

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

95-465

P14-95-465

А.М.Балагуров, О.Е.Парфенов*, В.В.Сиколенко, В.Г.Симкин, С.Ш.Шильштейн*

НЕЙТРОНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ УВа₂Си_{2.7}Zn_{0.3}.О_{6+у}

Направлено в журнал «Physica C»

*РНЦ «Курчатовский институт», Москва

1. Введение

Эффекты замещения атомов меди в системе $YBa_2Cu_3O_{6+y}$ на другие двух- и трехвалентные катионы продолжают оставаться предметом дискуссий. Ожидалось, прежде всего, что введение в матрицу Y123 катионов с большим магнитным моментом, таких как Fe, Co и Ni, должно приводить к быстрому подавлению сверхпроводящих свойств. Однако оказалось, что немагнитные Al и Zn дают такой же эффект и, более того, наиболее резко T_c уменьшается при введении Zn. Попытки объяснения подавления T_c связываются с модификацией механизма переноса заряда между двумя основными структурными элементами Y123 цепочками Cu-O и плоскостями CuO₂, а различия в действии разных катионов - с разными вероятностями заселения ими позиций меди Cu1 (в цепочках Cu-O) и Cu2 (в плоскостях CuO₂).

Для YBa₂(Cu_{1-x}Me_x)₃O_{6+y} с Me=Fe, Со достоверно установлено^{/1-4/}, что при х ≤ 0.1 и стандартной методике приготовления образцов содержание примесных атомов в позициях Cu₂ близко к нулю. Для Me=Al структурные данные менее подробны, но ситуация по-видимому такая же, как для Fe и Co (см., например,^{5/}). Для двухвалентного Ni есть нейтронографические данные как о его попадании только в узлы Cu₂^{/6/}, так и о его равномерном распределении между цепочками и плоскостями^{/7/}.

В случае Ме=Zn ситуация до сих пор остается неясной. Полуэмпирические расчеты 18/ модификации электронной структуры Y123 при замещении меди дают удовлетворительное согласие для всех элементов, кроме Zn. В ранних, выполненных в 1988-90 гг. работах, оба утверждения - о предпочтении цинком позиций в цепочках или плоскостях - встречаются почти одинаково часто. Например, в работе⁶ утверждается, что при x=0.1 2/3 атомов цинка попадают в Cul позиции. Однако в другой, также нейтронографической работе⁹⁹, показано, что полученные данные не согласуются с предположением о столь большой концентрации Zn в цепочках. Косвенные данные (см., напр.^{/10,11/}), указывают в основном на заселение цинком позиций Cu2. В недавнем нейтронографическом исследовании 12/ авторы также не смогли непосредственно определить распределение Zn по позициям, однако полученные структурные данные по изменению расстояния/атомов Ва от базовой плоскости и по изменению теплового фактора атома Cu2 с ростом концентрации Zn в образце указывали на его более вероятное размещение в узлах Cu2, чем в узлах Cu1, вплоть до х≈0.04. В работе^{/13/} приведены данные, свидетельствующие о равномерном распределении Zn по позициям в соединении с х=0.06, хотя авторы пришли к заключению, что при столь малом содержании Zn невозможно сделать однозначный вывод.

Buterteraund surrarys EDRASHER INCOMPANIES LAC INGTOTICE

Проблема нейтронографического эксперимента на системе Y123-Cu/Zn состоит в низком контрасте замещения: когерентные длины рассеяния меди и цинка близки по величине (b_{Cu} =7,72 F, b_{Zn} =5.68 F) и при x=0.1 среднее изменение структурных факторов составляет около 0.8%. Заметного увеличения эффекта можно добиться используя метод изотопного контрастирования. В образце Y123- 65 Cu/Zn эффект увеличивается в -2 раза, т.к. b_{Cu-65} =10.610 F.

Нейтронографическое исследование структуры и фононного спектра двух изотопно контрастированных образцов YBa2⁶⁵Cu2.7Zn0.3O6.95, приготовленных при несколько различающихся режимах термообработки, было выполнено в работе^{/14/}. Полученные данные оказались близкими для обоих образцов и составили 0.06(2) и 0.24(2) для заселенностей Zn позиций Cu1 и Cu2 соответственно.

Мы предприняли попытку решения вопроса о размещении Zn в Y123 с помощью эксперимента на двух идентичных образцах $YBa_2(Cu_{1-x}Zn_x)_3O_{6+y}$, в одном из которых вместо естественной смеси изотопов меди использовался изотоп ⁶⁵Cu. Такой подход позволил помимо обычного уточнения структуры провести относительный анализ данных, что увеличило достоверность результата. Еще одной целью исследования было прецизионное определение структурных параметров для последующего анализа длин межатомных связей.

2. Эксперимент и анализ данных

Два образца были приготовлены по стандартной керамической технологии. Один (Cu-nat) содержал естественную смесь изотопов меди (вес образца 5 г.), другой (Cu-65) содержал медь с 99% обогащением изотопом ⁶⁵Cu (вес образца 3.5 г.). В виде спресованных таблеток они проходили совместную термообработку: выдерживались при 960°C в течение 50 мин. с последующей закалкой в токе чистого N₂. После термообработки проводилось насыщение кислородом в ампуле при давлении 4 атм при 450°C в течение 30 час. В результате такой обработки по термогравиметрическим данным достигается состав по кислороду 6.95(5), а температура перехода в сверхпроводящее состояние $T_c=12 K^{114'}$.

Нейтронографический эксперимент был выполнен на импульсном реакторе ИБР-2 в ЛНФ ОИЯИ, на дифрактометре высокого разрешения ФДВР^{/15/}. Измерение нейтронограмм проведено при двух температурах, комнатной и T=8 K, одновременно при 20=152° в режиме высокого разрешения ($\Delta d/d\approx 0.0015$) в диапазоне d_{hkl} от 0.85 до 2.0 Å и при 20=140° с умеренным разрешением ($\Delta d/d\approx$ 0.015), но при d_{hkl} до 4.0 Å. Примеры дифракционных спектров показаны на рис.1. Замена естественной смеси изотопов меди на ⁶⁵Си приводит к заметным изменениям интенсивности некоторых дифракционных пиков (рис.2). Никаких признаков наличия в образцах посторонних фаз обнаружено не было. Для постоянных элементарной ячейки образцов было получено:

a=3.8237(1) Å, b=3.8939(1), Å, c=11.676(1) Å (Cu-nat), a=3.8234(1) Å, b=3.8935(1), Å, c=11.679(1) Å (Cu-65),

2

3

counts

Рис.2 Участок дифракционного спектра, демонстрирующии эффект замещения естественной смеси изотопов меди на изотоп ⁶⁵Сú

в хорошем соответствии друг с другом и с кислородной стехиометрией образцов.

Обработка экспериментальных данных велась по методу Ритвельда, модифицированного для наших условий¹⁶, и путем анализа относительных изменений интенсивностей дифракционных пиков образцов Си-паt и Си-65. Профильный анализ выполнялся сначала для каждого спектра отдельно, затем оба спектра обрабатывались совместно. При обработке спектров порознь связей на факторы заполнения позиций Сu1 и Cu2 не накладывалось, при совместном анализе использовались соотношения

n(Zn1) + n(Zn2)=0.3, n(Cu1) + n(Zn1)=1, n(Cu2) + n(Zn2)=2. (1)

Несмотря на большой диапазон анализируемых d_{bkl} , корреляция между факторами заполнения позиций и тепловыми факторами могла исказить результаты анализа, а т.к. тепловые факторы атомов очень слабо зависят от концентрации примеси мы предпочли их фиксировать на разумном уровне. При обработке спектров, измеренных при комнатной температуре, использовались два набора, в первом из которых В_т брались из прецизионной нейтронографической работы¹¹⁷ по структуре чистого Y123, во втором - для тяжелых атомов (Y, Ba, Cu) бралось значение В_т=0.5 Å², для атомов кислорода использовалось В_т=0.7 Å². При обработке спектров, измеренных при T=8 K, для тяжелых атомов использовались В_т=0.2 Å², для атомов кислорода В_т=0.5 Å². Относительные координаты атомов изменялись при смене тепловых факторов незначительно, не более чем на одну-две единицы в 4-м знаке. Факторы заполнения изменялись заметнее, но не более чем на два стандартных отклонения.

Результаты совместного анализа спектров от обоих образцов приведены в таблице 1, где для сравнения показаны также данные для чистого Y123 и по системам Y123-Cu/Co и Y123-Cu/Fe.

Таблица 1. Структурные параметры $YBa_2(Cu_{1-x}Me_x)_3O_{6+y}$ определенные нейтронографически. Представлены данные из опубликованных работ для чистого $Y123^{171}$, $Me=Co_{13}^{131}$ (x=0.1) и $Me=Fe_{11}^{111}$ (x=0.1). Наши данные (последние две колонки) для Me=Zn (x=0.1) приведены для двух температур. Кроме того, приведены некоторые межатомные расстояния и расстояния между слоями атомов, обозначенные как /1.

·····································		1, 19 (19 (19 (19 (19 (19 (19 (19 (19 (19			和自己的现在分词
Compound	Y123	Cu/Co	Cu/Fe	Cu/Zn	Cu/Zn
Param./Temp.	295 K	300 K	293 K	293 K	- 8 K
a, Å	3.8193(2)	3.8748(1)	3.8655(2)	3.8234(1)	3.8168(1)
b,Å	3.8852(2)	3.8748(1)	3.8655(2)	3.8936(1)	3.8894(1)
c, Å	11.6873(7)	11.683(1)	11.674(5)	11.677(1)	11.636(1)
n(Cu1)		0.69(1)	0.74(4)	0.908(7)	0.903(8)
n(Me1)		0.31(1)	0.26(4)	0.092(7)	0.097(8)
n(Cu2)	2	2	1.96(4)	1.792(7)	1.797(8)
n(Me2)	語ながなな	0	0.04(4)	0.208(7)	0.203(8)
z(Ba)	0.1839(5)	0.1869(2)	0.1863(3)	0.1822(2)	0.1846(2)
z(Cu2)	0.3545(3)	0.3584(1)	0.3565(2)	0.3545(1)	0.3546(1)
z(O1)	0.1575(5)	0.1560(2)	0.1576(5)	0.1592(2)	0.1588(2)
z(O2)	0.3783(5)	0.3781(1)	0.3781(3)	0.3782(2)	0.3781(2)
z(O3)	0.3775(5)	0.3781(1)	0.3781(3)	0.3781(2)	0.3778(2)
y	0.93(4)	1.13(1)	1.15(3)	0.94(2)	0.93(2)
Cu2-Cu2, Å	3.401	3.309	3.350	3.398	3.384
Cu2-Cu1, Å	4.143	4.187	4.162	4.140	4.126
Cu2-O1, Å	2.302	2.365	2.322	2.281	2.278
Cu1-O1, Å	1.841	1.823	1.840	1.859	1.848
Cu2-O2, Å	1.930	1.951	1.949	1.932	1.928
Cu2-O3, Å	• 1.961	1.951	1.949	1.966	1.963
Ba/l-Cu1/l, Å'	2.149	2.184	2.175	2.128	2.148
Ba/l-Cu2/l, Å	1.994	2.004	1.987	2.012	1.978
Ba/l-O1/l, Å	0.308	0.361	0.335	0.269	0.300

При обработке спектров порознь, без наложения связей на факторы заполнения, получено, что n1=0.96(2), n2=1.87(2) для Cu-nat (b_{Cu-nat} =7.72 F) и n1=0.90(2), n2=1.83(2) для Cu-65 (b_{Cu-65} =10.61 F). Эти величины можно пересчитать в содержание атомов меди в узлах по формулам:

 $n(Cu1)=(n1\cdot b_{Cu}-b_{Zn})/(b_{Cu}-b_{Zn})$ и $n(Cu2)=(n2\cdot b_{Cu}-2b_{Zn})/(b_{Cu}-b_{Zn})$.

(2)

Такой расчет привел к суммарному содержанию меди в образце на -10% меньше номинального. Это может отражать как действительное наличие вакансий в позициях меди, так и влияние систематических ошибок. Полагая, что столь большая концентрация вакансий вряд ли возможна, мы пересчитали данные введя коэффициент, являющийся отношением номинального содержания меди к полученному. После этого, усреднение величин n(Zn1) и n(Zn1) с весами дало для концентрации цинка в узлах Cu1 и Cu2 значения 0.10(2) и 0.20(5), соответственно, что совпадает с данными, приведенными в таблице 1.

Полученный результат проверялся при обработке дифракционного спектра низкого разрешения от образца Cu-65 в области сравнительно больших d_{bkl}, (рис.1) где влияние тепловых параметров ослаблено. При фиксированных координатах атомов для n(Zn1) и n(Zn2) получено, соответственно, 0.09±0.01 и 0.21±0.01, т.е. совпадающий с предыдущими цифрами результат.

Еще одной проверкой полученных данных являлся анализ интегральных интенсивностей отдельных дифракционных пиков. В методе времени пролета связь структурного фактора F_{hkl} и интегральной интенсивности I_{hkl} выражается следующим соотношением:

$$I_{hkl} = C \Phi(\lambda) \lambda^4 j F^2_{hkl} A(\lambda), \tag{3}$$

где C - коэффициент, $\Phi(\lambda)$ - эффективный спектр нейтронов, j - фактор повторяемости, $A(\lambda)$ - фактор поглощения. В двойных отношениях $(I_{l'}/I_2)_{Cu-65'}$ $(I_{l'}/I_2)_{Cu-nal}$, где I_1 , I_2 - интегральные интенсивности двух каких либо пиков в спектрах от образцов Cu-65 и Cu-nat, сокращаются все множители, кроме F_{hkl} , и можно проверить ту или иную гипотезу относительно распределения Zn. В дифракционных спектрах Y123-Cu/Zn можно выделить достаточно большое число пиков, в которых влияние Zn заметно. Реальная ситуация однако такая, что дифракционные пики, в которых влияние Zn относительно велико, или малы по интенсивности, или перекрываются с сильными пиками, слабо зависящими от присутствия Zn в образце. Тем не менес, анализ интегральных интенсивностей был проведен и его результаты представлены в таблице 2, где даны индексы Миллера пиков с факторами повторяемости, которые приходилось учитывать для перекрывающихся пиков, и двойные отношения для интегральных интенсивностей (колонка 1) и для квадратов структурных факторов (колонки 2, 3 и 4) при трех гипотезах относительно распределения Zn по узлам Cul и Cu2: равномерное (колонка 2), Zn только в узлах Cu2 (колонка 3), Zn только в узлах Cu1 (колонка 4). Степень соответствия этих отношений можно выразить в виде R-фактора

$$R = \sum_{i} |q_{i} \cdot g_{i}| / \sum_{i} q_{i}, \qquad (4)$$

где q - отношения, составленные из экспериментальных интенсивностей, g отношения, составленные из квадратов рассчитанных структурных факторов. Для трех проверенных гипотез получено: $R_1=0.050$, $R_2=0.053$, $R_3=0.068$. Несколько более ясная картина получается, если выделить только пики, для которых эффект присутствия Zn максимален и, в то же время, обладающих заметной интенсивностью, а именно, пики 005/014, 114/105, 024, 204, 025 и 214/205. Для R-факторов по этим пикам получено: $R_1=0.050$, $R_2=0.052$, $R_3=0.094$. R-фактор по пикам, для которых влияние Zn мало, для всех трех случаев близок к 0.050 и эта величина может служить мерой неопределенности, вносимой статистикой и погрешностями обработки. Результаты такого анализа явно противоречат предположению о заполнении Zn только узлов Cu1, но предпочесть с его помощью какую-то из двух других гипотез не представляется возможным.

Таблица 2. Относительные интенсивности и структурные факторы для Y123-Cu/Zn и Y123- 65 Cu/Zn. (1) - (1-65/1-nat)/10, (2), (3), (4) - (F^2 -65/ F^2 -nat)/ F^2 0. (2) n(Zn1)=0.09, n(Zn2)=0.21, (3) - n(Zn1)=0.00, n(Zn2)=0.30 (4) - n(Zn1)=0.30, n(Zn2)=0.00. Пик 006/020 был выбран для нормировки на 10 и F^2 0.

ी N	hkl (j)	(1)	ં (2) ે	(3)	(4)
ें ।	013	1.518	1.430	1.412	1.420
2	103/110 (4/4)	1.195	1.315	1.309	1.310
3	005/014 (2/4)	0.843	0.967	0.951	0.991
4	113	0.463	0.445	0.439	0.448
ે5	114/105 (8/4)	0.882	0.894	0.929	0.809
6	006/020 (2/2)	1	1	1	1
7	024	0.949	0.945	0.899	1.025
8	204	0.843	0.944	0.884	1.000
9	116/123 (8/8)	1.087	1.124	1.130	1.122
10	213	1.379	1.381	1.377	1.373
11	025	1.011	0.986	0.995	0.961
: 12:	214/205 (8/4)	0.975	0.965	0.952	0.986
13	008	0.951	1.070	1.072	1.054

При обработке дифракционных данных по методу Ритвельда с использованием связей (1) не учитывается возможное наличие вакансий в позициях меди.- Предположение о вакансиях в Y123 многократно высказывалось в литературе, также как и то, что действительная концентрация вакансий зависит от деталей процедуры приготовления образца (см., напр.,¹⁸). Мы провелидополнительный анализ наших данных вводя вакансии в позиции Cu1 или Cu2 путем соответствующей модификации условий (1). Установлено, что введение вакансий (до 6%) в позиции Cu2 слабо сказывается на факторах заполнения n(Zn), их изменения близки к стандартным отклонениям. Введение вакансий в позиции Cu1 приводит к перераспределению Zn между позициями, а именно, n(Zn1) уменьшается, а n(Zn2) увеличивается. В обоих случаях при введении вакансий качество описания профиля дифракционного спектра заметно ухудшалось.

3. Обсуждение результатов

Итак, совокупность приведенных данных указывает на то, что в наших образцах $YBa_2Cu_{2.7}Zn_{0.3}O_{6.95}$ атомы Zn равномерно распределены по позициям меди, а именно, 1/3 атомов находится в позициях Cu1 и 2/3 в позициях Cu2. Этот результат близок к данным, полученным в^{114/} для образцов такого же состава.

Обсудим полученные структурные данные с точки зрения длин межатомных связей и распределения зарядов ионов меди в цепочках и плоскостях.

Валентность ионов в кристалле определяется обычно на основе анализа длин межионных связей в первой координационной сфере с использованием сумм валентностей связей^{/19/}:

 $V = \sum S_i = \sum exp((R_0-R_i)/0.37),$

(5)

3(6)

где V - эффективная валентность, S_i - валентность, приписываемая i-й связи с длиной R_i, R₀ - константа для данной пары ионов (R₀=1.679 для Cu⁺²-O, R₀=1.730 для Cu⁺³-O). Поскольку изменение длин связей (δ R_i) и валентностей (δ S_i) при замещении небольшой доли ионов меди невелики, их соотношение можно получить дифференцированием (5):

$$\delta \mathbf{V}_{i} = \sum_{i} \delta \mathbf{S}_{i} = \sum_{i} S_{i} (\delta \mathbf{R}_{i} / 0.37).$$

Сравнение данных о длинах связей (таблица 1) показывает, что при замещении Си на Zn связи Cu2-O1 становятся короче, а связи Cu1-O1 - длиннее. Длины связей в слоях Cu2-O2 и Cu1-O4 изменяются слабее, и их влиянием на изменение валентности можно пренебречь. Это указывает на увеличение валентности ионов в позициях Cu2 и ее уменьшение в позициях Cu1 при введении Zn, т.е. на переход дополнительного положительного заряда из слоя цепочечной в слой плоскостной меди по сравнению с чистым Y123.

Другой путь определения зарядов слоев CuO_y и CuO₂ - анализ данных о расщеплении расположенного между ними слоя Ba-O, которое обусловлено кулоновским взаимодействием^{20,211} со слоями CuO_y и CuO₂. Величина

расщепления Δ связана с зарядом слоя CuO_y, играющего роль резервуара заряда, q_r, и зарядом слоя CuO₂, q_c, следующим эмпирическим соотношением^{22/}:

$$\Delta = -0.045 + 0.495 p(q_r - q_c), \tag{7}$$

где расщепление выражено в ангстремах, заряды в единицах заряда электрона и в расчете на одну элементарную ячейку, p=1/2 для структуры YBa₂Cu₃O_{6+y}. Из экспериментальных данных (таблица 1) следует, что при введении Zn расцепление уменьшается, а величина уменьшения соответствует возрастанию заряда q_r на ~ 0.06, что неплохо согласуется с оценкой изменения валентности ионов в позиции Cu₂ по формуле (6). На рис.3 показаны расцепление слоя Ba-O и заряд в плоскостях CuO₂ в зависимости от концентрации примесных трех- (Co) и двухвалентных (Ni, Zn) катионов. Видно, что в случае Ni и Zn происходит перенос значительного положительного заряда в плоскость CuO₂.

Уменьшение Δ при введении Zn в Y123 следует и из других опубликованных структурных данных по этой системе. Следует отметить, кроме того, что при понижении температуры до 8 К величина расщепления в Y123-Cu/Zn увеличивается. Такой же эффект присущ и чистому Y123, что следует из структурных данных, приведенных в работах²⁰⁰ и²³³.

Таким образом, изменение структуры Y123 при введении Zn сопровождается переходом в слои CuO₂ положительного заряда. При увеличении содержания кислорода в YBa₂Cu₃O_{6+y} от y=0.4 до y=0.93 заряд q_r увеличивается на -0.3 и это сопровождается увеличением T_c от нуля до 90 К. Если принять, что изменение T_c обусловлено только переносом заряда, то уменьшение T_c до 12 K в исследованном нами образце означает, что концентрация дырок в слоях CuO₂ при y=0.93 является оптимальной и дальнейшее увеличение их концентрации подавляет сверхпроводимость.

Из структурных данных для Y123 легированного трехвалентными катионами (Co и Fe) следует, что в этом случае происходит обратное изменение заряда слоев CuO₂ (расщепление слоя Ba-O увеличивается). Это означает, что при введении Co и Fe в Y123 уменьшается число дырок в проводящих слоях, также как при уменьшении концентрации кислорода от 0.93 до 0.4. Такая интерпретация данных о влиянии трехвалентных примесей на структуру и свойства Y123 изложена в^{/24/}.

4. Заключение -

В настоящей работе проведено нейтронографическое, с использованием метода изотопного контрастирования, исследование соединения YBa₂Cu_{2.7}Zn_{0.3}O_{6.93} и показано, что, при такой концентрации Zn наиболее вероятным является его равномерное распределение по позициям меди в цепочках (~1/3 атомов Zn) и плоскостях (~2/3 атомов Zn). Таким образом, совокупность данных, полученных в работах^(9,12,13,14) и в нашем исследовании указывает, на то, что с явным

24

Рис.3 Зависимости расцепления слоя Ва-О и заряда в слое CuO₂ от концентрации трехвалентных (Co) и двухвалентных (Ni, Zn) катионов. Приведены данные из работы^{/3/} для Co (+), работы^{/7/} для Ni (x), работы^{/9/} (• и ∇) и нашего исследования (*) для Zn.

10

предпочтением замещение меди на цинк происходит в позициях Cu2; в отличие от случая трехвалентных катионов, предпочитающих позиции Cu1.

Именно этот факт, начиная с работы⁹⁹, выдвигался как основной аргумент разной зависимости T_c от концентрации примесных катионов в случаях Zn'c одной стороны и Co, Fe с другой стороны. Однако проведенный в настоящей работе анализ структурных параметров показывает, что резкое уменьшение T_c в случае Zn следует связывать не столько с конкретным его распределением по узлам Cu1 и Cu2, сколько с модификацией процессов перехода заряда между слоями CuO_y и CuO₂. Заряд в плоскостях CuO₂ увеличивается на ~0.06 при 10% концентрации Zn в образце, что приводит к резкому подавлению сверхпроводящих свойств. Не исключено, однако, что влияние на T_c оказывают и изменения в структуре. Y123 при введении цинка, например, разбавление слоев CuO₂ примесными атомами или изменение длины связи Cu-O в этих слоях.

Авторы благодарят П.П.Паршина за предоставление образцов для настоящего исследования, В.Л.Аксенова и В.А.Соменкова за полезные обсуждения. Работа выполнена при поддержке Госпрограммы ВТСП, проект 93192, фондов РФФИ, грант 93-02-2530, и ISF, грант RFA000.

Литература

- 1. Y.Xu, M.Suenaga, J.Tafto, R.L.Sabatini, A.R.Moodenbaugh, P.Zolliker, *Phys.Rev.B*, 1989, v.39, pp.6667-80.
- 2. A.M.Balagurov, F.Bouree, I.S.Lyubutin and I.Mirebeau, Physica C, 228 (1994) 299.
- R.Sonntag, D.Hohlwein, A.Hoser, W.Prandl, W.Schafer, R.Kiemel, S.Kemmler-Sack, M.Schlichenmaier and A.W.Hewat, *Physica C*, 159 (1989) 141.
- 4. J.A.Hriljac, A.R.Moodenbaugh, Y.Xu, Physica C, 219 (1994) 315.
- 5. E.Brecht, W.W.Schmahl, G.Miehe, H.Fuess, N.H.Andersen, Th.Wolf, *Physica C*, 235-240 (1994) 471.
- 6. T.Kajitani, K.Kusaba, M.Kikuchi, Y.Syono and M.Hirabayashi, Jap. J. Appl. Phys. 27 (1988) L354.
- 7. A.M.Balagurov, J.Piechota, A.Pajaczkowska, Sol. St. Comm. 78 (1991) 407.
- 8. B.A.Richert and R.E.Allen, Phys. Rev. B 39 (1989) 11680.
- 9. G.Xiao, M.Z.Cieplak, D.Musser, A.Gavrin, F.H.Streitz, C.L.Chien, J.J.Rhyne, J.A.Gotaas, *Nature*, 332 (1988) 238.
- 10. R.Dupree, A.Gencten, D.McK.Paul, Physica C, 193 (1992) 81.
- 11. S.S.Ata-Allah, Y.Xu and Ch.Heiden, Physica C, 221 (1994) 39.
- 12. R.Villeneuve, I.Mirebeau, G.Collin, F.Bouree, Physica C, 235-240 (1994) 1597.
- 13. S.H.Kilcoyne, S.J.Hibble, R.Cywinski, Physica B, 180-181 (1992) 423.
- 14. P.P.Parshin, V.P.Glazkov, M.G.Zemljanov, A.V.Irodova, O.E.Parfionov, A.A.Chernyshov, *Superconductivity*, 5 (1992) 451.

- V.L.Aksenov, A.M.Balagurov, V.G.Simkin, Yu.V.Taran, V.A.Trounov, V.A.Kudrjashev, A.P.Bulkin, V.G.Muratov, P.Hiismaki, A.Tiitta and O.Antson, *Proceedings of ICANS-XII*, 24-28 May 1993, Abingdon, U.K., vol.1, I-124.
- 16. V.B.Zlokazov, V.V.Chernyshev, J. Appl. Cryst. 1992, v.25, p.591.
- 17. A.W.Hewat, J.J.Capponi, C.Chaillout, M.Marezio, E.A.Hewat, Sol.St.Comm., 1987, v.64, pp.301-307.
- 18. G.Roth, G.Heger, P.Schweiss, B.Renker, W.Assmus, J.Kowalewski, J.Pannetier, *Physica C*, 152 (1988) 329.
- 19. J.D.Brown, J.Sol.St. Chem., 82 (1989) 122.
- 20. J.D.Jorgensen, B.W.Veal, A.P.Paulikas, L.J.Nowicki, G.W.Crabtree, H.Claus, W.K.Kwok, *Phys.Rev.B*, 41 (1990) 1863.
- 21, S.Sh.Shilstein, A.S.Ivanov, V.A.Somenkov, Physica C, 245 (1995) 181.
- 22. S.Sh.Shilstein, A.S.Ivanov, Физика твердого тела, 11 (1995),185 /
- .23. R.J.Cava, A.W.Hewat, E.A.Hewat, B.Battlogg, M.Marezio, K.M.Rabe, I.J.Kraewski, W.F.Peck, L.W.Rupp, *Physica C*, 165 (1990) 419.
- 24. M.Kakihana, S.-G.Eriksson, L.Borjesson, L.-G.Johansson, C.Strom, M.Kall, Phys. Rev. B, 47 (1993) 5359.

Рукопись поступила в издательский отдел 16 ноября 1995 года.