18/x1-69

P15 - 4738

Э.Цесьляк

<u>_Сзчі.зг</u> Ц-Ч93

> ПОИСКИ ДОЛГОЖИВУЩЕГО СПОНТАННО ДЕЛЯЩЕГОСЯ ИЗЛУЧАТЕЛЯ В ОБРАЗЦАХ, СОДЕРЖАЩИХ **Ві, Рь, Нg, W**

¥

P15 - 4738

Э.Цесьляк

ПОИСКИ ДОЛГОЖИВУЩЕГО СПОНТАННО ДЕЛЯЩЕГОСЯ ИЗЛУЧАТЕЛЯ В ОБРАЗЦАХ, СОДЕРЖАЩИХ Ві, Рь, Н g, W

ţ

z 80×2/2 '

В последнее время в ряде работ^{/1-5/} был поставлен вопрос о возможности существования в природе сверхтяжелых ядер (Z ≥ 108), достаточно устойчивых по отношению к а -распаду и спонтанному делению.

Теоретические предсказания^{/6-10/}, основанные на оболочечной модели ядра, обращают внимание на элементы в области с Z ≈ 114, где должны существовать ядра с магическими числами нейтронов и протонов.

Рассчитанные разными авторами времена жизни сверхтяжелых ядер относительно *а* -распада и спонтанного деления (порядка 10⁸ лет) позволяют надеяться на возможность обнаружения этих элементов в земных породах в измеряемых количествах.

Химические свойства сверхтяжелых элементов можно определить на основании того, что группа актинидов кончается элементом с Z = 103, и следующий, 104-ый, элемент является химическим аналогом гафния/11/. Отсюда возникает аналогия между элементами с Z = 110 и платиной (Z = 78), с Z = 112 и ртутью (Z = 80), с Z = 114 и свинцом (Z = 82) и так далее / 11, 12/.

Присутствие сверхтяжелых элементов в виде примеси в образцах, содержащих платину, свинец, ртуть и др.,можно обнаружить путем исследования *а* -распада или спонтанного деления в таких образцах. Получение полной информации об энергетическом спектре *а* -частиц в результате распада сверхтяжелых элементов является сложным вследствие их очень малой концентрации и присутствия большого фона от природных

α -излучателей. Более простым методом является изучение спонтанного деления в исследуемых образцах, тем более, что гипотетические сверхтяже-

лые элементы из области Z ≈ 114 после *а* -распада или серии *а* -распадов должны тоже спонтанно делиться.

Авторы^{/13/} искали треки осколков деления в образцах, содержащих свинец, и на основании найденного числа треков получили указание о времени жизни относительно спонтанного деления свинца порядка 10²⁰ -- 10²¹ лет.

В работах^{/14,15/} авторы пытались определить концентрацию гипотетического сверхтяжелого элемента в породах, содержащих платину, и получили отрицательный результат; верхняя граница концентрации этих элементов найдена ими равной 10⁻¹² г/г.

В данной работе проводились поиски треков осколков деления в образцах, содержащих свинец, ртуть, висмут и вольфрам. Образцами являлись стекла, компонентами которых были изучаемые элементы. В части случаев стекло находилось в плотном контакте со слоем металла, содержащим изучаемый элемент (зеркала, витражи). Для всех образцов детектором осколков деления являлось стекло/18,19/.

Для образцов со слоем металла опыт проводился следующим путем: поверхность стекла, которая была в контакте с металлом, после снятия металлического слоя и химического травления просматривалась под микроскопом и определялось число треков осколков деления; величина фона находилась при просмотре поверхности, которая не была в контакте с металлом. Если отнести найденные треки осколков к делению тяжелого элемента, который содержался в слое металла, можно измерить период полураспада T₁/2 относительно спонтанного деления по формуле

$$T_{1/2}^{=} \frac{\epsilon \ell n \ 2 \ N \ \Delta \iota}{\Delta \ N}$$

Здесь ΔN – число найденных треков, Δt – время наблюдения (возраст образца), N – число ядер изучаемого элемента в слое металла, находящемся в контакте с детектором, ϵ – эффективность регистрации осколков деления в данном детекторе.

Эффективно ть регистрации осколков была определена при помощи калиброванного источника осколков деления ²⁴⁴ Ст. Эффективность

регистрации с колебалась для разных образцов в пределах от 0,10 +0,45.

Число найденных треков и возраст образцов приведены в табл. 1 – 4. Для образцов, в которых изучаемый элемент является компонентой стекла, проводилось постепенное стравливание слоев толщиной от 5 до 25 микрон. Если число ядер изучаемого элемента в травленом слое есть N_i и число найденных треков ΔN_i , тогда после нескольких травлений N= ΣN_i ; $\Delta N = \Sigma \Delta N_i$. Количество найденных треков и рассчитаные по формуле (1) периоды полураспада относительно спонтанного деления приведены в табл. 1,2,3 и 4.

Учитывая неточности определения скорости травления и эффективности регистрации (без статистической ошибки для числа найденных треков), ошибку для $T_{1/2}$ можно определить в (20-22)%. Отметим, что возраст и концентрация свинца в образцах древних стекол (номера 38-41) известны с точностью не более (30-40)%.

Образец № 24, Р11, для которого $T_{1/2} = (2,7\pm0,4).10^{20}$ лет был исследован в работе^{/10/}. Получено полное подтверждение нашего результата.

Возможными источниками фона являются:

1) Тяжелые фрагменты от взаимодействия космических лучей с ядрами Ві , Рь , Нд , W или других тяжелых элементов, содержащихся в исследуемых образцах.

2) Примеси спонтанно делящихся элементов.

Фоном первого рода можно пренебречь, потому что для 40 граммов чистого изотопа ²⁰⁸ Pb после одного месяца экспозиции на поверхности Земли зарегистрированный эффект соответствует кажущемуся периоду спонтанного деления $T_{1/2} = 4.10^{21}$ лет/16/.

Спонтанное и вынужденное деление урана может являться более существенным источником фона. В изучаемых образцах определена концентрация урана с помощью потоков тепловых нейтронов от 10^{10} до 10^{15} нейтронов/см². Установлено, что концентрация урана не превосходит 10^{-5} – 10^{-6} г/г. Зная концентрацию урана, можно определить число треков, обусловленных спонтанным делением урана. Эти данные приведены в табл. 1, 2 и 3.

Концентрация тория определена путем облучения образцов быстрыми нейтронами (10¹⁰ - 10¹² нейтр/см²). Полученные значения концентрации тория для всех образцов были меньше, чем урана. Найденные концентрации тория не являются "опасными" для данного эксперимента ввиду того, что период спонтанного деления тория равен 10²¹ лет/17/. Для большинства образцов спонтанное и вынужденное деление урана объясняет только часть наблюдаемого числа треков.

Смотря на результаты, приведенные в табл. 1, можно сказать, что для части образцов, содержащих свинец (о номерах 5,23,24,39,40,41), наблюдаемый эффект нельзя объяснить упомянутыми выше причинами.

В образцах, содержащих висмут, не найдено треков, и на основании этого была установлена граница периода полураследа $T_{1/2} \ge 10^{21}$.

Для образнов, содержащих ртуть, найденное число треков соответствует периоду полураспада порядка 10²¹ лет, что можно объяснить делением ртути космическими лучами/16/.

В образцах, содержащих вольфрам, большинство найденных треков можно объяснить присутствием урана, что приводит к граничному значению периода полураспада вольфрама $T_{1/2} \gtrsim 6.10^{21}$.

Если предположить, что избыток треков в нескольких образцах, содержащих свинец, можно отнести к делению неизвестного элемента, и если взять теоретическую оценку периода полураспада для сверхтяжелых элементов $T_x \approx 10^8$ лет, получается концентрация излучателя в основном элементе C_x :

$$C_x = \frac{T_x}{T_{16}} = 10^{-12} + 10^{-13}$$
 atom/atom.

Результаты, приведенные в табл. 1,2,3 и 4, позволяют сделать следующие выводы:

1. В образцах, содержащих Ві , Нд и W , найденные треки осколков деления могут быть обусловлены или присутствием урана, или делением ядер Ві , Нд и W космическими лучами.

2. Для 6 образцов стекла, содержащих свинец (из 42 изучаемых), найденные треки осколков деления не могут быть объяснены упомянутыми выше причинами. Этот результат можно рассматривать, как подтверждение гипотезы о существовании в природе спонтанно делящихся элементов, сопровождающих свинцовые породы.

В заключение я хочу выразить благодарность академику Г.Н.Флерову за постановку задачи, В.П.Перелыгину за помощь в проведении эксперимента и группе лаборантов-микроскопистов Лаборатории ядерных реакций ОИЯИ, обеспечившим просмотр большого числа образцов.

Выражаю глубокую признательность Н.А.Ошариной и Т.А.Лобаневой из Государственного Исторического музея, А.К.Яхкинду и В.Н.Полухину из Государственного Оптического института, Б.И.Александрову из Москвы, М.Н. Лазаревой из Ленинграда и И.И.Небренскому из Градец-Кралове (ЧССР) за любезное предоставление образцов старинных стекол и зеркал.

Литература

- 1. С.П.Пауэлл. Вестник АН СССР, <u>9</u>, 5/31 (1965).
- 2. G.N.Flerov. "Prospects in the Synthesis of New Isotopes and Elements " in Future of Nuclear Structure Studies", p.11-24, IAEA, Vienna, 1969.
- 3. P.H.Fowler et al. XI International Conference on Cosmic Rays Budapest, 25 August-4: September 1969.

4. V. M., Strutinsky. Nucl. Phys., <u>A95,</u> 420 (1967).

5. S.G.Nilsson. Nuclear Structure, Fission and Superheavy Elements, UCRL Report 18355;

S.G.Nilsson et al. Nucl.Phys., <u>A131</u>, 1 (1969).

- 6. Yu.A.Muzychka, V.V.Pashkevitch, V.M.Strutinski. Preprint E7-3733, Dubna, 1968.
- 7. Yu.A.Muzychka, Preprint E7-4133, E7-4435, Dubna, 1969.
- 8. Yu.A.Muzychka. Phys. Lett., <u>28B</u>, 537 (1969).
- 9. S.G.Thompson. The Search for Element 114 (talk given at the APS meeting in Miami.Nov. 25-27, 1968.
- 10. S.G.Nilsson et al. Nucl.Phys., <u>A115</u>, 545 (1968).
- 11. И.Звара и др. АЭ, 21, 83 (1966).
- 12. G.T.Seaborg. Elements beyond 100, present status and future prospects. Ann. Rev.Nucl.Sci., <u>18</u>, 53-152 (1968).

- Г.Н.Флеров, В.П.Перелыгин. Препринт ОИЯИ, Р7-4205, Дубна, 1968;
 А.Э., <u>26</u>, 521-7 (1969).
- 14. S.G.Nilsson, S.G.Thompson, G.F.Tsang, Phys.Lett., 28B, 458(1969).

15.J.J.Wesolowski, W.J.P.Jewell, F.Guy. Phys.Lett., 28B, 544 (1969).

- Г.Н.Флеров, Н.К.Скобелев, Г.М.Тер-Акопьян, В.Г.Субботин, Б.А.Гвоздев, М.П.Иванов. Препринт ОИЯИ, Д6-4554, Дубна, 1969.
- А.В.Подгурская, В.И.Калашникова, С.А.Столяров, Е.Д.Воробьев, Г.Н.Флеров. ЖЭТФ, <u>28</u>, 503 (1955); Г.Н.Флеров и др. ДАН СССР, 118, 69-71 (1958).
- А.Капусцик, В.П.Перелыгин, С.П.Третьякова, В.И.Свидерский. ПТЭ, №1, 42-44, (1960).
- 19. R.L.Fleischer, P.B.Price, R.M.Walker, Phys. Rev., 143, 1266 (1966).

8

Рукопись поступила в издательский отдел 9 октября 1969 года.

Таблица		I
Образцы	co	свинцом

NeNe ПП	Образец	Возраст (лет)	Число треков	Объем (см3)	Т (лет)	число треко от урана
I	2	3	4	5	6	7
I	БФ26	12	I	0,20	>6.IO ^{2I}	_
2	LF 3-60151	23	5	0,44	7.10 ²⁰	-
3	LF 7-55576	23	0	0,22	>3.10 ²¹	_
4	LF7	23	0	0,22	>2.10 ^{2I}	-
5	Часть древней посуды	180	10	0,05	4.10 ²⁰	0,5
6	$\overline{\Phi}$	180	I	0,8	> 6.10 ²²	_
7	LF3	23	II	0,44	7.10 ²⁰	-
8	Линва № 5	30	10	0,15	4.10 ²⁰	-
9	ΤΦΙ	5	0	0,05	>4.IO ²⁰	-
10	TQI	5	0	0,11	>4.10 ²⁰	-
II	T 4 2	10	2	0,16	9.10 ²⁰	-
12	T 0 2	10	I 4	0,8	6.10 ²⁰ .	-
13	T @ 2·	10	I	0,08	>9.10 ²⁰	-
I 4	PI	33	2	0,2	7.IO ^{2I}	-
15	P2	33	4	0,4	7.IO ^{2I}	-
I 6	P3	3 5	I	0,05	>3.10 ²¹	-
17	P4	22	3	0,08	I.10 ²¹	-
18	P5	29	I	0,06	>3.IO ^{2I}	- .
19	P6	29	0	0 , I	>4.IO ^{2I}	-
20	P7	15	0	0,03	>7.10 ²⁰	
2I	P8	20	0	0,04	>2.10 ²¹	-
22	P9	I4	0	0,05	>1.10 ²¹	-
2 3	PIO	I4	12	0,61	2.10 ²¹	3
24	PII	30	100	0.62	2.7·10 ²⁰	2

I	2	3	4	. 5	6	7
2 5	T Φ3	10	2	0,12	2.10 ²¹	_
26	Φ2	20	2	0,07	1.10 ²¹	
27	ΦI	20	3	0,09	8.1020	-
28	TQI	20	I	0,03	>1.10 ²¹	_
29	TQI	20	2	0,06	1.10 ²¹	-
30	ΤΦΙ	20	4	0,08	7.10 ²⁰	-
31	ΤΦΙ	15	0	0,23	>3.10 ²¹	-
32	ΦI3	15	0	0,28	$> 4.10^{21}$	-
33	Витрад	\sim 350	0	\sim 0,01	\gtrsim 1,3.10 ²²	-
34	F 5	17	0	0,06	> I.10 ²¹	-
35	F I6	17	0	0,03	>2.IO ²⁰	-
36	F 9	II	0	0,03	> 4.10 ²⁰	-
37	SF 18	I 4	0	0,03	> 9.10 ²⁰	-
38	Стекло из зеркала	\sim 100	4	0,66	$\sim 4.10^{21}$	2.4
39	Большой обломок	200	20	0,13	$\sim 1.10^{20}$	3
40	Округлый фрагмент	\sim 200	18	0,10	\sim 1,3.10 ²⁰	4
4 I	Фрагмент Сазы	~ 200	37	0,15	\sim 1.10 ²⁰	3
42	РП	40	I 4	0.38	I.4.10 ²¹	-

Таблица 2

Образцы, содержащие ртуть (зеркала)

Образец	Возраст (дет)	Поверхность просмотра (см ²)	Число с мет лом	<u>треков</u> ал- 063 мстал- ла	Т (лет)	Число треков от урана
I	800	125	9	2	2.10 ²¹	0,5
2	200	228	5	2	5.10 ²¹	0 ,9
8	200	35 0	8	0 ≥	7.10 ²¹	-
4	100	104	4	I	6.10 ²¹	8
Таблица 8 Образцы с вольфрамом						
Образец	Возраст (дет)	Число треков	0бъ е м (см ³)	Т (лет)	Чи от	сло треков урана
				مرجعين بالداخلة الجرار ماخليسي .		ببالكراو ويتكر تشريب المراف
XIOI	9	ð	0,01	≥ 10 ²⁰		>0,2
xigi Xg15	9 12	0 0	0,0I 0,09	≥ 10 ²⁰ ≥ 6.10 ²⁰		>0,2 > I
XI6I X615 XI6II	9 12 9	0 1	0,0I 0,09 0,02	 ≥ 10²⁰ ≥ 6.10²⁰ 5.10²⁰ 		>0,2 > I >0,7
XIGI XGI5 XIGII XIrI2	9 12 9 9	0 0 I 0	0,0I 0,09 0,02 0,09	$≥ 10^{20}$ > 6.10^{20} 5.10^{20} ≥ 2.10^{20}		>0,2 > I >0,7 >0,5
XIGI XGI5 XIGII XIrI2 IXG2	9 12 9 9 9	0 0 I 0 2 0	0,0I 0,09 0,02 0,09 0,09	$≥ 10^{20}$ > 6.10^{20} 5.10 ²⁰ ≥ 2.10 ²⁰ 7.10 ²⁰		>0,2 > I >0,7 >0,5 8

11

.

Таблица 4

. . .

•

Образцы	C	BICMYTOM
---------	---	----------

Образец	Возраст (лет)	Число треков	Объем (СмЗ)	Т (лет)	Число треков от урана
№ 13	Ιİ	0	0,15	≥ 8.10 ²⁰	-
₩ 33	10	0	0,19	≥ 4.10 ²⁰	-
№ 59	IO	0	0,04	≥ 4.10 ²⁰	-

. ...