

Объединенный институт ядерных исследований дубна

P14-92-65

1992

Ч.Сулковски, Н.М.Владимирова, В.М.Дробин, К.Рогацки*, З.Дамм*

СОПРОТИВЛЕНИЕ В НОРМАЛЬНОМ СОСТОЯНИИ МВа2Си 30 7-х КЕРАМИК

Направлено в журнал "Сверхпроводимость: физика, химия, техника"

*Институт низких температур и структурных исследований Польской академии наук, Вроцлав, Польша

Сулковски Ч. и др.

Сопротивление в нормальном состоянии MBa₂Cu₃O_{7—х} керамик

Для керамических образцов MBa₂ Cu₃O_{7-х}, где M это Y, Er, Eu, Gd, Ho, Dy, Er+Y, с концентрацией кислорода от 6,8 до 7 были выполнены прецизионные измерения температурной зависимости электрического сопротивления ρ (T). Образцы с высокой концентрацией кислорода (то есть с низким ρ) показали четкое отклонение ρ (T) от линейного хода ниже 260–270 К. Это отклонение $\Delta \rho$ положительно, и его величина уменьшается с понижением концентрации кислорода, достигает $\Delta \rho = 0$ при х = = 0,2. Ниже 200 К появляется другой фактор, понижающий величину ρ , – флуктуационная сверхпроводимость, ее вклад был определен для образца с линейной зависимостью ρ (T) и учитывался при вычислении хода сопротивления в нормальном состоянии ρ_n (T). Полученный ход ρ_n (T) в области 120–300 К для образцов с концентрацией кислорода, близкой к 7, является типично металлическим и хорошо описывается классической формулой Блоха – Грюнайзена.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1992

Перевод авторов

Sulkowski C. et al. Normal State Resistivity of MBa₂Cu₃O_{7-x} Ceramics

The precision temperature dependences of resistivity $\rho(T)$ for ceramic samples MBa₂Cu₃O_{7-x} where M is Y, Er, Eu, Gd, Ho, Dy, Er+Y were measured. The samples with high concentration of oxygen (i.e. with low ρ) showed clear deviation $\rho(T)$ from linear dependence below 260-270 K. This deviation $\Delta\rho$ is positive and its value decreases with decreasing oxygen concentration and arrives $\Delta\rho = 0$ for x = 0.2. Another factor decreasing value ρ appearing below 200 K is fluctuation superconductivity. Its contribution was defined for the sample with $\Delta\rho = 0$ and accounted in calculation of normal state resistivity $\rho_n(T)$. Resulted $\rho_n(T)$ in the range 120-300 K for samples with oxygen concentration close to 7 is typically metallic and agree with classic Bloch – Grüneisen theory.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1992

P14-92-65

P14-92-65

. 1. ВВЕДЕНИЕ

Свойства высокотемпературных сверхпроводников в нормальном состоянии далеко еще не раскрыты и интенсивно исследуются. Даже такой основной параметр, как электрическая проводимость, требует еще многих решений, и, с учетом сложного электронного спектра этих соединений, это не простая задача. Верным кажется только утверждение, что все ВТСП-соединения демонстрируют в плоскости ab электрическую проводимость металлического типа. Часто наблюдаемая полупроводниковая зависимость сопротивления от температуры ρ(T) для YBa₂Cu₃O_{7-х} вызвана примесью тетрагональной несверхпроводящей фазы, в которой концентрация кислорода ниже 6,5. Свойства орторомбической сверхпроводящей фазы, существующей при концентрации кислорода 6,5-7, очень сильно зависят от содержания кислорода и типа образца. Так, электрическое сопротивление при 300 К для керамик YBa2Cu3O7---- меняется от $\rho_{300} = 0,7$ мОм·см при x = 0 до $\rho_{300} = 5$ мОм·см при x = $0,4^{/1},^{2}/.$ Для подобных соединений типа 123, но с редкими землями вместо иттрия, величина радо обычно немного выше. Для монокристаллов и ориентированных пленок $\rho_{30.0}$ намного ниже (~ 150мкОм · см^{/3}).

Температурный ход сопротивления ρ (T) для соединений типа 123 считается "почти" прямолинейным в области температур от 130-150 К до 300 К^{/2,3,4/}. Этот диапазон зависит от технологии изготовления образца, количества примесей, концентрации кислорода, вида образца (монокристалл, керамика), стехиометрии, а также от точности измерений и выбора критерия определения линейного участка. Имеется несколько работ, в которых отмечается наличие положительного отклонения от линейной зависимости ρ (T). В работе^{/3 /} монокристаллы YBa₂Cu₃O_{7--х} с низким ρ_{300} обнаруживают отклонение от линейности даже на участке между 200 и 300 К (производная dp/dT меняется здесь от ~ 0,5 до ~ 0,56 кмОм·см/К). Тонкие пленки YBa₂Cu₄O_{8±x} и YBa₂Cu₃O_{7-x}^{/5/} также проявляют при низких температурах отклонение ρ (T) от линейного хода, авторы объясняют этот металлический характер отклонения в рамках классической модели электрон-фононного рассеяния Блоха-Грюнайзена. В работе получено хорошее согласие с теорией и из данных ρ (T) вычислены по формуле Блоха-Грюнайзена температуры Дебая для электронного транспорта θ^*_{D} , они равны 500 К для YBa₂Cu₄O_{8±x} и 200 К для YBa₂Cu₃O_{7-x} ^{/5 /}. Большое различие в величинах р для керамик и монокристаллов объясняется наличием в керамике дополнительного рассеяния электронов на границах зерен, но так как оно не зависит от температуры, то не должно влиять на ход температурной зависимости сопротивления ρ (**Т**

Таблица

Обычно керамические образцы прессуются в таблетки под давлением, поэтому такие образцы сильно текстурированы, это значит, что в плоскости таблетки есть выделенное кристаллическое направление, именно плоскость ab. Величина сопротивления в направлении оси с на два порядка выше, чем в плоскости ab, поэтому ход ρ (T) в плоскости таблетки близок к ходу в монокристаллах или ориентированных пленках в плоскости ab. В ВТСП-соединениях по мере улучшения однофазности и чистоты наблюдается все более выраженный металлический характер сопротивления ρ . Например, соединение Nd_{1,85} Ce_{0,15} CuO_{4-x} в керамическом виде имеет высокое, слабо зависящее от температуры сопротивление ρ , а в виде монокристаллов высокого качества дает низкое ρ и металлический ход ρ (T) ⁷⁶⁷.

На температурный ход сопротивления в ВТСП сильно влияет флуктуационная сверхпроводимость, которая в ВТСП появляется при очень высоких температурах, даже выше 200 К^{/7 /}. Этот эффект, названный парапроводимостью, вносит дополнительный вклад в электрическую проводимость и для правильного определения ρ (T) должен быть учтен.

Из явлений электронного транспорта важны также, для понимания хода ρ (T), эффект Холла и термоэдс. Для соединений 123 главный результат из измерений эффекта Холла — это положительный знак этого эффекта, и отсюда предположение: в этих соединениях ток переносится дырками. Измерение термоэдс S для YBa₂Cu₃O_{7-х} показывает много интересных явлений. При низкой концентрации кислорода знак S положителен, но при концентрации выше 6,9 он становится отрицательным^{/8 /}. Зависимость S(T) также имеет особенности: в области концентрации б,8 – 6,9 S нелинейно растет с понижением температуры. При концентрации кислорода, близкой к 7, наблюдается линейное уменьшение S, и величина S низкая (~ -5 мкB/K); эти два факта выявляют типично металлическую природу этого соединения при высокой концентрации кислорода^{/8 /}.

Целью данной работы является точное определение зависимости сопротивления в нормальном состоянии от температуры ρ_n (T) для керамических образцов MBa₂ Cu₃O_{7-x} с концентрацией кислорода выше 6,8, где металл M – это Y, Gd, Eu, Er, Dy, Ho, Y+Er, и выявление связи между зависимостью ρ (T) и свойствами иона M и другими характеристиками образцов.

2. ЭКСПЕРИМЕНТ

Однофазные образцы MBa₂ Cu₃O_{7-X} (см. таблицу) были получены из порошков M₂O₃, BaCO₃ и CuO высокой чистоты с помощью модифицированной технологии спекания, позволяющей получать образцы объемно плотные и механически устойчивые в результате появления жидкой фазы в реагирующей системе⁷⁹⁷. После прессования образцы имели прямоугольную форму размером Зх4х15 мм. В конце процесса они выдерживались при 400-450°C в течение

Tratier E. 20100

ANT A. A CALO

N°	Образцы	т _с , К	ΔΤ _c , Κ	р ₃₀₀ , мкОм∙см	А, <u>мкОм∙см</u> К	В, мкОм∙см	θ _{.D} , κ	<i>р</i> ₀ , мкОм∙см
1.	YBa ₂ Cu ₃ O _{7-x} (1)	91,4	1,5	690	2,07	69,7	825	333
2.	HoBa ₂ Cu ₃ O _{7-X}	92,4	0,8	800	2,13	160	760	416
3.	GdBa ₂ Cu ₃ O _{7-x}	93,9	0,8.	990	2,B0	150	:710	464
.4.	$ErBa_2Cu_3O_{7-x}(1)$	92,2	0,6	1100	3,30	108	720	487
5.	$YBa_{2}Cu_{3}O_{7-x}(3)$	91,9	0,8	1110	2,75	286	585	542
6.	DyBa ₂ Cu ₃ O _{7-x}	92,2	0,6	1100	2,78	265	680	566
7.	$YBa_2Cu_3O_{7-x}(2)$	91,2	1,6	1200	3,85	44	700	470
8.	EuB a2Cu3O 7.	93,7	1,4	1260	2,97	368	-	-
9.	Y _{0.5} Er _{0.5} Ba ₂ Cu ₃ O _{7 x}	92,0	1,0	1340	3,63	250	640	625
10.	Y _{0.75} Er _{0.25} 8a ₂ Cu ₃ O _{7-x}	91,6	1,1	1390	3,32	395	540	668
11.	$E_rBa_2Cu_3O_{7-x}(2)$	91,7	1,8	1840	4,67	439		

20 часов в атмосфере текущего кислорода и затем быстро охлаждались. Концентрация кислорода определялась гравиметрическим методом и для всех образцов была в диапазоне 6,8 ÷ 7 при точности измерений ± 0,05.

Рентгеновский анализ показал, что образцы были однофазными и имели орторомбическую структуру с незначительным разбросом величин параметров решетки между образцами (например, параметр а менялся в интервале 3.82 ÷ 3.83 Å). Плотность образцов по сравнению с плотностью, полученной из рентгеновских измерений, составляет 75-92%. Рентгеновские исследования показали также, что образцы текстурированы, длинная ось образца имеет выделенное направление, она параллельна кристаллографической плоскости аb. В таблице приведен список исследованных образцов и некоторые их параметры: температура сверхпроводящего перехода T_c, ширина этого перехода ΔT_c , сопротивление при 300 К ho_{300} . Т_с определена из измерений резистивного перехода как температура, при которой сопротивление равно 0,5 от величины в нормальном состоянии, ΔT_c — это область, где ho меняется от 0,1 до 0,9 этой величины. Из таблицы видно, что Т образцов меняется незначительно, в то время как величина сопротивления ρ_{300} меняется почти в 3 раза, что, вероятно, вызвано изменением концентрации кислорода (известна пропорциональная зависимость между ρ_{300} и х^{/2}). Наши измерения концентрации кислорода были недостаточно точны; мы можем только сказать, что концентрация для образцов №1--З (табл.) находится в пределах 6,9 ÷ 7,0, для №4--7 - 6,85 ÷ 6,93 и для №8—11 — 6.8 ÷ 6.87,

Измерения сопротивления были проведены четырехзондовым методом на постоянном токе, плотность которого была ниже 0,4 А/см². Для этих измерений обычно вырезались образцы размером 2x3x15 мм. Провода к образцу

3

приклеивались серебряной пастой, сопротивление электрических контактов получалось ~ 1 Ом. Измерения выполнялись при изменении температуры со скоростью меньше 1 К/мин как при росте, так и при понижении температуры. Для определения температуры использовались Рt и Си термометры сопротивления. Ошибка в измерении сопротивления была всегда ниже 0,1% величины ρ_{300} , а ошибка в определении температуры ниже 0,1 К.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И ИХ ОБСУЖДЕНИЕ

Результаты наших измерений температурной зависимости сопротивления для соединений MBa₂Cu₃O_{7-х}, при точности измерений 0,1%, для многих образцов показали четкое, хорошо измеряемое отклонение от линейной зависимости. Для количественного определения этого отклонения вводим параметр $\Delta \rho = \rho - \rho_L$, где ρ – измеренное значение, а $\rho_L = A \cdot T + B$ – расчетное значение при данной температуре, вычисленное экстраполированием точно линейной зависимости, всегда наблюдаемой при температуре, близкой к комнатной. Зависимость $\Delta \rho$ от температуры представлена на рис.1 для шести образцов. Как видно, диапазон линейной зависимости ρ (T) (когда $\Delta \rho = 0$) различен и

находится в пределах от 230–270 К до 300 К. В таблице даны величины А и В, определенные из этой линейной зависимости р (T).

Температурный ход сопротивления (рис.1) можно разделить на три области: 1) линейная зависимость ρ (T); 2) $\Delta \rho > 0$, в этой области сопротивление падает медленнее с понижением температуры, чем в линейном диапазоне; 3) $\Delta \rho < 0$, здесь уже сказывается влияние флуктуационной сверхпроводимости

Рис. 1. Температурная зависимость отклонения удельного сопротивления от линейной зависимости для образцов MBa₂Cu₃O_{7-х}, где M ион, указанный на кривых.

(парапроводимости). Два первых члена всегда присутствуют в ρ (T) у металлов, первый — в высоких температурах, второй — ниже температуры Дебая. В ВТСП сверхпроводящие флуктуации появляются при очень высоких температурах, даже выше 2Тс /7 /, и этот эффект сильно растет с понижением температуры. Изменение сопротивления, связанное с парапроводимостью, на рис.1 обозначено как $\Delta \rho_{\rm p}$. Для получения правильной величины сопротивления в нормальном состоянии ρ_n нужно $\Delta \rho_p$ вычесть из измеренной величины сопротивления. Для всех наших образцов есть область, где $\Delta \rho = 0$, область с $\Delta \rho > 0$ меняется сильно от образца к образцу, наибольшую величину $\Delta \rho$ принимает для $ErBa_2Cu_3O_{7-x}$ (1); для него в максимуме отношение $\Delta \rho/\rho_{300} \sim 2\%$. Для образца ErBa₂Cu₃O_{2-x} (2) область $\Delta \rho > 0$ вообще не появляется, а для ЕиВа, Сu₃ O_{7-x} Δρ очень мало (рис.1). Из исследованных образцов ErBa, Cu₃O_{7-x} (2) выполняет особую роль, для него линейная зависимость р (T) наблюдается в наиболее широком диапазоне температур, член с $\Delta \rho > 0$ отсутствует, и потому отрицательное отклонение от линейного хода сопротивления ($\Delta \rho < 0$) ниже 230 К связано только с эффектом парапроводимости. Можно тогда экспериментально определить вклад парапроводимости $\Delta \rho_{\rm p}$ (T) в ход ρ (T) (рис.1). Все наши образцы — это соединения типа 123, их Т, почти одинаковы, и поэтому мы считаем допустимым предположение, что изменение сопротивления, вызванное эффектом парапроводимости $\Delta \rho_{p}$ (T), для всех измеренных образцов одинаково, как для ErBa₂Cu₃O_{7-x} (2). В итоге температурную зависимость сопротивления в нормальном состоянии ρ_n (T) можно записать как сумму:

 $\rho_{n}(\mathsf{T}) = \rho(\mathsf{T}) - \Delta \rho_{p}(\mathsf{T}) = \rho_{L}(\mathsf{T}) + \Delta \rho(\mathsf{T}) - \Delta \rho_{p}(\mathsf{T}) = \mathsf{A}\mathsf{T} + \mathsf{B} + \Delta \rho(\mathsf{T}) - \Delta \rho_{p}(\mathsf{T}).$

Величины А и В даны в таблице, $\Delta \rho$ (T) и $\Delta \rho_p$ (T) определялись из данных на рис.1. Вычисленные таким методом величины ρ_n для разных температур из области 120—300 К представлены точками на рис.2 для шести избранных образцов. Ниже 120 К точность определения ρ_n быстро падает из-за сильной зависимости парапроводимости от температуры и близости сверхпроводящего перехода, и потому величины ρ_n ниже 120 К на рис.2 не нанесены.

Наблюдаемое положительное отклонение от линейного хода ρ_n (T) привело нас к применению классической модели электрон-фононного взаимодействия, описанной формулой Блоха — Грюнайзена для температурной зависимости сопротивления металлов, как это сделано в ^{/5} /. Некоторые модели высокотемпературной сверхпроводимости предсказывают $\rho_n \sim T^{/10,11}$, но возможно, что модель БГ, предсказывающая при низких температурах $\rho_n \sim T^5$, а при температурах выше термодинамической температуры Дебая $\theta_D \rho_n \sim T$, более применима для ВТСП с $T_c \sim 90$ К.

Расчетные зависимости ρ (T) по формуле Блоха – Грюнайзена

$$\rho = \rho_0 + C \left(T/\theta_D^* \right)^5 F_s \left(\theta_D^* / T \right)$$

4

5

Рис.2. Температурная зависимость сопротивления в нормальном состоянии для MBa₂Cu₃O_{7-х}. Точками обозначены экспериментальные данные, линиями – температурный ход сопротивления, вычисленный по формуле Блоха – Грюнайзена.

представлены на рис.2 сплошными линиями. Подобранными параметрами являются: температура Дебая для транспорта θ_{D}^* , остаточное сопротивление ρ_0 и постоянная С. Полученные таким образом θ_D^* и ρ_0 приведены в таблице; мы оцениваем точность определения θ_D^* около ± 50 К. Отклонение ρ_n (T)

от зависимости БГ мало, ниже 1% для образцов с низким ρ (то есть с концентрацией кислорода, близкой к 7), для образцов с большим ρ эта разница уже значительна (~ 3%) (рис.2), а для образцов с х = 0,2 формула Блоха – Грюнайзена уже не может быть применена (см. табл.).

Для образцов EuBa₂Cu₃O_{7-х} и ErBa₂Cu₃O_{7-х} (2) величины θ_{D}^{*} и ρ_{0} не определены из-за почти линейного хода зависимости ρ (T). Полученные нами величины θ_{D}^{*} более высокие, если сравнить с пленками YBa₂Cu₃O_{7-х}, где $\theta_{D}^{*} = 200$ K, и YBa₂Cu₄O_{8±x}, где $\theta_{D}^{*} = 500$ K^{/5}. Причиной расхождения может быть тот факт, что в ^{/57} не учитывали влияние эффекта парапроводимости выше 140 K, принималось, что выше 130–140 K измеренное сопротивление – это его значение в нормальном состоянии.

Для исследованных образцов наблюдалась пропорциональность между θ_D^* и величинами $1/\rho_{300}$ и $1/\rho_0$ (табл.): т.е. для образцов с низким ρ (или с концентрацией кислорода, близкой к 7) θ_D^* получилась максимальной: ~ 800 К. С понижением концентрации кислорода θ_D^* быстро падает и при 6,8 достигает величины ~ 500 К.

Одной из целей работы было обнаружение зависимости между ρ и ходом ρ (T) и свойствами иона M в соединениях MBa₂Cu₃O_{7-x}, но сильная зависимость этих характеристик от концентрации кислорода сделала невозможным наблюдение таких слабых эффектов.

Сильная зависимость от концентрации кислорода таких параметров, как сопротивление ρ и его температурный ход ρ (T), термоэдс S и S(T)^{/8}, подтверждает сложную электронную структуру этих соединений, некоторую возможность объяснения такого поведения свойств электронного транспорта дает модель узкой зоны^{/2}. Представленные выше результаты дают возможность сделать вывод о том, что по мере приближения концентрации кислорода к 7 электрическое сопротивление (а также термоэдс^{/8 /}) соединений MBa₂Cu₃O_{7-х} демонстрируют все более металлический характер. Температурный ход сопротивления в нормальном состоянии таких образцов хорошо описывается классической формулой Блоха – Грюнайзена.

Понижение концентрации кислорода до 6,8, не меняющее величину T_c, сильно изменяет величину и характер электронного транспорта.

ЛИТЕРАТУРА

1. Sulkowski C. et al. - Physica C, 1988, v.153-155, p.1337.

2. Гасумянц В.Э. и др. — СФХТ, 1991, т.4, с.1280.

3. Winrer K., Kumm G. – Proc. Third German – Soviet Bilateral Seminar on High-Temperature Superconductivity, 1990, Karlsruhe, p.668.

 Hopfengartner R., Hensel B., Saemann-Ischenko G. – Phys. Rev. B, 1991, v.44, p.741.

5. Martin S. et al. – Phys. Rev. B, 1989, v.39, p.9611.

6. Sadowski W. et al. - J.Less - Common Met., 1990, v.164-165, p.824.

7. Solovyov A.L. et al. – Proc. Third German – Soviet Bilateral Seminar on High-Temperature Superconductivity, 1990, Karlsruhe, p.104.

8. Ouseph P.J., Ray O'Bryan M. - Phys. Rev. B, 1990, v.41, p.4123.

9. Damm Z. et al. – phys. stat. sol. (a), 1989, v.116, p.367.

10. Anderson P.W., Zhou Z. - Phys. Rev. Lett., 1988, v.60, p.2257.

11. Phyllips J.C. - Phys. Rev. B, 1989, v.40, p.7348.

Рукопись поступила в издательский отдел 20 февраля 1992 года.

6