

СООБЩЕНИЯ ОБЪЕДИНЕННОГО Института Ядерных Исследований

Дубна

98-104

P14-98-104

Н.И.Балалыкин, В.Ф.Минашкин, А.В.Скрыпник, С.И.Тютюнников, В.Н.Шаляпин, С.Н.Шашков

РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ НЕКОТОРЫХ НОВЫХ МАТЕРИАЛОВ

Введение

В последнее время появился целый ряд новых материалов с интересными физико-химическими свойствами. Беднорцем и Мюллером открыто явление высокотемпературной сверхпроводимости купратах [1]. оксидных в Последующие попытки увеличить температуру сверхпроводящего перехода увенчались успехом - открытием группой исследователей из Университета шт.Алабамы (Хантсвилл) и Хьюстонского университета [2] соединения YBa₂Cu₃O₇₋₅, являющегося сверхпроводником при Т_с≈ 95 К. Указанное постижение стимулировало широкий фронт работ по поиску других высокотемпературных сверхпроводников. Была открыта одна из форм углеродафуллерен С₆₀ [3], при допировании которого ионами щелочного металла получают материал с T_c≈ 19÷33 К. Ценность фуллерена состоит также и в необыкновенном своеобразии физико-химических, оптических и механических свойств.

Еще одним интересным примером является новое соединение $^{*}CuCl_{2}L_{2}\cdot 2H_{2}O$,

CH2=CH-CAN-CH,

гле L

По предварительным данным подобные соединения ферромагнитны при температурах <20 К.

Целью данной работы являлось рентгеноструктурное исследование перечисленных выше материалов (CuCl₂L₂·2H₂O, YBa₂Cu₃O₇₋₅, C₆₀).

Описание установки и методика измерений

Для съёмки рентгенограмм был использован модернизированный нами рентгеновский дифрактометр общего назначения ДРОН-2М [4]. Дифрактометр ДРОН-2М позволяет проводить общий рентгеноструктурный анализ поли- и монокристаллов при разных внешних условиях. Он имеет в своем составе несколько основных частей (рис.1):

- источник рентгеновского излучения (рентгеновская трубка БСВ23-Си и высоковольтный источник питания ВИП2-50-60М);

 гониометр ГУР-5, который обеспечивает проведение рентгенографических исследований различных материалов с помощью специальных приставок и температурных камер;

- система управления, которая задает режим работы гониометра и организует измерение интенсивности дифракционных отражений от исследуемых образцов.

*Образец предоставлен учеными ИФХП при Белорусском государственном университете (Минск): Сотстанисти. М. Билтатут

SUCHANE ECCARTERIN

Управление аппаратурой осуществляется от компьютера типа *IBM PC/AT* через крейт-контроллер *КК009* и плату связи *ПК009*. Программное обеспечение контролирует работу всех подсистем дифрактометра, осуществляет набор экспериментальных данных и их предварительную обработку.

Рис.1. Рентгеновская установка ДРОН-2М

При изготовлении образца учитывалось следующее*.

- Размеры частиц пробы должны быть ≈50 мкм. Поэтому проводили предварительное измельчение образца в агатовой ступке. После чего порошок прессовали на ручном прессе в цилиндрические столбики ~6 мм в диаметре и толщиной порядка 3 мм.

 Используемые вещества не должны были содержать примесей и загрязнений, приводящих к дополнительным линиям на рентгенограммах.
Учитывая это, столбики наклеивались пластилином на аморфную подложкуорганическое стекло.

Интерпретация рентгенограмм порошкообразных веществ включала следующие этапы:

- 1) определение углов отражения Θ_i ;
- подсчет межплоскостных расстояний, соответствующих значениям ^Θ_i;
- 3) индексирование рентгенограмм (нахождение индексов НКL);
- 4) определение постоянных решетки.

*Авторы признательны сотрудникам ЛНФ ОИЯИ за помощь в освоении методик регистрации порошкограмм на дифрактометре ДРОН.

2

Межплоскостные расстояния, соответствующие значениям θ_i , находятся из уравнения Вульфа–Брегта

 $N \cdot \lambda = 2d_1 \cdot \sin \Theta_1$

где

d_i - расстояние между двумя атомными плоскостями;

 Θ_i — углы отражения;

 λ – длина волны рентгеновского излучения (в нашем случае λ =1,5410 Å); N – порядок максимума;

Зная длину волны применяемого рентгеновского излучения и значения углов отражения Θ_i , легко определить соответствующие им значения d_i. Для повышения точности определения межплоскостных расстояний можно было бы ввести поправку на поглощение образца Δ , которая определяется по формуле

$$\Delta = \frac{2R}{l}(1 + \cos 2\Theta),$$

где R - радиус образца в мм; *l* - постоянная прибора, *l*=57,3 мм; Θ - углы отражения.

Поправки на поглощение нами не вводились.

Межплоскостные расстояния d_i , отвечающие отдельным значениям углов отражения Θ_i , кроме того связаны с характерными размерами кристаллической ячейки следующим образом:

где *а, в, с, \alpha, \beta, \gamma* - периоды элементарной ячейки и осевые углы; H, K, L - индексы рассматриваемой плоскости решетки.

Исходя из известного набора значений d_i=d_{HKL} и учитывая приведенные выше равенства, можно определить индексы Миллера HKL, соответствующие расстояниям d_i, а также параметры элементарной ячейки a, b, c, α, β, γ. Определенную помощь в указанной процедуре может оказать компьютерная программа TREOR90 [5].

3

Результаты рентгеноструктурного исследования CuCl₂L₂·2H₂O

Зарегистрированная нами рентгенограмма CuCl₂L₂·2H₂O, где в качестве лиганда L выступает молекула CH₂CH₂(CNNNN)CH₃, представлена на рис.2. Результаты обработки дифрактограммы сведены в таблицу 1. Из анализа таблицы I можно заключить, что CuCl₂L₂·2H₂O, по-видимому, кристаллизуется в орторомбической системе. Параметры элементарной ячейки следующие: a=15,96 Å, b=9,48 Å, c=7,73 Å, α =90°, β =90°, γ =90°. Объем элементарной ячейки V=1169,46 A³.

Рис.2. Рентгенограмма $CuCl_2L_2 \cdot 2H_2O$ (по оси абсцисс здесь и ниже отложены углы 2 Θ , град)

Таблица 1

Результаты индексирования рентгенограммы CuCl₂L₂·2H₂O

20 _{набл.}	d _{набл} .	20вычисл.	H	K	·L
град.	Å	град.			
11,54	7,664	11,44	0	0	1
15,95	5,552	15,95	2	0	1
21,80	4,074	21,79	2	. 2 .	0
23,01	3,862	23,00		: 0	2
25,11	3,544	25,09	4	0	1
		25,14	3	.2	• <i>•</i> • • •
28,64	3,115	en en proto e a com	$(a_{i}) \in \mathcal{A}_{i}$		
33,82	2,648	33,82	5	<u> </u>	0
35,26	2,544	35,26	i	0	3
37,90	2,372	37,88	2	1	3
		37,94	0	4	0
40,66	2,217	40,66	7	1	0

Результаты структурного исследования YBa2Cu3O7-5-керамики

Проведем исследование кристаллической структуры керамики YBa₂Cu₃O₇₋₅. Накопление данных по структурным особенностям высокотемпературных сверхпроводящих керамик даст также и дополнительную возможность установить корреляции структуры - электрические (или другие) свойства.

Рентгеновская дифрактограмма высокотемпературной сверхпроводящей керамики YBa₂Cu₃O₇₋₈, находящейся при комнатной температуре T=295 К, приведена на рис.3. Некоторые наиболее важные результаты индексирования рентгенограммы образца YBa₂Cu₃O₇₋₈. мы свели в таблицу 2.

Рис.3. Рентгенограмма УВа2Си3О7-6

Из таблицы 2 и рис.3 можно заключить, что YBa₂Cu₃O_{7.δ} кристаллизуется в орторомбической системе. Параметры элементарной ячейки следующие: a=3,86; в=3,86; с=11,67 Å; α=β=γ=90°. Её объем V=17464 Å³. Приведенные структурные параметры сопоставимы с результатами нейтронографического анализа [6]: a=3,8245; в=3,888; c=11,688 Å.

Таблица 2

Результаты индексирования рентгенограммы YBa2Cu3O7-8

20 _{набл.}	d _{набл} .	20вычисл.	H	K	L
град.	Å	град.			
23,00	3,864	22,99	1	0	0
32,64	2,741	32,63	1	0	3
32,90	2,720				
38,62	2,329	38,63	. 1	0	4
46,70	1,944	46,66	0	0	6
55,02	1,668	55,04	0	0	7

5

Результаты рентгеноструктурного исследования фуллерена С60

Рентгенограмма фуллерена C₆₀ показана на рис.4. В ней наличествуют пики рентгеновского отражения при 20 10,54°, 17,50° и 20,59°. Последнее характерно для кристаллической фазы фуллерена C₆₀, имеющей элементарную ячейку кубической симметрии [7].

Рис.4. Рентгенограмма С₆₀

Заключение

С использованием модернизированного дифрактометра общего назначения ДРОН-2М проведены рентгенографические исследования некоторых материалов. Показано, что:

- CuCl₂L₂·2H₂O имеет орторомбическую решетку с параметрами a=15.96 Å, b=9.48 Å, c=7.73 Å.
- 2. YBa₂Cu₃O_{7-δ} кристаллизуется в орторомбической системе с параметрами а=3,86 Å, b=3,86 Å, c=11,670 Å.
- 3. Элементарная ячейка фуллерена С₆₀ является кубической.

Литература

[1] Y.G. Bednorz, K.A. Müller - Rev.Mod.Phys., 60 (1988), p.585.

[2] M.K. Wu et al. - Phys.Rev.Lett., 58 (1987), p.908.

[3] H.W. Kroto et al. - Nature, 318(1985), p.162.

[4] Н.И.Балалыкин, В.Ф.Минашкин и др. - Сообщение ОИЯИ Р13-96-488 (1996), Дубна.

Г 13-90-400 (1990), Дуона.

[5] P.E. Werner - Z.Krist. 120 (1964), p.375.

[6] Ю.А. Осипьян и др. - Письма в ЖЭТФ, 49 (1989),№ 4, с.214.

Рукопись поступила в издательский отдел 23 апреля 1998 гола.

[7] W.I. David et al. - Europhys. Lett., 18(1992), p.219.