

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

99-131

P14-99-131

Г.Батдэмбэрэл, Д.Сангаа\*, Д.Чултэм

ИССЛЕДОВАНИЕ СТРУКТУРЫ ИСКОПАЕМОГО КОСТНОГО МИНЕРАЛА С ПОМОЩЬЮ РАССЕЯНИЯ НЕЙТРОНОВ

Направлено в журнал «Nukleonika»

\*Монгольский национальный университет, г.Улаанбаатар



#### 1. Введение

Кости динозавров, живших на Земле в период Мезозойской эры, т.е. 50-250 миллионов лет тому назад, являются уникальным документом в летописи истории естествознания.

В результате палеонтологических исследований восстановлены опорнодвигательные системы и размеры этих гигантских рептилий. Тем не менее, информативность макроструктуры скелетов крайне низка для оправдания эволюционных гипотез, построенных на основе гомологии (аналогии) органов. Это связано с тем, что среди ископаемых находок отсутствуют следы переходных форм [1].

В отличие от кости современных позвоночных, ископаемая кость динозавра не содержит органического компонента в результате его разложения за длительное время. Следовательно, вероятность получения какой-либо информации о гомологии белков с помощью биохимических исследований чрезвычайно мала.

Что касается минерального компонента ископаемой кости, наилучшим методом его исследования является сравнение с костным минералом современнных позвоночных, включая человека, состоящим из фосфорнокислого и углекислого кальция [2].

За последние годы выполнен нами был ряд экспериментов по исследованию элементного состава и структуры ископаемых костей. С помощью методов ядерной спектроскопии, нейтронной активации протонной И флуоресценции [3-6] было показано, что в костях динозавров за длительное геологическое время накапливаются различные химические элементы в результате изоморфного замещения кальция и фосфора ионами: UO2+\*, Ra++, Sr++, Ba++, Sc, Ү, лантанидов и др. Большая концентрация этих элементов, например, урана вплоть до 10<sup>-3</sup> г/г (т.е. один килограмм урана на тонну ископаемых костей!) связана с тем, что процесс изоморфного замещения был одностронним из-за устойчивости апатита в воде.

С помощью метода рентгеновской дифракции [7] было показано, что кость динозавра представляет собой многофазную систему, состоящую, в основном, из гидроксиапатита и различных модификаций карбоната кальция: кальцит, арагонит и фатерит.

Настоящая работа посвящена исследованию микроструктуры кости динозавра с помощью метода нейтронной дифракции.

1

### 2. Методика эксперимента

Характеристики дифрактометра. Эксперимент проведен на нейтронном дифрактометре ДН-2, установленном на пучке реактора ИБР-2 ОИЯИ (Дубна). Схема ТОГ – дифрактометра ДН-2 представлена на рис.1. Нейтронный пучок на образец формируется изогнутым зеркальным нейтроноводом. Расстояние между замедителем и образцом L = 24 м. Средний поток на образце составлял  $10^{+7}$  н/см<sup>2</sup> с. Рассеянные нейтроны регистрировались под углом  $\theta_0 = 87.5$  градусов однокоординатным гелиевым (<sup>3</sup> Не) детектором, соединенным с времяпролетной электроникой. Угловая градуировка произведена с помощью образца NaCl, имеющего известную структуру. Разрешение дифрактометра  $\Delta d/d \sim 1\%$  при d<sub>bbl</sub> = 2 Å.



Рис.1. Схема дифрактометра ДН-2 на реакторе ИБР-2. 1- замедитель, 2,4,5- стена и блоки биологической защиты, 3- зеркальный нейтроновод с радиусом кривизны 1600 м, 6- платформа, 7- гониометр с образцом, 8- детекторная система

Исследуемый образец. Порошковый образец (кость динозавра) помещался в цилиндрическом контейнере диаметром 7 мм из алюминиевой фольги толщиной 5 мкм. Из-за полного разложения органического компонента за большие геологические времена образец содержал только минеральный компонент и не было необходимости химической обработки.

Обработка информации. Дифракционные спектры нейтронов в зависимости от длины волны накапливаются в электронной памяти. Все дифракционные пики в спектре были идентифицированы в рамках тригональной структуры (пр. гр. Рб,/m). Ни одного сколько-нибудь заметного дифракционного пика от других фаз найдено не было. Обработка данных производилась по методу Ритвельда [8] с использованием программы MRIA [9]. Когерентные длины рассеяния брались из [10]: 0.48, 0.513, 0.580, -0.374, 0.566 и 0.957 фм. соответственно для Са, Р, О, Н, F и CI. Уточнение структурных параметров для 195 дифракционных пиков по структурной проводилось модели (Ca, [PO<sub>4</sub>]<sub>3</sub>(OH, F, Cl)), на базе данных "American Mineralogist Crystal Structure Database" [11]. Дифракционный спектр, полученный в результате обработки, приведен на рисунке 2.

# 3. Результаты эксперимента и их обсуждение

Результаты эксперимента представлены на рисунке 2 и в таблице 1а.



Рис.2. Дифракционный спектр кости динозавра (фаза: Ca<sub>5</sub> [PO<sub>4</sub>]<sub>3</sub> (OH, F, Cl)). точки - исходный спектр, линия - расчет, внизу - их разность и расчетные положения пиков



Рис.3. Структура кристаллов гидроксила<br/>патита Са $_{5}$  [PO  $_{4}$  ]  $_{3}$  <br/>(OH)

Таблица 1. Сравнение структурных данных минерала костей динозавра (таблица 1а. - настоящая работа) и синтетического образца гидроксиапатита (таблица 16) [12]. В таблице 1а приведены критерии достоверности обработки.

x/a, y/b, z/c - координаты атомов, В - тепловой фактор, n - заселенность, V - объем решетки, a, с - параметры решетки

| а.   | Гидроксилапатит, пр. гр. Рб <sub>3</sub> /т (176). |       |       |       |       |       |       |      |      |
|------|----------------------------------------------------|-------|-------|-------|-------|-------|-------|------|------|
| Атом | Позиции                                            | x/a   | y/b   | z/c   | B     | n     | v     | a, Å | c, Å |
| Cal  | 4(f)                                               | 0.667 | 0.333 | 0.001 | 0.404 | 0.155 | 526.9 | 9.37 | 6.91 |
| Ca2  | 6(h)                                               | 0.974 | 0.198 | 0.250 | 0.508 | 0.150 |       |      |      |
| P1   | 6(h)                                               | 0.376 | 0.415 | 0.250 | 0.001 | 0.199 |       |      |      |
| 01   | 6(h)                                               | 0.479 | 0.323 | 0.250 | 0.251 | 0.289 |       |      |      |
| O2   | 6(h)                                               | 0.466 | 0.589 | 0.250 | 0.689 | 0.384 |       |      |      |
| O3   | 12(i)                                              | 0.259 | 0.348 | 0.064 | 0.236 | 0.590 |       |      |      |
| O4   | 2(b)                                               | 0.000 | 0.000 | 0.250 | 0.163 | 0.431 |       |      |      |
| Н    | 2(b)                                               | 0.000 | 0.000 | 0.250 | 0.858 | 0.569 |       |      |      |
| F    | 2(b)                                               | 0.000 | 0.000 | 0.250 | 0.825 | 0.137 |       |      |      |
| Cl   | 2(b)                                               | 0.000 | 0.000 | 0.428 | 0.734 | 0.139 |       |      |      |

Критерии достоверности:

| Rp = 2.20       | для $\sum abs(I_e - I_c) / \sum abs(I_e)$ |
|-----------------|-------------------------------------------|
| Rw = 2.02       | $SQRT(\sum w(I_e - I_c)^2 / \sum wI_e^2)$ |
| Re = 2.18       | $\sum sigma / \sum abs(I_e)$              |
| $\chi^2 = 1.81$ |                                           |

**б.** Гидроксиапатит, пр. гр. Р6<sub>3</sub>/т.

| Атом | x/a   | y/b   | z/c   | В     | a, Å c, Å |
|------|-------|-------|-------|-------|-----------|
| Cal  | 0.333 | 0.667 | 0.001 | 0.666 | 9.43 6.88 |
| Ca2  | 0.246 | 0.993 | 0.250 | 0.328 |           |
| P1   | 0.400 | 0.369 | 0.250 | 0.192 |           |
| 01   | 0.329 | 0.484 | 0.250 | 0.295 |           |
| O2   | 0.589 | 0.466 | 0.250 | 0.496 |           |
| O3   | 0.348 | 0.259 | 0.073 | 0.632 |           |
| OH   | 0.000 | 0.000 | 0.250 | 0.875 |           |

• Полученные в нейтронографическом эксперименте данные показывают, что в ископаемой кости динозавра доминирует фаза  $Ca_5[PO_4]_3(OH, F, Cl)$ , имеющая низкую кристаллическую сингонию (пр. гр.  $P6_3/m$ ). Это совпадает с результатами рентгенографических исследований костей динозавра [7]. Нам не известны детали структуры фаз костей других позвоночных, кроме ранних работ [2], в которых в результате рентгенографических исследований установлен лишь тип кристаллической решетки костного минерала в виде гидроксилапатита. Уточнение структуры гидроксиапатита производился в работе [12] с помощью рентгеновской дифракции на синтетическом кристалле гидрокиапатита  $Ca_{10}(PO_4)_6(OH)_2$ .

Результаты обработки спектров гидроксилапатита показали наличие сильного отклонения заселенности большинства атомов от стехиометрического состава, которое связано с различного рода дефектами.

Значения параметров (a=9.4 Å и c=6.9 Å) решетки, полученные в нейтронографическом эксперименте (таблица la), с хорошей точностью совпадают с значениями соответствующих параметров, полученными на синтетическом гидроксиапатите (таблица lб). Атомы Cal находятся на эквивалентных позициях (1/3, 2/3, z) или (2/3, 1/3, z).

При уточнении спектра без атомов F и Cl значения R - факторов заметно увеличивались, что свидетельствует о содержании этих атомов в составе костного минерала.

На рисунке 3 представлена пространственная структура гидроксилапатита, в которой атомы кальция натянуты вдоль тройных осей, окружены девятью атомами кислорода и связаны по бокам тетрагональными группами комплексных анионов  $[PO_4]^{-3}$  с образованием сложных цепочек, параллельных оси с. В каждом канале между цепочкими находится один из атомов фтора, хлора или гидроксила, который окружен тремя дополнительными атомами кальция. Расположение атомов кальция образует гексагон, а расположение групп гидроксильных ионов (OH) образует параллеленинед.

• Благодаря высокой чувствительности нейтронографического метода к легким атомам получен новый результат по концентрации добавочных анионов. Уточнения структурных параметров (табл. la) показывают, что заселенность атомов водорода (0.569) в апатитной фазе кости линозавра приблизительно в два раза превышает суммарную заселенность атомов фтора (0.137) и хлора (0.139). Этот факт подтверждает название фазы: гидроксилапатит.

• Результат настоящего эксперимента показывает низкую чувствительность нейтронографического метода к фазам, состоящим из тяжелых атомов, например карбонат кальция: CaCO<sub>3</sub>, который имеет большую концентрацию в кости. Это связано с малым значением длины рассеяния нейтронов на таких атомах. Исследование различных модификаций карбонатной фазы кости животных (в том числе ископаемой кости) лучше провести с помощью рентгенографического метода. Результаты такого эксперимента будут опубликованы в другой нашей работе.

# 4. Благодарности

Авторы выражают благодарность А.И. Бескровному, С. А. Кутузову и А.Х. Исламову за помощь в проведении нейтронных экспериментов и полезное обсуждение результатов измерения, а также профессору Е.А. Красавину и сотрудникам ОРРИ ОИЯИ за ценные советы по биологическим проблемам.

# Литература

- 1. David M. Raup and Steven Stanley, Principles of Paleontology. p11 (San Francisco: W.H. Freeman "Co., 1971)
- 2. Neuman W.F., Neuman M.W., The nature of the mineral phase of bone. Chem. Revs., vol 53, p1. (1953).
- Т. Гунаажав, Ш. Гэрбиш, О. Отгонсурэн, Ж. Сэрээтэр, Д. Чултэм., Исследование радиоактивности костей динозавра с помощью гаммаспектрометра высокого разрешения. Атомная энергия, т.35, с130, 1973.
- 4. О. Отгонсурэн, В. П. Перелыгин, Д. Чултэм., Отложение урана в костях животных. Атомная энергия, т.29, с301, 1970.
- 5. Ж. Ганзориг, Т. Гунаажав, Ш. Гэрбиш, О. Отгонсурэн, Ж. Сэрээтэр, И.Чадраабал, Д. Чултэм., Нейтронно-активационный анализ костей динозавра на уран, торий и редкоземельные элементы. Атомная энергия, т.35, вып.5, с.349. 1973.
- 6. Я. Бразевич, Лю Зай Ик, Г. М. Осетинский, А. Пурэв, Д. Чултэм. Замещение кальция в костях динозавра двухвалентными ионами уранила. ОИЯИ Р 14-84-299 Дубна, 1984.
- 7. Д. Чултэм, Д. Сангаа, А.А. Кацнельсон., Рентгенографические исследование костей динозавра. МУИС, ЭШБ, N3(99) 1988, Монголия.
- 8. Rietveld H.M. // Acta Cryst. 1967. v.22. p.151.
- 9. V.B. Zlokazov, V.V. Chernyshov, MRIA a program for full profile analysis of powder neutron diffraction time-of-flight (direct and fourier) spectra. jinr, p.10-90-315, Dubna, 1990.
- 10. V.F.Sears, Neutron News, vol.3, No.3, 1992.
- 11. http://www.geo.arizona.edu/xtal-cgi/mgate: Hughes J.M., Cameron M., Crowley K.D. American Mineralogist 74 (1989) 870-876.
- 12. Posner A.S., Perloff A., Diorio A.F., (1958). Refinement of the hydroxyapatite structure. Acta. Cryst., 11, 38.

Рукопись поступила в издательский отдел 28 апреля 1999 года.