

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

P14-95-104

Л.Н.Зайцев

МЕТОДОЛОГИЯ ПРОГНОЗИРОВАНИЯ РАДИАЦИОННОГО СТАРЕНИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ В УСКОРИТЕЛЯХ И ДЕТЕКТОРАХ ДЛЯ ФИЗИКИ СВЕРХВЫСОКИХ ЭНЕРГИЙ

Направлено на Международный симпозиум «Физика и детекторы на LHC», Дубна, июль 1995 г.

введение

Bar Den also Marchatter

Среди материалов, которые широко используются в ускорителях и детекторах для физики сверхвысоких энергий, полимеры в целом должны быть отнесены к материалам с низкой радиационной стойкостью $(10^3 \div 10^6 \Gamma p)$. Оптические материалы, в том числе твердые сцинтилляторы, более чувствительны к радиации $(10^2 \div 10^3 \Gamma p)$. Некоторые параметры полупроводниковых микросхем изменяются даже при 10 Гр.

В технических предложениях по экспериментам ATLAS [1] и CMS [2] на адронном коллайдере *pp*-взаимодействий при 14 ТэВ прогнозируется сложная радиационная и температурная обстановка, однако проблема выбора материалов неоправданно упрощается. Тот факт, что полимер или компаунд включен в «список признанных» и выдерживает прогнозируемую дозу при ускоренном испытании, еще не является достаточным основанием для его использования. Каждый полимер и возможность его применения следует рассматривать специально [3], как это делается в радиационных тестах полупроводниковых приборов [4]. Кроме того, полимер не может быть подходящим сам по себе; он всегда должен рассматриваться в комплексе со средой и другими материалами, применительно к конкретному назначению узла или устройства. Дозное и температурное поля в установках должны вычисляться до выбора всех материалов, а затем уточняться после их выбора [5].

ПОЛУЭМПИРИЧЕСКАЯ МОДЕЛЬ

Одна из главных задач радиационного материаловедения состоит в создании моделей для прогнозирования изменений свойств материалов (полимеров) и определении реального срока их службы (ресурса). Достаточная информация о механизмах и кинетики радиационно-химических процессов, как правило, отсутствует, поэтому приходится использовать полуэмпирические модели. При этом необходимо учитывать корреляции изменения макросвойств с процессами на микроуровне.

Характер таких корреляций зависит от множества факторов, которые следует разделить на три большие группы:

Several Killeryr Signade Second Constant ENSIHOTEKA

1. Внутренние, имманентные факторы (элементарный состав, фазовые состояния, химическое и электронное строение молекул, дефектность материала, примеси, «антирады», геометрические размеры образца, узла);

2. Радиационные факторы (вид ионизирующих излучений, их энергетические спектры, тормозная способность, поглощенные дозы, длительность и динамика воздействий излучений);

3. Внешние, эксплуатационные факторы (температурный режим, химический состав окружающей среды, контакт с другими материалами, вид и характер механических нагрузок, воздействие световых и электромагнитных полей и др.)

Ресурс материала определяется как $R = t_{\rm H}/t_{\rm p}$, где $t_{\rm H}$ — нормативный срок службы, принятый в проекте; $t_{\rm p}$ — расчетный срок службы, зависящий от радиационной стойкости и других факторов. С учетом корреляционных коэффициентов можно записать полуэмперическое выражение для ресурса

$$k_{3}R = \frac{k_{1}}{k_{2}} \frac{t_{H}\bar{D}(t)}{D_{\Pi D}(T_{3}, \tilde{D}, \xi)}$$
 отн. ед., (1)

где $D_{\rm np}$ — предельная доза материала, как функция температуры $(T_{\rm 3})$, мощности дозы (\widetilde{D}) и заданной степени повреждения или эффекта (ξ) ; k_1 , k_2 , k_3 — поправочные коэффициенты соответственно группам имманентных, радиационных и эксплуатационных факторов.

При $k_3 R < 1$ стойкость удовлетворительная; при $k_3 R > 1$ — неудовлетворительная. При этом k_3 , являясь, по существу, фактором неопределенности или коэффициентом запаса, всегда больше единицы. Отношение k_1/k_2 может изменяться в очень широких пределах (от 0,01 до 10), поэтому корреляции микро- и макросвойств необходимо анализировать с особой тщательностью. Иногда приходится отношение k_1/k_2 принимать равным ~ 1 (для плохо изученного материала), а k_3 увеличивать, опираясь на прошлый опыт или инженерную интуицию.

Наиболее чувствительным к необратимым радиационно-температурным изменениям является линейно-упругое разрушение с трещиной^{*}, подверженное действию растягивающего напряжения σ_p . Разрушение происходит при критическом значении $\xi_{\kappa p}(\widetilde{D},T)$, когда условия плоской деформации существуют при низких скоростях деформации и малых нагрузках. Пластическая деформация Δl при ξ близких к $\xi_{\rm kn}$ рав-

на произведению скорости радиационной ползучести U = dl/dt на радиационную долговечность τ . Кислород и свойства среды усиливают радиационный эффект, особенно при $\tilde{D} < 0,01\div0,1$ Гр.

В работе [6] рассмотрены зависимости от D_{np} и \widetilde{D} относительного удлинения Δl при растяжении. Идеализированная схема показана на рис.1. При облучении в вакууме или инертной сре-

Рис.1. Зависимость предельной дозы от мощности дозы при облучении полимеров на воздухе (1) и в вакууме (2)

де Δl зависит только от $D_{\rm np}$. При облучении на воздухе Δl сложным образом

зависит от мощности дозы. При $\tilde{D} > 10$ Гр и достаточно толстых образцах реализуются такие условия, когда окисляется только приповерхностный слой, а основная масса полимера облучается, по существу, в бескислородной среде.

Также почти не зависит от мощности дозы радиационное старение при D < 0,1 Гр. Это означает, что радиационно-окислительному превращению подвергается весь объем полимера, а потеря механических свойств происходит в результате разрывов полимерной цепи.

В промежуточной области $0,1 < \tilde{D} < 10$ Гр величина $D(\xi)$ зависит от мощности дозы приблизительно так: $D_{\rm np}(\xi) \cong D_0 \tilde{D}^n$, где $D_0 = D_{\rm np}^{\rm min}$ (рис.1). Значения параметров *n* и D_0 существенно зависят от химического строения полимера и добавок, а также от соотношения площади поверхности *S* и объема *V* образца. Внешний окислительный слой претерпевает деструкцию. Во внутреннем слое (не окислительном) будет идти сшивание, поэтому зависимости $D_{\rm np}(\xi, \tilde{D})$ имеют сложный вид (см. приложение).

Для процессов структурирования и деструкции полимеров и связанных с ними изменений макросвойств фундаментальное значение имеет температурное влияние. Анализ большого массива данных, накопленных в последнее десятилетие, позволил авторам [7] определить полуколичественную зависимость радиационной стойкости от температуры облучения (рис.2).

^{*}Уменьшение вязкости при низких температурах (< 77 К) приводит к образованию микротрещин, что накладывает особые условия на испытания образцов.

Рис.2. Результаты, обработанные методом наименьших квадратов, выходов продуктов различных полимеров в зависимости от температуры

Рис.3. Температурные области при радиационном окислении полимеров; I — радиационная; II — радиационно-термическая; III — терморадиационная; IV — термическая

Для целого ряда органических соединений процесс радиационной деградации принято делить на четыре области (рис.3): І — радиационная, II — радиационно-термическая, III — терморадиационная, IV — термическая [8].

При прогнозировании срока службы полимерных материалов процесс старения описывается некой эффективной химической реакцией, скорость которой подчиняется закону Аррениуса [9]. Для перенесения результатов измерений, полученных при повышенных температурах, к заданной температуре T_2 вычисляется коэффициент смещения

$$\dot{a} = \exp[E/\dot{R}(T_{9}^{-1} - T^{-1})],$$
 (2)

Ĩ

ĪĪ

II.

где E — эффективная энергия активации всего термически активированного процесса старения; R — газовая постоянная; T — температура. Если для каждой повышенной температуры умножение времени на коэффициент aприводит к близким значениям T_{3} , то можно говорить о применимости принципа температурно-временной суперпозиции к данному материалу.

В работах [10,11] было предложено распространить принцип суперпозиции на условия радиационного старения полимеров. Подход, лежащий в основе этого принципа $(t - T - \tilde{D})$, иллюстрирует рис.4. Точки *a*, *b*, *c* изотермических кривых на рисунке имеют такую особенность, что отношение времен при различных температурах является точкой инверсии отношений мощностей доз, относящихся к тем же температурам. Это означает, что если функциональное соотношение между временем и температурой в изодозных условиях определяется эмпирически, то такое же функциональное соотношение будет иметь место между мощностью дозы и температурой. При выполнении этого

19

0

Рис.4. Принцип суперпозиции: время — температура — мощность дозы

условия можно проводить изодозную экстраполяцию к большим временам, что эквивалентно облучению при более низких мощностях доз.

Методология экстраполяции данных ускоренного радиационного старения на условия с низкой мощностью дозы была проверена на примере электроизоляционных материалов [10], а также позволила нам получить уникальные результаты для полимерцемента (см. приложение).

поправочные коэффициенты

Количественное определение коэффициентов k_1 , k_2 и k_3 , входящих в выражение (1), представляет собой очень сложную, а порой и неразрешимую задачу. Мы же укажем только стратегию анализа корреляций и поясним примером.

Значения коэффициентов прежде всего определяются тем, какой показатель материала ξ выбран в качестве лимитирующего радиационную стойкость, а также задаваемыми предельными значениями показателей ξ : 0,05; 0,25; 0,5 и т.д. Радиационную стойкость могут лимитировать механические напряжения или деформации, электрические и диэлектрические константы, оптические свойства (прозрачность, отражение, световыход), температуропроводность, газовыделение и др.

Внутренние факторы (k_1) . Поглощенная доза может отличаться на 2—3 порядка для разных элементов в зависимости от энергии нейтронов. Примеси лития и бора не только приводят к захвату тепловых нейтронов, но могут повлиять на характер радиационно-химических превращений. Так, примесями лития объяснены аномальные дозные зависимости теплопроводности полимера [12].

4

Радиационная стойкость существенным образом зависит от электронного строения молекул основного вещества, неконтролируемых примесей и примесей, введенных для придания материалу необходимых технологических или эксплуатационных свойств. Электронным строением молекул определяются процессы, происходящие в результате поглощения энергии ионизирующих излучений, возбуждение и ионизация молекул, миграция и локализация возбуждений и зарядов, процессы диссипации энергии и др. [13].

Дефекты и морфология могут оказывать влияние на различные стадии радиационно-химических процессов в полимерах. Существенное изменение степени кристалличности, от которой, в основном, зависит k_1 , объясняется локализацией энергии на дефектах.

На радиационное окисление влияет отношение площади поверхности образцов к их объему (S/V) при мощностях дозы меньше ~ 1 Гр · с⁻¹. Приведенные в работе [14] зависимости коэффициента k_1 от \widetilde{D} , а также отношение S/V позволяют делать оценки ресурса R по выражению (1).

Так, например, для полиэтилена при $D = 10^{-4} \, \Gamma p \cdot c^{-1}$, $S/V = 5 \cdot 10^{-3} \, \text{м}^{-1} \, k'_1 = 0,2$. При степени кристалличности 50% k'_1 = 0,2. Следовательно, $k_2 = 0,2$.

Радиационные факторы (k_2) . Проведение испытаний радиационной стойкости органических материалов часто требует обоснования возможности замены одного вида излучения другим, источник которого более доступен и дешев. В ГОСТах СССР и стандартах США [3] указывается на зависимость радиационных эффектов от вида излучения, однако никаких конкретных рекомендаций не дается.

Оказывается линейная передача энергии (ЛПЭ), отличающаяся от ионизационных потерь энергии dE/dx учетом δ -электронов, не является единственной отличительной характеристикой излучения. В связи с этим в работе [15] предложено двухпараметрическое описание радиационно-индуцированных превращений, использующее заряд и скорость частицы. Исследованиям влияния вида излучения на микросвойства полимеров посвящено очень больщое количество работ.

Для изучения макросвойств полимеров использовались три вида излучений: γ -излучение ⁶⁰Со (ЛПЭ ~0,2 кэВ·мкм⁻¹), протоны с энергией 100 МэВ (ЛПЭ ~0,8 кэВ·мкм⁻¹) и нейтроны реактора ИРТ-2000 (ЛПЭ ~60 кэВ·мкм-1). Облучение образцов толщиной от 0,1 до 3 мм проводили в условиях ограниченного доступа кислорода из воздуха при 333 К в диапазоне мощностей доз от 9 до 30 Гр·с⁻¹. Измерения проводили через 1—2 месяца после облучения изза высокой наведенной радиоактивности. Количественные параметры зависимостей показателей одного и того же полимера существенно различают-

ся. Разные полимеры показывают неоднозначную зависимость от вида излучения: наименьшая — у аморфных, наибольшая — у частично кристаллических. Наконец, максимальные различия для конкретного полимера при ξ = const наблюдаются между облучением нейтронами и γ -излучением (на 1,5÷2 порядка). В практическом случае перехода от n,γ -реакторного облучения к полю смешанного излучения ускорителей $p_i \rightarrow (p,n,e^{\pm},\pi^{\pm},\mu\ldots)$, поправочный коэффициент $k_2 \cong 2$.

Внешние факторы (k_3) . Из внешних факторов температурная зависимость учитывается в $D_{np}(T, \tilde{D}, \xi)$. Поправка в (1) вводится в том случае, если режим термоциклический. Влияние химического состава окружающей среды на k_3 должно исследоваться специально (если среда агрессивная). Например, в Космосе определяющую роль играет воздействие атомарного кислорода и фоторадиационная стойкость.

В качестве обобщенного параметра фоторадиационного воздействия можно принять отношение энергетических потоков ионизирующих излучений (P_{μ}) и излучений оптических частот (P_{0}), т.е. $\Phi = (P_{\mu})/(P_{0})$. Так, для фоторадиационного воздействия, создаваемого излучением Солнца, $\Phi = 10^{-4} \div 10^{-2}$, а для источников ионизирующих излучений $\Phi \cong 10^{2}$.

Доля энергии заряженной частицы, расходуемой на возбуждение черенковского излучения, не превышает 0,2%, однако интенсивность светового излучения, генерируемого электронными пучками современных ускорителей, сопоставима с интенсивностью светового излучения мощных ламп [16]. Одна из особенностей фоторадиационного воздействия состоит в том, что оптические свойства полимерных материалов в вакууме зависят не только от поглощенной дозы ионизирующего излучения и света, но и от мощности дозы и интенсивности света. В то время, как такие же макросвойства в вакууме при облучении ионизирующим излучением в отсутствие света однозначно определяются только поглощенной дозой. Это может сказаться на старении твердых сцинтиляторов.

Таким образом, внешние эксплуатационные факторы не исчерпываются вышеизложенным, поэтому разумный коэффициент запаса $k_3 \cong 2$, повидимому, необходим. В приложении мы пытались сделать оценку ресурса некоторых полимерных материалов в узлах установки ATLAS.

7

приложение

РАДИАЦИОННАЯ СТОЙКОСТЬ КЛЕЯ ПОЛИМЕРЦЕМЕНТА

Впервые идея использования цемента для электроизоляции магнитов ускорителей возникла в 1969 г. в Лаборатории Резерфорда [17]. Квадруполь с цементной изоляцией проработал на ускорителе DESY 5000 ч $(1,8\cdot10^7 \text{ c})$ при средней мощности дозы 5 Гр/с. После дозы 10^8 Гр никакого механического разрушения цементной изоляции не наблюдалось. Сопротивление изоляции до и после работы под облучением были 54,5 и 50,0 МОм при 2,5 кВ соответственно. Это явилось стимулом для широких исследований возможности использования цементного компонента для создания радиационностойких импульсных магнитов.

Рис. 5. Экспериментальные данные (точки см. в табл. 1), обработанные в соответствии с принципом суперпозиции (кривые), для полимерцементных образцов Таблица 1. Источники облучения образцов полимерцемента

Место облучения	Виды частиц (i — пер- вичные, j — вторич- ные)	Мощность дозы <i>Ď</i> , Гр∙с ⁻¹	Максимальное время облуче- ния, с	ЛПЭ, кэВ∙мкм ⁻¹
 — Каналы реактора ИБР-2, ОИЯИ 	$\gamma_i, n_i \rightarrow \gamma_i, E_n > 1 \text{ M} \Im B,$ $4, 2 \cdot 10^{12} \text{ H} \cdot \text{cm}^{-2} \cdot \text{c}^{-1}.$	5,8·10 ³	10 ⁵	60
Δ — Медная мишень (η = 2,4); синхротрон на 70 ГэВ, ИФВЭ	Разные спеқтры $p_i \rightarrow (p,n, e^{\pm}, \pi^{\pm}, \mu \dots)_j$	2,5.10 ⁻¹	107	15
▲ — Выпускное окно фазотрона на 650 МэВ, ОИЯИ	Протонный пучок $E_p = 650 \text{ MэB},$ $10^{12} \text{ p} \cdot \text{см}^{-2}\text{c}^{-1}$	2,9·10 ²	10 ⁶	8
0 — Медная мишень (η = 2,2); синхротрон на 7 ГэВ, ИТЭФ	Разные спектры $p_i \rightarrow (p,n, e^{\pm}, \pi \circ \dots)_j$	7 10 ⁻²	10 ⁷	9
🔶 — Гамма-установка	$E_{\gamma} = 1,25 \text{ M}3B$	30	107	0,2

η — направление от оси пучка.

В 1985 г. автор предложил новый тип изоляции, когда белитоалюминатный цемент затворяется не водой (как обычно), а жидким полимером. Оказалось, что технологический состав после отвердения обладает диэлектрическим сопротивлением, большой прочностью, не дает усадку, не впитывает влагу и долговечен (образцы-свидетели были испытаны спустя 10 лет). Полимерцемент в зависимости от консистенции может использоваться как клей вместо эпоксидной смолы в различных компаундах, в качестве выравнивающей пасты дистанционирующих прокладок, для заполнения «технологических пустот» большого размера, а также в качестве радиационной защиты. Полимерцемент содержит до 10 вес. % водорода (полиэтилен 14,5%) и позволяет вводить литий и бор с целью увеличения эффективности защиты от нейтронов.

С 1985 по 1990 г. изучалась радиационная стойкость образцов полимерцемента. В работе приводятся итоговые результаты исследований (табл.1 и рис.5) без описания технологии изготовления образцов, методик облучения, механических испытаний, анализа и обсуждения результатов. Все это должно быть предметом отдельной статьи.

Основная цель приложения показать, что метод суперпозиции и эмпирическое выражение (1) применимы, по крайней мере, для данного материала. В табл.2 дана оценка ресурса $k_3 R$ некоторых полимерных компаундов при нормативном сроке службы АТЛАСа 10 лет и при двух значениях мощностей доз: 2,3 Гр · c⁻¹ и 5,3 · 10⁻⁴ Гр · c⁻¹ (см. табл.7.1 в [1]).

Таблица 2. Оценка ресурса полимерных компаундов по выражению (1)

Материал	$\widetilde{D}, \Gamma p \cdot c^{-1}$	<i>D_{пр}</i> , Гр	ξ _ι ,Отн.ед.	<i>k</i> ₁ ,Отн.ед.	k ₂ ,Отн.ед.	2R, Отн.ед.
Полимерцемент	2,3	107			2	1,15 ≅ 1
(Рис.5)			0,25	$5 \cdot 10^{-2}$		
	5,3.10-4	1,2.104		•	1	0,44 < 1
Эпоксидный компаунд	2,3	10 ⁶			2	2,2 > 1
Эд-20 [5]			0,25	10 ⁻²		
	5,3.10-4	10 ⁵			1	0,1 < 1
Полиэтилен	2,3	2·10 ⁵	···· ··· ··· ···		2	115 >> 1
с добавками			0,25	0,2	and and a second se	
B ₄ C [5]	5,3.10-4	104			1	1,06 ≅ 1

 $\xi_l = \Delta l/l_0$, где l_0 , Δl — линейная пластическая деформация соответственно до и после облучения; $2R \le 1$ — радиационная стойкость удовлетворяет $t_{\rm H} = 10$ лет; 2R > 1 — не удовлетворительная; k_1 , k_2 — коэффициенты, учитывающие микросвойства материалов (см. текст)

В заключение автор считает своим долгом отметить большой вклад в результаты экспериментов по облучению и испытанию образцов полимерцемента: Б.Д.Зельдича, И.Е.Карпуниной, В.М.Назарова, Н.В.Мохова, К.К.Покровского, А.Л.Шишкина, В.Б.Хвостова.

ЛИТЕРАТУРА

- 1.ATLAS-Techn. Prop. Gen.-Purp., pp-Exp. LHC, CERN/LHCC/94-43, LHCC/P2, 1994.
- 2.CMS-Techn. Prop., CERN/LHCC 94-38, LHCC/P1, 1994.
- 3. ГОСТ 9.706.81. Методы испытаний для определения и прогнозирования изменений свойств полимеров при радиационном старении. М.: Изд. стандартов, 1992 (Стандарты США: IEEE-381-1974, IEEE-393-1983).
- 4. Berger C. et al. Study of TGT Concept for Liquid Argon Calorimetry, CERN/DRDC 94-8, RD33 Stat. Rep., 1994.
- 5.Зайцев Л.Н. Радиационные эффекты в структурах ускорителей. М.: Энергоатомиздат, 1987.
- 6. Wilski H. Radiat. Phys. Chem., 1987, v.29, No.1, p.1.
- 7. Kempner E.S., Wood R., Salovey R.J. Polym. Sci.: Part B. Polym. Phys., 1986, v.24, p.2337.

8. Бугаенко Л.Г., Кузьмин М.Г., Полак Л.С. — Химия высоких энергий. М.: Химия, 1988.

- 9. Карпухин О.Н. Успехи химии, 1980, т.49, № 8, с.1523.
- 10.Gillen K.T., Glough R.L. Polym. Degr. and Stab., 1989, v.24, No.2, p.137.
- 11. Glough R.L, Gillen K.T. Intern. Symp. Rad. Degr. Polym. Rad. Resist. Mater., July 24—25 1989, Takasaki, IAERI, Japan, p.13.
- 12. Бриксман Б.А. и др. Химия высоких энергий, 1990, т.24, № 5, с.438.
- 13. Пикаев А.К. Современная радиационная химия, М.: Наука, 1987.
- 14. Дьячков Е.М., Покровский К.К., Соловьев В.Н. Вопросы атомной науки и техники. ЦНИИатоминформ, 1981, вып.3(10), с.20.
- 15. Каплан И.Г., Митерев А.М. Химия высоких энергий, 1985, т.19, № 3, с.208.

The second second with the second second second second second

Рукопись поступила в издательский отдел

11. Sat. 1.

13 марта 1995 года.

have a second a second seco

 J. S. 1000 (2000) Excertain Constructing and according to the second s Second se Second se Second sec

16. Каплан И.Г. — Химия высоких энергий, 1983, т.17, № 2, с.210. 17. CERN Curier, 1973, v.9, p.172 and v.13, p.11.