

ОБЪЕДИНЕННЫЙ Институт Ядерных Исследований

Дубна

99-162

P14-99-162

1999

В.П.Глазков*, Д.П.Козленко, Б.Н.Савенко, В.А.Соменков*

ИССЛЕДОВАНИЕ КОЛЕБАТЕЛЬНЫХ СПЕКТРОВ ГАЛОГЕНИДОВ АММОНИЯ NH₄ I И NH₄F ПРИ ВЫСОКИХ ДАВЛЕНИЯХ МЕТОДОМ НЕУПРУГОГО РАССЕЯНИЯ НЕЙТРОНОВ

Направлено в «ЖЭТФ»

*РНЦ «Курчатовский институт», 123182, Москва

1. Введение

Изучение влияния высоких давлений на галогениды аммония представляет интерес для выяснения изменений в структуре и спектрах возбуждения с целью определения характеристик потенциалов взаимодействия и природы фазовых переходов, происходящих при уменьшении объема [1].

Одним из наиболее существенных вопросов динамики галогенидов аммония изучение является поведения либрационной моды иона аммония при ориентационных фазовых переходах, возникающих при изменении внешних условий (температуры и давления). Для изучения этого вопроса наиболее предпочтительным является метод нейтронной спектросконии, который позволяет определять положение либрационного ника непосредственно по экспериментальным данным. В противоположность этому оптические методы инфракрасной и рамановской спектроскопии нечувствительны к либрационной моде и она определяется лишь из обертонов и комбинационных мод. что может приводить к погрешностям расчетах. Однако возможность нскоторым в проведения экспериментов по неупругому расссянию нейтронов при достаточно высоких давлениях появилась совсем педавно благодаря развитию техники наковален. Так, в работе [2] исследовался колебательный спектр NH4Cl при давлениях до 4 ГНа. Были получены зависимости либрационной н поперечной онтической трансляционной мод от давления и ноказана возможность их пересечения с возникновением фазового перехода при более высоких давлениях. Аналогичные результаты получены недавно и для NH4Br [3]. Поэтому казалось интересным изучение поведения этих мод под давлением для всего класса галогенидов аммония, в частности для NH₄I и NH₄F.

Нейтронографические исследования ND₄Cl, ND₄Br, ND₄I и ND₄F при давлениях до 4 - 5 ITIa [4, 5], проведенные нами ранее, показали, что структурное поведение галогенидов аммония при высоких давлениях характеризуется наличием единого критического значения позиционного нараметра дейтерия (водорода), u_{kr} , определяющего точку ориентационного фазового перехода и предположительно связанного с изменением потенциального рельсфа при уменьшении объема [5].

Для всех галогенидов аммония (кроме NH₄F) характерно наличне ориентационно неупорядоченной кубической фазы II со структурой типа CsCl, которая при повышении давления до искоторого значения переходит в ориентационно упорядоченную кубическую фазу IV (структура типа CsCl с упорядочением ферромагнитного типа) в случае NH₄Cl ($P \sim 0.6$ ГПа [4]) и NH₄Br ($P \sim 2.5$ ГПа [4]) или тетрагопальную фазу V (упорядочение антиферромагнитного типа) в случае NH₄I ($P \sim 8.3$ ГПа [6]) при примерно одном и том же критическом значении позиционного параметра.

В отличие от других галогенидов аммония в пормальных условиях фторид аммония NH₄F имеет структуру вюрцита (фаза NH₄F(1), пр. тр. *P63mc*) [5]. При компатной температуре и давлении P = 0.45 ГПа происходит фазовый переход в сложную ромбоэдрическую структуру, содержащую 24 молекулы в тексатональной

2

элементарной ячейке (фаза NH₄F(II), пр. гр. R3c). В NH₄F значение позиционного параметра изначально превышает критическое и для него существует только упорядоченная кубическая фаза III, изоструктурная фазе IV других галогенидов аммония [5]. Переход в фазу NH₄F(III) происходит при давлении P = 1,15 ГПа [5].

Цель данной работы заключалась в исследовании колебательных спектров кубических фаз NH₄I и NH₄F при высоких давлениях методом неупрутого рассеяния нейтронов для получения информации о характеристиках вращательного потенциала и его изменении при ориентационных фазовых переходах.

2. Описание эксперимента

Эксперименты выполнены при компатной температуре на спектрометре ДH-12 [7] на импульсном высокопоточном реакторе ИБР-2 в ЛНФ ОИЯИ (Дубна) с использованием камер высокого давления с сапфировыми наковальнями [8], объем образца составлял $V \sim 2 \text{ мм}^3$. Давление в камере измеряли по сдвигу рубиновой линии люминесценции с точностью 0,05 ГПа. Для анализа передач энергии нейтронов использовали охлаждаемый бериллиевый фильтр, установленный под углом рассеяния $2\theta = 90^\circ$ [3]. Конечная энергия регистрируемых нейтронов составляла $E_2 = 4$ мэВ. Характерное время измерения одного спектра - 40 ч.

3. Основные результаты

В спектрах обобщенной плотности колебательных состояний G(E)кубических фаз NH₄I и NH₄F (рис. 1 и 2) присутствуют два пика, отвечающих поперечной оптической трансляционной моде (TO) и либрационной моде (L). Для NH₄I значения частот этих мод имеют близкие значения, и соответствующие пики частично перекрываются. Для NH₄F пик L- моды значительно смещен в область более высоких энергий по сравнению с NH₄I и перекрытие пиков TO- и L- мод не наблюдается. Полученные зависимости частот TO- и L- мод от давления для NH₄I и NH₄F показаны на рис. 3 и 4. Экспериментальные значения v_i при различных давлениях по данным настоящей и других работ представлены в табл. 1.

	NH₄I, фаза I	[NH ₄ F	:
<i>Р</i> , ГПа	<i>v_L</i> , мэВ	<i>v_{то}</i> , мэВ	<i>Р</i> , ГПа	<i>v_L,</i> мэВ	<i>v_{to}</i> , мэВ
0, <i>T</i> =-25 °C [9]	34,1(7)	17,1(7)	0 (фаза I), [9]	68,9(2)	28,6(7)
0,5	33,3(9)	18,6(9)	0,7 (фаза II)	65,2(9)	30,8(9)
1,6	34,3(9)	20,8(9)	1,9 (фаза III)	74,7(9)	27,2(9)
2,2	34,9(9)	22,0(9)	3,4	75,6(9)	30,3(9)
3,3	35,9(9)	24,0(9)	4,7	76,1(9)	31,5(9)
4,1	36,2(9)	25,4(9)			

Таблица 1. Значения частот ТО-и L- мод в NH4I и NH4F при различных давлениях

3

Рис. 1. Обобщенная плотность колебательных состояний NH4 при различных давлениях

Рис. 2. Обобщенная плотность колебательных состояний NH₄F при различных давлениях

Рис. 3. Зависимости частот TO- и L- мод для NH4I от давления. Черные квадраты данные настоящей работы; ромбы - нейтронные данные [9]; белые квадраты рамановские данные [10]

Рис. 4. Зависимости частот ТО- и L- мод для NH4F от давления. Белые круги данные настоящей работы; черные круги - нейтронные данные [9]

NH₄I не испытывает фазовых превращений в диапазоне 0,05 < P < 8,3 ГПа [6], и частоты *TO*- и *L*- мод линейно возрастают с увеличением давления (рис. 3), как и в NH₄Cl [2]. Экстраполяция полученных зависимостей к P = 0 дает значения v_{TO} и v_L , близкие к значениям [9], измеренным для фазы NH₄I(II) при T = -25 °C (рис. 3). Зависимость $v_{TO}(P)$ согласуется с рамановскими данными [10], а зависимость $v_L(P)$ несколько отличается от рассчитанной по данным [10]. Представленные в табл. 2 вместе со значениями производных dv_i/dP параметры Грюнайзена *TO*-и *L*- мод, $\gamma_i = -(dlnv_i/dlnV)_T$ рассчитаны для кубических фаз NH4I(II) при P = 0.5 ГПа и NH₄F(III) при P = 1.9 ГПа. При вычислениях использовались следующие значения модуля всестороннего сжатия $B = B_0+B_I\cdot P$: B(P=0,5 ГПа) = 16,8(7) ГПа для NH₄I [11] и B(P=1,9 ГПа) = 93,4(7) ГПа для NH₄F [4]. Полученное значение γ_i (v_{TO}) = 1,7(2) для NH₄I меньше, чем величина, определенная в работе [10] по рамановским спектрам: γ_i (v_{TO}) = 2,4(3).

Таблица 2. Параметры Грюнайзена ТО-и L- мод для NH4I при P=0,5 ГПа и NH4F при P=1,9 ГПа

NH4I			NH4F		
Мода	<i>d</i> v _i / <i>dP</i> , мэВ/ГПа	Ŷi	Мода	<i>dv_i/dP,</i> мэВ/ГПа	'n
ТО	1,89	1,7(2)	TO	1,52	5,2(2)
L	0,82	0,4(1)	L	0,5	0,63(1)

Спектр G(E) ромбоэдрической фазы NH₄F(II), измеренный при P = 0,7 ГПа, имеет три пика, соответствующих поперечной акустической моде (TA), TO- и Lмодам. Характерной особенностью спектра является очень сильный TA-пик, интенсивность которого превышает интенсивности других пиков.

Для NH₄F наблюдается небольшое увеличение частоты поперечной оптической моды v_{TO} с 28,6 мэВ до 30,8 мэВ при переходе I-II и последующее ее уменьшение до 27,2 мэВ при переходе II-III (рис. 4). Либрационная мода ведет себя противоположным образом: v_L уменьшается с 68,9 до 65,2 мэВ при переходе I-II и увеличивается до 74,7 мэВ при переходе II-III (рис. 4). Значения v_{TO} и v_L при P = 0 взяты из [9]. В кубической фазе III при дальнейшем увеличении давления частоты обеих мод возрастают, при этом величина v_L слабо зависит от давления. Значение v_L для NH₄F(III), $v_L(P=1,9$ ГПа) = 74,7 мэВ, значительно превышает соответствующие значения для других галогенидов аммония ($v_L \sim 40$ мэВ). Возможно, это связано с наличием сильных водородных связей в NH₄F [12].

Меньшее значение v_L для фазы NH₄F(II), по-видимому, связано с тем, что эта структура имеет менее сильные водородные связи N-H...F по сравнению с фазами NH₄F(I) и NH₄F(III). Результаты нейтронографического исследования дейтерированного фторида аммония ND₄F(II) [12] показали, что расстояния D-F в этой структуре примерно на 5 % больше, чем в ND₄F(I) и углы N-D-F примерно на 10° искажены по сравнению с соответствующей величиной 180° для ND₄F(I) и ND₄F(III).

4. Обсуждение результатов

Существует несколько моделей [13-15], позволяющих установить связь между частотой либрационной моды и вращательным потенциальным барьером для иона аммония в кубической решетке. В работе [13] рассматривались колебания ангармонического анизотропного осциллятора в поле феноменологического

электростатического потенциала [16], соответствующего кубической симметрии кристалла и тетраэдрической симметрии иона аммония:

$$V = \frac{V_0}{2} \sum_{i=1}^{4} \left(\frac{x_i^4 + y_i^4 + z_i^4}{l_{N-H}^4} - \frac{3}{5} \right), \tag{1}$$

где l_{N-H} - длина N-H- связи и x_i , y_i , z_i - координаты атомов водорода иона аммония. Высота вращательного потенциального барьера V_0 определяется длиной N-H- связи и параметром решетки a:

$$V_0 = 46.8 \left(\frac{e}{4}\right)^2 \frac{l_{N-H}^4}{a^5} .$$
 (2)

В рамках этой модели соотношение между V0 и VL имеет вид

$$V_0 = \frac{1}{16} \frac{(v_L + 5h^2/2I)^2}{h^2/2I} , \qquad (3)$$

где h - постоянная Планка, I - момент инерции иона аммония и v_L выражается в энергетических единицах.

Знание барических зависимостей $v_L(P)$ и зависимостей параметра решетки a(P) позволяет рассчитать зависимость $V_0(a)$, которая характеризует V_0 как функцию межионного расстояния в кристалле. Известно, что поведение либрационной моды изменяется при ориентационном фазовом переходе II - IV, происходящем в галогенидах аммония под давлением [2]. На рис. 5 представлены зависимости $V_0(a)$ для неупорядоченной и упорядоченной кубических фаз галогенидов аммония, рассчитанные по результатам настоящей работы и нейтронным данным $v_L(P)$ [2] (NH₄Cl) и [3] (NH₄Br). Данные a(P) и значения давлений перехода II-IV для NH₄Cl и NH₄Br взяты из работ [4, 5]. Значения V_0 при P = 0 согласуются со значениями активационной энергии иона NH₄⁺ в галогенидах аммония, полученных методом ядерного магнитного резонанса (ЯМР) [13].

Обе кривые пересекаются при значении параметра решетки $a_{kr} \approx 3,88$ Å (рис. 5), что эквивалентно (при неизменном значении длины N-H- связи) примерно одному и тому же значению позиционного параметра ($u_{kr} = l_{N-H}/a_{kr}\sqrt{3}$), характеризующему ориентационный фазовый переход II-IV, который происходит при близких к a_{kr} значениях, a = 3,83 Å в NH₄Cl и a = 3,89 Å в NH₄Br [4].

Результаты интерполяции зависимостей Vo(a) для фаз II и IV функцией типа

$$V_0(a) = B/a^C \tag{4}$$

(рис. 5) дают значения параметров В и С, представленные в табл. 3.

Значения степенного показателя для неупорядоченной фазы близко к C = 5, что говорит о том, что соотношение (3) является хорошим приближением для определения V_0 . В то же время его значение для упорядоченной фазы ближе к C = 7, что, по-видимому, обусловлено тем, что в этом случае увеличивается вклад октуполь-октупольного взаимодействия ионов аммония в энергию системы [17-18], $V_{O\cdot O} \sim I_3^{2/a^7}$, где I_3 - октупольный момент ионов NH_4^+ . Величина этого вклада зависит от взаимной ориентации ионов NH_4^+ и мала в случае ориентационно неупорядоченной фазы [18]. Отличие значений степенных показателей от C = 5 (для неупорядоченной фазы) и C = 7 (для упорядоченной фазы) указывает на необходимость учета членов более высокого порядка (ангармонизма, мультиполей и пр.).

Рис. 5. Зависимость вращательного потенциального барьера V_0 от параметра решетки для ориентационно неупорядоченной и упорядоченной фаз галогенидов аммония. Треугольники - NH₄I, квадраты - NH₄Br [8], круги - NH₄Cl [2], ромбы -NH₄F. Кресты - значения активационной энергии для NH₄Cl, NH₄Br и NH₄I, полученные методом ЯМР [13]

Параметр	Неупорядоченная фаза	Упорядоченная фаза	
В, кДж/моль	5,087·10 ³	74,098·10 ³	
С	4,2(2)	6,2(2)	

Таблица 3. Значения параметров В и С для потенциала (4)

Таким образом, полученные результаты показывают изменение зависимости потенциального барьера вращательного от межатомного расстояния при ориентационном фазовом переходе. Возможно, ситуация, аналогичная что галогенидам аммония, имеет место и для ориентационных переходов в других системах с молекулярными катионами, когда сжимаемость определяется главным образом анионной подрешеткой.

В этом случае, считая, что

$$a_0 - (da/dP) \cdot P_{tr} = a_{kr} ,$$

получаем простую оценку давления перехода

$$P_{\rm tr} = (a_{kr} a_0)/\alpha,$$

где a_0 - параметр решетки при атмосферном давлении, $\alpha = da/dP$ - линейная сжимаемость.

Интерполяция зависимостей $v_L(P)$ и $v_{TO}(P)$ для NH₄I в область высоких давлений указывает на возможность их пересечения, $v_L = v_{TO}$ при $P \sim 14$ ГПа. Поскольку ион аммония участвует как в либрационном, так и в трансляционном движении, то возможен резонанс между TO-и L- модами, который может привести к структурной неустойчивости и фазовому переходу при высоких давлениях. В рамановских исследованиях [10] при высоких давлениях были обнаружены сильные изменения в спектрах, на основе которых сделано предположение о фазовом переходе в новую, ранее неизвестную фазу высокого давления NH₄I(V), при давлении $P_V = 5,4(5)$ ГПа. В нейтропографическом исследовании дейтерированного иодида аммония ND₄I [6] было показано, что реальный структурный фазовый переход происходит лишь при существенно более высоком давлении P = 8,3 ГПа. Учитывая, что при этом давлении разница частот TO- и L- мод не должна превышать 5 мэВ, это может являться указанием на существование взаимодействия между TO-и L- модами, приводящего к изменениям в динамике NH₄I при высоких давления и, как следствие - к структурному фазовому переходу.

5. Заключение

Результаты данной работы, полученные с помощью неупругого рассеяния нейтронов при высоких давлениях, показывают, что ориентационные фазовые переходы в галогенидах аммония могут быть описаны на основе изменения вращательного потенциала как функции расстояния в рамках предложенных ранее теоретических моделей. Пересечение потенциалов упорядоченной и неупорядоченной фаз при близких значениях параметра решетки или позиционного параметра для разных соединений объясняет установленные ранее закономерности структурного поведения галогенидов аммония и позволяет прогнозировать поведение других систем аналогичного типа.

Авторы признательны Н.Н.Паршину и С.Л.Платонову за помощь в подготовке и проведении экспериментов.

Работа поддержана грантами РФФИ № 97-02-16622, РФФИ № 97-02-17587 и Государственной программой "Нейтронные исследования конденсированных сред".

Литература

- 1. S.J.Jeon, R.F.Porter, A.L.Ruoff, Journal of Raman Spectroscopy, 19, 179, (1988).
- 2. A.M.Balagurov, B.N.Savenko, A.V.Borman, V.P.Glazkov, I.N.Goncharenko, V.A.Somenkov, G.F.Syrykh, High Press. Res., 14, 55 (1995).
- А.М.Балагуров, В.П.Глазков, Д.П.Козленко, Ю.М.Красников, И.В.Наумов, С.Л.Платонов, А.В.Пухов, Б.Н.Савенко, В.А.Соменков, Г.Ф.Сырых, Препринт ОИЯИ Р13-97-312, Дубна (1997).
- А.М.Балагуров, Д.П.Козленко, Б.Н.Савенко, В.П.Глазков, В.А.Соменков, ФТТ, 40, 142 (1998).
- 5. В.П.Глазков, Д.П.Козленко, Б.Н.Савенко, В.А.Соменков, С.Ш.Шильштейн, Кристаллография, 44, 55 (1999).
- 6. V.P.Glazkov, D.P.Kozlenko, B.N.Savenko, V.A.Somenkov, S.Hull, Physica B 265, 92 (1999).
- V.L.Aksenov, A.M.Balagurov, S.L.Platonov, B.N.Savenko, V.P.Glazkov, I.V.Naumov, V.A.Somenkov, G.F.Syrykh, High Press. Res., 14, 181 (1995).
- 8. В.П.Глазков, И.Н.Гончаренко, Физика и техника высоких давлений 1, 56, (1991).
- 9. V.W.Myers, J. Chem. Phys. 46, 4034 (1967).
- 10. A.M.Heyns, K.R.Hirsh, W.B.Holzapfel, J.Chem.Phys., 73, 105 (1980).
- 11. P.W.Bridgman, Proc. Am. Acad. Arts Sci., 74, 21 (1940); 76, 1 (1945).
- 12. A.C.Lawson, R.B.Roof, J.D.Jorgensen, B.Morosin, J.E.Schirber, Acta Cryst. B45, 212 (1989).
- 13. H.S.Gutowsky, G.E.Pake, R.Bersohn, J. Chem. Phys. 72, 643 (1954).
- 14. G.Venkataraman, K. Usha Deniz, P.K. Iyengor, A.P.Ray, P.R.Vijayaraghavan, J.Phys. Chem. Solids 27, 1103 (1966).
- 15. C.W.Garland, B.B.Weiner, J. Chem. Phys. 53, 1609 (1970).
- 16. T.Nagamiya, Proc. Phys. Math. Soc. Jpn 24, 137 (1942).
- 17. Y.Ebisuzaki, J. Chem. Phys. 61, 3170 (1974).

.

18. O.H.Seeck, D.Hupfeld, H.Krull, M.Tolan, W.Press, Phys. Rev. B58, 623 (1998).

Рукопись поступила в издательский отдел 2 июня 1999 года.