
- 8. C.Moazed, T.E.Etter, H.D.Holmgren and M.A.Waggoner. Rev.Mod.Phys., v. 37, p. 354 (1965).
- 9. F.K.Goward and T.T.Wilkins. Proceed. of the Royal Society, A228, No. 1174 (1965), p.376.
- 10. Jan Duck. Rev.Mod.Phys., v. 37, p. 418 (1965).
- II. K.Schafer. Nucl. Phys., A140, No. I, p. 9 (1970).
- 12. G.Goulazd. Le Journal de Physique, v. 31, p. 941 (1970).
- 13. C.Alex McMahan and Jan M.Duck. Nucl. Phys., A157, p. 417 (1970).
- 14. T.Letessier. Phys.Lett., v. 10, No. 1, p. 102 (1964).

- Изв. АН СССР, сер.физ. /1970/, т. 34, №1, 15 В.В.Комаров. 78.
- 16 М.Н.Дражев. Препринт ОИЯИ 3-3637, Дубна, 1968.

1993 - E.S.

land light Po

17. М.Н.Дражев, С.С.Паржицкий. Препринт ОИЯИ 2787, Дубна, 1966. 18 А.А.Омельяненко, К.Г.Родионов, Хен Еен Гынь. Препринт ОИЯИ, 2280, Дубна, 1965.

Рукопись поступила в издательский отдел 25 октября 1972 года.

1.20 12