ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Statistics of the second

Дубна.

P15-4745

Ю.Г.Будяшов, В.Г.Зинов, А.Д.Конин, С.В.Медведь, А.И.Мухин, Е.Б.Озеров, А.М.Чатрчян, Р.А.Эрамжян

7+C7Top, 1970, T.S. 8.4, e. 121

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ЯДЕР ПРИ ЗАХВАТЕ ОТРИЦАТЕЛЬНЫХ МЮОНОВ УГЛЕРОДОМ И КИСЛОРОДОМ

P15-4745

Ю.Г.Будяшов, В.Г.Зинов, А.Д.Конин, С.В.Медведь, А.И.Мухин, Е.Б.Озеров, А.М.Чатрчян, Р.А.Эрамжян

7

8095/2

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ЯДЕР ПРИ ЗАХВАТЕ ОТРИЦАТЕЛЬНЫХ МЮОНОВ УГЛЕРОДОМ И КИСЛОРОДОМ

Abstract

The probability of the excited nuclear level production in negative muon capture by carbon and oxygen nuclei was investigated. The energy of the γ ray and transition time dependence after the muon stop was measured with NaI(TI) detector.

The partial capture rate to the 1⁻ and 2⁻ state of ¹² B* and the total capture rate to all the ¹² B* excited bound states in the μ^- capture by ¹² C for the reaction

² C +
$$\mu^- \rightarrow$$
 ¹² B* + ν

have been determined as

$$\begin{array}{l} \Lambda(1) = (0.72 \pm 0.17) \times 10^{3} \text{ s}^{-1}, \\ \Lambda(2) \leq 0.24 \times 10^{3} \text{ s}^{-1}, \\ \Lambda(^{2}\text{B*} = (0.76 \pm 0.14) \times 10^{3} \text{ s}^{-1}. \end{array}$$

The yield of 2.13 MeV γ rays which follow the reaction 12 C + μ^- + 11 B*+ n + ν

has been measured:

$$(E_{\gamma} = 2.13 \text{ MeV}) = (2.3 \pm 0.3) \times 10^3 \text{ s}^{-1}.$$

In the experiment on μ^- capture in ¹⁶ 0 for the reaction ¹⁶ $0 + \mu^- \rightarrow$ ¹⁵ N*+ n + ν

the sum capture rate to the 15 N* even parity excited bound states and the capture rate to the $3/2^-$ state of 15 N* have been determined:

$$\Lambda_{+}^{10}$$
 N*)=(14±5)x10³s⁻¹,
 $\Lambda_{-}^{(15N*)=(20\pm5)x10^{3}s^{-1}}$.

The total capture rate to all the excited bound states of $^{^{10}}\,\mathrm{N}^*$ is

$$\Lambda(^{15}N_{*}^{*}) = (34\pm7)\times10^{3}s^{-1}.$$

Some of the results disagree essentially with theoretical predictions.

Захват мюонов ¹²С

Изучение реакции захвата отрицательных мюонов углеродом с переходом в основное состояние ¹²В

$${}^{2}C + \mu \overrightarrow{\rightarrow} {}^{12}B + \nu$$
(1)

играет важную роль в определении константы гаммов-теллеровского взаимодействия. Естественно, что изучению этого процесса посвящено много работ. Однако только в двух из них ^{/1,2/} была сделана попытка оценить вклад перехода углерода в возбужденные связанные состояния ¹²В*

$${}^{12}C + \mu^{-} \rightarrow {}^{12}B^{*} + \nu$$

$${}^{12}B + \gamma$$
(2)

Во всех работах ветвь (2) являлась фоновой в определении вероятности перехода¹² С, в основное состояние¹² В, поскольку процесс (1) регистрировался по β -распаду¹² В.

Улучшение методики эксперимента и фоновых условий позволило нам надеяться на более точное определение вероятности образования возбужденных состояний при захвате мюонов углеродом.

Постановка эксперимента

Необходимо проследить следующую последовательность событий. В углеродной мишени останавливается мюон. Происходит захват его ядром углерода. Углерод переходит в возбужденное состояние другого ядра. Возбужденное ядро после каскадных переходов с испусканием γ квантов оказывается в основном состоянии. Трудность в измерении выделяемых парциальных переходов заключается в их малой вероятности ($\approx 10^{-3}$) при большом общем фоне γ -излучения.

Работа выполнена на синхроциклотроне ОИЯИ. Использовался чистый пучок отрицательных мюонов с импульсом 150 Мэв/с на выходе µ тракта в низкофоновом помещении. На рис. 1 представлена блок-схема установки, на рис. 2 – упрощенная блок-схема электроники. Счетчики 3 и 4 играли основную роль в выделении остановок мюонов в мишени М. Счетчик 3 имел размеры: 6 6,5 x 0,2 (см); счетчик 4 (стакан из сцинтиллирующей пластмассы) имел толщину стенок 0,5 см и внутренний объем для мишени 6 7 x 10 (см). Регистрация гамма-квантов производилась спектрометром NaI(T1) (счетчик 5) с размерами 6 15 x 10 (см). Спектрометр имел разрешение 9,5% по ¹³⁷ Св . Мишень из полиэтилена с диаметром 7 см и толщиной по пучку 5 г/см² находилась на расстоянии 6 см от поверхности кристалла NaI.

Коротко о функциональных задачах электронных блоков. В качестве мониторного использовался счет проходящих частиц (совпадения 123, схема С1). Остановки мюонов в мишени (совпадения 1234, схема С2) запускали одновибратор 01 с длительностью ворот 10 мксек. Энергия

у -кванта, вылетевшего из мишени в течение этого времени, определялась с помощью спектрометра Nal . Время вылета у -кванта относительно остановки мюона определялось с помощью время-амплитудного конвертора (блок T-A).

Рис.1. Блок-схема установки.

Рис.2. Упрощенная блок-схема электроники. С - схема совпадений; П - пересчет, Д - дискриминатор; У - усилитель; СУМ - сумматор; Т-А - время-амплитудный конвертор; АЦПУ - печать; О1,О4 - одновибратор 10 мксек; О2,О3 - 25 мксек; О5 - 100мксек; Л1,Л3 - линия задержки 3 мксек; Л4, Л5 - 10 мксек; Л6 -13 мксек. Измерение энергии и времени вылата у -квантов допускалось электронной логикой при выполнении двух условий. Во-первых, за время ворот через счетчик 6 не должен пролететь второй мюон. Иначе происходит запрет регистрации события через схемы С6 и С8 одновибратором 02 с длительностью импульса 25 мксек. Во-вторых, за время ворот через охватывающий мишень счетчик 4 не должен пролететь электрон от распада мюона, иначе происходит запрет регистрации события через схемы С7 и С8 одновибратором 03 длительностью 25 мксек. Это резко снижает фон случайных совпадений за счет выключения тех ворот, в которых заведомо не может быть полезных событий, т.к. примерно 90% остановившихся в углероде мюонов распадается. Счетчик антисовпадений охватывает 95% полного телесного угла.

Для нормировки событий при обработке результатов опыта использовался счет тех остановок, у которых в течение длительности ворот в пучке не проходил второй мюон (пересчет ПЗ).

Двухмерный спектр событий время-энергия регистрировался с помощью анализатора АИ-4096 измерительного центра Лаборатории ядерных проблем ^{/3/}. Память анализатора распределялась следующим образом: 32 канала отводилось под измерение времени и 128 каналов – под измерение энергии в каждом событии, т.е. всего использовалось 4096 каналов.

Обработка результатов

Получающиеся двухмерные спектры непосредственно во время опыта обрабатывались ЭВМ. Использовалась машина "Минск-22", подключенная через линию связи к измерительному центру. Результаты предварительной обработки спектров выдавались в виде таблиц и графиков чебез систему алфавитно-цифрового печатающего устройства (АЦПУ) каждые два часа.

Предварительная обработка результатов во время работы ускорителя сводилась к тому, что в каждом из 128 энергетических каналов вычитался фон случайных совпадений. Кроме того в каждом из 32 временных каналов производилось суммирование по всей шкале энергий. Это давало общую временную картину событий. На печать выводилось два спектра – временной (экспонента и фон) и энергетический (за вычетом фона случайных совпадений в каждом канале).

Определение эффективности регистрации у -квантов производилось по мезорентгеновскому излучению. Подобная калибровка удобна тем, что все условия регистрации излучения и структура электроники остаются без изменения. Для калибровки использовались мишени из Ті и Zn с энергиями K_a -переходов 932 кэв и 1601 кэв, соответственно. Толщина мишеней из Ті и Zn подбиралась равной по поглощению у квантов мишени из углерода. Предполагалось, что выход всей К-серии на одну остановку мюона равен 1. Таким образом, общее число отсчетов в пиках полного поглощения всех К-линий, отнесенное к числу остановок мюонов в мишени, должно давать фотоэффективность спектрометра NaI в данной области энергий.

Поскольку схема электроники оставалась неизменной, пришлось учитывать, что часть мезорентгеновских квантов исключалась из регистрации электронами от распада мюонов в основном состоянии мезоатомов. Поправка составляла 14% для Ті и 7% для Zn.

Существенным оказался эффект наложения рентгеновских квантов и у -квантов от ядерного захвата. Это явление обусловлено тем, что времена жизни мюонов в Ті и Zn меньше длительности импульсов со счетчика 5 (~1 мксек), поступающих на анализатор. Поэтому последовательное испускание рентгеновских и ядерных у -квантов с замет-

ной вероятностью регистрируется как один у -квант суммарной энергии. В итоге рентгеновский спектр перераспределяется. Уменьшение площади фотопика будет пропорционально полной вероятности регистрации ядерных у -квантов на одну остановку мюона. В мезорентгеновском спектре Ті поправка, учитывающая уменьшение площади фотопика за счет этого эффекта, составляет (13 + 2)%, в спектре Zn - (20 + 3)%.

Результаты и обсуждения

На рис. З приведены наиболее интенсивные переходы углерода в возбужденные состояния ¹² В , которые можно было ожидать на основе теоретических расчетов в работе ^{/4/}, и схема наиболее интенсивных межкаскадных переходов бора по данным работы ^{/5/}. Особенности схемы в том, что энергии переходов между уровнями 1⁻⁺ 2⁻ (0,95 Мэв) и 1⁻ + 2⁺ (1,67 Мэв) практически совпадают с энергиями переходов между уровнями 2⁺ + 1⁺ и 2⁻ + 1⁺, соответственно.

На рис. 4 приводится измеренный нами энергетический спектр у квантов при захвате мюонов углеродом (3,65 x 10⁷ остановок мюонов в полиэтиленовой мишени). Пик при энергии 2,13 Мэв соответствует переходу в¹¹ В* с уровня со спином 1/2⁻ в основное состояние в реакции

(3)

 ${}^{12}C + \mu^{-} \rightarrow {}^{11}B + \nu$

Результаты обработки спектра приведены в Таблице 1.

Энергия у - линии Е _у (Мэв)	Эффективность регистрации У -квантов в фотопик є x10 ²	Число в ф	отсчето отопике N	в Вероятность вылета У – кванта на 1 остановку мюона A x 10 ³
0,95	3,06 + 0,12	1210	+ 256	1,42 + 0,33
1,67	2,44 + 0,11	968	+ 185	1,43 + 0,29
2,13	2,18 + 0,08	2996	<u>+</u> 205	4,60 <u>+</u> 0,57

Таблица 1

Эффективность регистрации у -квантов в фотопик, как упоминалось, определялась по мезорентгеновскому излучению.

При определении числа отсчетов в фотопике основную ошибку дает неточность определения интерполированного уровня фона под ним (пунктир на рис. 4).

В значения вероятности А вылета гамма-кванта на одну остановку мюона включена поправка на конечный временной интервал измерения (поправочный коэффициент равен 1,22 + 0,02). Учтен также эффект суммарной регистрации детектором двух гамма-квантов, принят во внимание характер каскадных переходов с возбужденных уровней бора – 12^{/5/}.

Из общей схемы переходов (рис. 3) видно, что вероятность вылета гамма-квантов с энергией 0,95 Мэв почти полностью определяет скорость захвата мюона в ¹² С с переходом на уровень 1 бора – 12. Скорость же парциального перехода на уровень 2 определяется разностью вероятностей вылета гамма-квантов с энергией 1,67 Мэв и 0,95 Мэв. При этом предполагается, что захват мюона с возбуждением уровня 2⁺ пренебрежимо мал.

На основании вероятностей вылета гамма-квантов (табл. 1), скорости исчезновения мюона в углероде $\Lambda \mu = 4,916 \times 10^5$ сек⁻¹ /7/ и

Рис.3. Схема переходов при ядерном захвате μ^- в ¹² С.

полной картины каскадных переходов с возбужденных уровней в боре – 12 ^{/5/} получены скорость парциального захвата мюона углеродом с переходом на уровень 1⁻ – Λ (1⁻) = (0,72 + 0,17) · 10³ сек⁻¹, а на уровень 2⁻ – Λ (2⁻) \leq 0,24 x 10³ сек⁻¹. Эти значения сильно отличаются от того, что можно было ожидать по теоретическим расчетам: Λ (1⁻) \approx 3×10^3 сек⁻¹, Λ (2⁻) \approx 1 x 10³ сек⁻¹ / 4/.

Скорость захвата с переходом во все возбужденные связанные состояния бора – 12 (за исключением части прямых переходов с уровня 2,72 Мэв) составляет $\Lambda({}^{12}B^*) = (0,76 + 0,14) \cdot 10^3$ сек⁻¹.

В связи с этим следует заметить, что спин и четность уровня 2,72 Мэв в ¹² В , если нет случайностей, не могут быть 1⁺. Переход ¹² С в это состояние ¹² В при захвате мюона является разрешенным, и должна была бы в эксперименте наблюдаться интенсивная гамма-линия с энергией 2,72 Мэв.

На основании полученных результатов можно уточнить значение скорости перехода 12 С в основное состояние 12 В , определявшееся в работе $^{/2/}$. Она равна

$$\Lambda(1^+) = (6,3 + 0,3) \times 10^3 \text{ cek}^{-1}.$$

Мы не стали пересматривать величины констант слабого взаимодействия, т.к. все изменения их находятся в пределах точности теоретических расчетов .

Скорость процессов захвата (3) с вылетом нейтрона, когда возбужденное ядро бора -11 проходит через нижний уровень 1/2⁻ с энергией возбуждения 2,13 Мэв, равна (2,26 <u>+</u> 0,28) x 10³ сек ⁻¹.

В отличие от углерода наблюдение возбужденных состояний вторичных ядер при мю-захвате ¹⁶0 имеет основное значение для изучения структуры ядра.

Захват мюонов

16 0

(4)

Известно, что при мю-захвате основным каналом является реакция с вылетом-нейтрона. Образующееся при этом дочернее ядро может оказаться как в основном, так и в возбужденном состоянии.

Измерение скоростей парциальных переходов исходного ядра в эти состояния, наряду с прямым измерением спектра нейтронов, важно с точки эрения понимания механизма процесса мю-захвата ^{/8/}. Из таких данных, в частности, можно получить информацию о структуре состояний гигантского резонанса, возбуждаемых при захвате мюона. В работе ^{/9/} изучалась реакция

$$\stackrel{16}{\longrightarrow} 0 + \mu^{-15} N^* + n + \nu$$

$$\stackrel{15}{\longrightarrow} N^* + \nu$$

Полученные авторами результаты не везде согласуются с теоретическими предсказаниями ^{/8,10/}. Описанная выше методика и высокоэффективный у -спектрометр позволили повторить эти интересные измерения с малыми затратами времени ускорителя (около 4 часов).

Результаты и обсуждения

Методика эксперимента полностью повторяет описанную выше для случая ¹² С . На рис. 5 приведена схема уровней и переходов кислорода и дочерних ядер.

На рис. 6 приводится измеренный нами энергетический спектр у квантов при захвате мюонов кислородом (1,24 x 10⁷ остановок мюонов в мишени из дистиллированной воды).

При обработке этого спектра сделаны те же поправки, что и в случае углерода. Только при определении эффективности регистрации у -квантов была сделана аппроксимация в сторону больших энергий в соответствии с работами /11,12/, что дает дополнительную ошибку. Как в наших измерениях, так и в работе ^{/9/}, в¹⁵ N* наблюдаются переходы с энергиями 5,3 и 6,3 Мэв с уровней (1/2⁺, 5/2⁺) и 3/2⁻, соответственно, в основное состояние 1/2⁻. Переходы с большей энергией не замечены, но слабо выраженные фотопики в районе энергий 1,1+2,2Мэв (см. рис. 6) показывают на каскадные переходы между уровнями с положительной четностью. Поэтому скорости перехода с энергией 5,3 Мэв мы приписываем сумму скоростей переходов на уровни ¹⁵ N*, с положительной четностью.

Результаты обработки спектра приводятся в таблице 2 (Λ – скорость перехода ¹⁶ 0 при захвате мюонов). Скорость перехода на уровень 1/2⁻ ядра ¹⁵ N определялась как разность между полной скоростью захвата мюона в ¹⁶ 0 : $\lambda_c = (9,74\pm0,31) \times 10^4$ сек⁻¹ /7/ и суммой скоростей образования связанных состояний ^{/14/} ядра ¹⁶ N : Λ (¹⁶ N) = = $(1,09\pm0,07)\cdot10^4$ сек⁻¹ и возбужденных состояний ядра ¹⁵ N : Λ (¹⁵ N*)= = $(3,4\pm0,7)\cdot10^4$ сек⁻¹ (эта работа).

Tá	аб	лиц	a	2

Уровни ядра	Эксперимент			Теория /8,10/		
¹⁵ N	Эта работа Л х10-4сек	Каплан и др. Л x 10 ⁻⁴ сек	/9/ %	Λ x10	-4 сек %	
1/2	5,2	4,9	58	6,2	69	
3/2	2,0+0,5	2,50 + 0,23	27	· 2,6	29	
1/2 ⁺ ,5/2 ⁺	1,4 + 0,5	1,28 + 0,23	15	0,2	2	
Все свя- занные уровни		0,32	100	9,0	100	

Сопоставляя теоретические и экспериментальные результаты, можно сделать вывод о том, что расчеты, основанные на резонансном механизме захвата мюонов, правильно описывают основные каналы реакции (4). Исключение составляет канал с образованием ядра ¹⁵ N* в состояниях с положительной четностью. Структура этих состояний довольно сложная. Она определяется конфигурацией типа две дырки – частица $^{15,16/}$. Большая скорость перехода в эти состояния свидетельствует о том, что недостаточно ограничиться простым частично-дырочным приближением для описания захвата мюонов ядром ¹⁶ 0 . Заметим также, что большая вероятность переходов на уровни положительной четности ядер ¹⁵ N и ¹⁵ 0 наблюдается и при фоторасщеплении $^{17/}$ ядра. ¹⁶ 0

Литература

1.H.V.Argo, F.B.Harrison, H.W.Kruse and A.D.Guire. Phys.Rev., 114, 626 (1959).

- 2. E.J.Maier, R.M.Edelstein and R.T.Siegel. Phys.Rev., <u>133B</u>, 663 (1964).
- 3. С.В. Медведь, В.В. Моисеева, А.Н. Синаев, А.Н. Чистов, Г.Ю.Цахер. Препринт ОИЯИ 10-3836, Дубна, 1968.
- 4. M.Ruel and J.G.Brennan. Phys.Rev., <u>129</u>, 866 (1964).
- 5. L.F.Chase, Jr. and R.E.McDonald, W.W.True and E.K.Warburton. Phys.Rev., <u>166</u>, 997 (1968).
 - J. W.Olness and E.K.Warburton. Phys.Rev., <u>166</u>, 1004 (1968).
- 6. A.Fujii, M.Morita and H.Ohtsubo. Suppl.Prog.Theor.Phys., Extra Number, 303 (1968).
- 7. M.Eckhause, R.T.Siegel, R.E.Welsh and T.A.Filippas. Nucl.Phys., 81, 575 (1966).
- 8. В.В. Балашов, Н.М. Кабачник, В.Л. Коротких, Г.Я. Коренман, Р.А. Эрамжян. Препринт ОИЯИ Е4-4601, Дубна 1969 г.
- 9. N.S.Kaplan, R.V.Pyle, L.E.Temple, G.F.Valby. Phys.Rev.Lett., <u>22,</u> 795 (1969).
- 10. В.А. Вартанян, М.А. Жусунов, Р.А. Эрамжян. Сообщение ОИЯИ Р4-4742, Дубна 1969 г.
- 11. J.J.Steyn, D.G.Andrews. Nucl.Instr. and Meth., <u>68,</u> 118 (1969).
- 12. Н.А. Вартанов, П.С. Самойлов. Практические методы сцинтилляционной гамма-спектрометрии. Атомиздат, Москва 1964.
- 13. J.Barlow, J.C.Sence, P.J.Duke, M.A.K.Kemp. Phys.Rev.Lett., 9. 84 (1964).
- 14. J.P. Deutsch, L.Grenacs, P.Igo Kemenes, P.Lipnik, P.C.Macq. Nuovo Cim., <u>52B</u>, 557 (1967).
- 15. E.C.Halbert, J.B.French. Phys.Rev., <u>105</u>, 1563 (1957).

 М.А. Жусунов, В.В. Карапетян, Р.А. Эрамжян, Изв. АН СССР, серия физическая, <u>32</u>, 332 (1968).

17.H.Ullrich, H.Krauth. Nucl.Phys., A123, 641, (1969).

Рукопись поступила в издательский отдел 15 октября 1969 года.