90-372

Объединенный институт ядерных исследований дубна

5-20

P14-90-372

А.М.Балагуров, Г.М.Миронова

НЕЙТРОНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ

Направлено в журнал "Кристаллография"

1990

1. Введение

Под нейтронографией в реальном масштабе времени (НРМВ) понимается изучение неравновесного состояния в конденсированной среде с помощью рассеяния нейтронов непосредственно в ходе релаксации этого состояния к равновесному. Нейтронография является микроскопическим методом изучения структуры вещества, и, таким образом, ход процесса может быть прослежен на. атомном уровне. В этом отношении возможности нейтронного и DOHT-ГЕНОВСКОГО ИЛИ СИНХРОТРОННОГО ИЗЛУЧЕНИЙ, ТАКЖЕ ШИРОКО применяемых для наблюдения переходных процессов, эквивалентны. Но НРМВ сохраняет все достоинства, присущие нейтронам, прежде всего способность "видеть" легкие атомы вблизи тяжелых и различать изотопы элементов. Часто при постановке экспериментов в реальном масштабе времени немаловажным фактором является высокая проникающая способность нейтронов.

Нейтронографические эксперименты в режиме реального времени начали развиваться в течение последних 10-15 лет (см. обзор⁽¹⁾) в основном на высокопоточных источниках нейтронов. В качестве примеров проведенных исследований можно назвать изучение химических реакций в твердой фазе^(2,3), процессов изотопного обмена^(4,5), процесса переключения поляризации сегнетоэлектрика⁽⁶⁾, релаксации намагниченности в спиновом стекле⁽⁷⁾.

Масштаб характерных времен, доступных для изучения, существенно различается в зависимости от того, является процесс воспроизводимым или нет. Для воспроизводимых явлений доступны времена порядка 10⁻³с, как при переключении поляризации кристалла NANO₂⁶, и даже 10⁻⁴с, как в случае спин-флоп перехода в импульсном магнитном поле в кристалле CR₂O₃⁸. В этих экспериментах нижняя граница временного разрешения возникает в основном из-за неопределенностей при воздействии переключающих импульсов на кристалл. Статистическая точность измеряемых спектров зависит от числа повторений процесса и может быть как угодно хорошей.

Объсканенный виститут RAGNNESS LUCCEPEDESUBE **GHEAHOTEHA**

В случае необратимого процесса, например, такого, как химическая реакция, его наблюдаемость определяется условием t_s «т, где τ -характерное время процесса, t_s -время измерения одного спектра с достаточным для целей эксперимента уровнем статистики. Величина t_s зависит от потока нейтронов в первичном пучке, площади, рассеивающей способности образца, других факторов (см. ниже), и для наиболее светосильных нейтронных дифрактометров на стационарных реакторах составляет 5-15 мин (D1B на реакторе HFR в ILL. Гренобль²⁷, ДИСК на реакторе ИР-8 в ИАЭ, Москва⁹⁷).

Сравнение по светосиле нейтронных дифрактометров с монохроматором на стационарных реакторах и дифрактометров по времени пролета(ДВП) на импульсных источниках нейтронов в общем случае показывает преимущество последних 10, несмотря на то, что средний по времени поток от стационарного реактора больше по крайней мере на два порядка. Для экспериментов в режиме реального времени основными факторами, позволяющими на ДВП резко увеличить скорость набора данных, являются следующие: ОТСУТСТВИЕ ПРЕДВАРИТЕЛЬНОЙ МОНОХРОМАТИЗАЦИИ ПУЧКА НЕЙТРОНОВ. параллельная регистрация данных в большом интервале онк и большом телесном угле, возможность использования образцов большой площади. В результате при исследовании одинаковых процессов на D1B (ILL, Гренобль) и на дифрактометре по времени пролета ДН-2 на импульсном реакторе ИБР-2¹¹ (ОИЯИ, Дубна) время измерения дифракционных спектров во втором случае оказалось примерно на порядок меньше (см. раздел 3.1). Более того, как показано в 12, на ИБР-2 имеется принципиальная возможность измерения нейтронограмм от одного импульса мощности реактора, и в этом случае специальная организация детекторной системы позволит исследовать необратимые процессы с временным разрешением At≈300 мкс. Такое разрешение в дифракционных экспериментах достижимо пока только на сверхьярких источниках синхротронного излучения.

В настоящей работе рассмотрены возможности и особенности проведения дифракционных экспериментов на неитронном дифрактометре ДН-2 на импульсном реакторе ИБР-2 и представлены результаты некоторых исследований. 2. Метод НРМВ на импульсном источнике нейтронов

Информативность дифракционного эксперимента в реальном масштабе времени определяется в основном тремя характеристиками:

- Светосилой, т.е. возможностью достижения необходимой величины t_с,

- диапазоном одновременно регистрируемых dbkl,

- разрешающей способностью, т.е. величиной Ad/d.

Рассмотрим соответствующие возможности дифрактометра по времени пролета ДН-2^{/13/} на импульсном реакторе ИБР-2.

Дифрактометр расположен на 6-м канале ИБР-2 на расстоянии 24 м от активной зоны реактора. Пучок нейтронов на образце формируется изогнутым зеркальным нейтроноводом длиной 19 м с радиусом кривизны 1200 м, сечение нейтроновода на выходе 1.5×18 см. При обычном режиме работы реактора - средняя мощность 2 МВт, частота 5 Гц, средний поток тепловых нейтронов с поверхности замедлителя около 8 10¹² н/см²/с, полный поток нейтронов на образце в диапазоне длин волн 1-20 Å составляет $\Phi_{o}\approx 10^{7}$ н/см²/с. Форма импульса тепловых нейтронов является сверткой импульса быстрых нейтронов и функции отклика замедлителя и при $\lambda > 2$ Å представляет собой близкое к гауссиану слегка асимметричное распределение с шириной на половине высоты $\Delta t=320$ мкс. Разрешающая способность дифрактометра в первом приближении определяется двумя слагаемыми

 $(\Delta d/d)^2 = (\Delta t/t)^2 + (\Delta \theta/tg\theta)^2$

(1)

где d – межплоскостное расстояние, t=505.6·L·d·sin(θ) – полное время пролета пути L от замедлителя до детектора, θ -угол Брэгга, $\Delta \theta$ -угловые неопределенности процесса рассеяния, связанные с коллимацией первичного пучка, размерами образца и апертурой детектора. Разрешение улучшается с увеличением θ , а при фиксированном θ с увеличением d, для больших углов рассеяния ($\theta \ge 70^{\circ}$) оно практически равно первому слагаемому в (1) и составляет $\Delta d/d=0.025/d$, где d в Å. Такое разрешение позволяет уверенно расшифровывать нейтронограммы с d ≥ 2 Å, что обычно достаточно при изучении химических реакций.

2

Важным моментом в организации НРМВ на дифрактометре по пролета является возможность с помощью небольшого времени числа детекторов охватить весь необходимый интервал межплоскостных расстояний. Так, при работе в диалазоне 1.5-8 Å (наиболее интенсивная часть спектра нейтронов на ДН-2> всего два детектора, поставленные на углах рассеяния 160° и 20°, позволяют регистрировать дифракцию в интервале от 0.8 до 24 Å. Постановка дополнительных детекторов на малых (~1-3°) углах дает возможность параллельно с дифракционными регистрировать спектры малоуглового рассеяния нейтронов. Как известно, это позволяет получить информацию о крупномасштабных неоднородностях рассеивающей способности вещества. Для длин волн 1.5-8 А характерные размеры наблюдаемых неоднородностей составляют от 10 до 100 А. При изучении переходных процессов регистрация малоуглового рассеяния позволяет определить момент возникновения зародышей новой фазы, оценивать их размер и динамику развития.

Рис.1: Схема эксперимента с печью (вид сверху). D1(20=160°) и D2(20=20°)детекторы нейтронов.

На рис.1 показана схема проведения эксперимёнта, в ходе которого образец нагревается в печи, имеющей большой внутренний объем и большие входное и выходное окна, которые закрываются прозрачными для нейтронов экранами. Детекторы D1 и D2 размещаются на углах рассеяния 160⁰ и 20⁰. Число нейтронов, регистрируемых одним детектором, есть

$$I = \Phi_{C} \cdot S \cdot \frac{\Omega}{4 \cdot \pi} \cdot C$$

(2)

где S-сечение образца, Ω-телесный угол детектора, δ - вероятность рассеяния на образце. На большом угле регистрация рассеянного пучка возможна без дополнительной коллимации, телесный угол детектора D1 равен 0.013 ср и в случае изотропного рассеивателя с δ=0.2 площадью 10 см² D1 будет регистрировать ~3·10⁴ н/с. Этой величиной и определяется интервал t_s слежения за ходом процесса. Для сохранения умеренного разрешения детектор D2 используется с дополнительным коллиматором, и его телесный угол существенно меньше, чем у D1. Однако, вследствие того, что структурные факторы дифракционных пиков с малыми индексами Миллера относительно велики, регистрируемая интенсивность обычно достаточна для идентификации фаз. На рис.2 показаны дифракционные спектры в области больших d_{hk1}, измеренные детектором D2 в процессе синтеза YBa₂Cu₃O_x.

Рис.2. Последовательность дифракционных спектров, измеренная в ходе синтеза YBa₂Cu₃O_x. Вдоль оси времени расположено 60 дифракционных спектров, каждыи из которых измерялся 5 мин. Показан небольшой участок неитронограммы в области d=12 Å.

В ходе экспериментов в реальном масштабе времени регистрируются большие объемы данных. Типичный эксперимент, длящийся несколько часов с временем измерения одного спектра t_s=I-3 мин, с использованием 2-4 детекторов, поставляет ~1 Мбайт информации. Для ее накопления и анализа разработано специальное электронное и программное обеспечение ¹⁴. В настоящее время как ведение эксперимента, так и последующий анализ данных осуществляется с помощью персональной ЭВМ класса РС/АТ-286.

Программы обработки информации позволяют выполнить разнообразные типы просмотра спектров и идентификацию дифракционных пиков по d_{hk1}, проследить их эволюцию во времени, определить основные характеристики пиков (положение, площадь, ширину), выполнить структурный анализ по методу Ритвельда.

3. Эксперименты в режиме НРМВ на дифрактометре ДН-2

В ходе развития метода НРМВ на ДН-2 были выполнены многочисленные эксперименты, носящие как тестовый, так и физический характер. Ниже рассмотрены постановка и результаты некоторых наиболее типичных из них.

3.1. Химическая реакция гидратации 15/

В работе $^{2'}$, выполненной на D1B в ILL, был исследован процесс гидратации одной из составляющих цемента – трехкальциевого алюмината $Ca_3Al_2O_6$ (краткое обозначение – C_3A , где C=Ca0, A=Al_2O_3). Нейтронограммы измерялись с t_s =6-12 мин позиционно-чувствительным детектором одновременно в широком интервале углов рассеяния ($\Delta e=80^\circ$, 1.7≤d≤9.6 Å). Авторы дали оценку времени полураспада исходной фазы в процессе реакции ($t_{1/2}$ <0.1 ч), установили факты более быстрого исчезновения C₃A, по сравнению с появлением стабильной гидратной фазы C₃AD₆ (D=D₂O), и отсутствия дифракционной картины в промежуточном интервале времени, на основании чего был сделан принципиальный вывод о возникновении конечной фазы из аморфного состояния реагирующей смеси.

Результаты нашего эксперимента были получены в двух измерениях при следующих условиях: 1) угол рассеяния 112°, масса сухого вещества 8 г, t_s =40 с, 4 мл D₂0 в течение 3 с заливались в контейнер без последующего перемешивания в начале съемки второго кадра измерения, 2) угол рассеяния 40°, масса сухого вещества 6 г, t_s =10 с, образец в виде пасты, полученной перемешиванием в течение 20 с смеси порошка и 3 мл D₂0, ставился на пучок нейтронов на 60-й секунде с начала приготовления пасты. В обоих случаях площадь образца составляла около 6 см², контейнеры были из алюминиевой фольги, измерения проводились без термостатирования при комнатной температуре. Нейтронограммы сухого вещества и конечного продукта гидратации соответствовали известным данным: пр.гр.Ра3, 4=15.263 Å, $Z=32^{-16}$ и пр.гр.la3d, a=12.47 Å, $Z=8^{-17}$.

Эксперимент, в котором контакт D₂O с сухим C₃A происходил в процессе сьемки (At=40 с), позволил наблюдать начальную стадию реакции. На рис.3 представлены участки нейтронограмм 1, 4, 6 и 8-го кадров; первый кадр соответствует сухому C₃A, 8-й интервалу времени 240-280 с с момента заливки D₂O. Сравнение нейтронограмм показывает, что уже к 120-й секунде (4-й кадр) дифракционные пики от исходной фазы почти исчезают. Параллельно с их исчезновением появляются и исчезают пики, не принадлежащие ни C₃A, ни C₃AD₆. Например, пик с d=2.69 Å появляется в 4-м кадре и исчезает в 6-м, пик с d=2.5 Å есть только в 6-м кадре и т.д. На нейтронограмме 8-го кадра удается почти все наблюдаемые дифракционные пики проиндицировать на основе решетки C₃AD₆, хотя их интенсивности еще не полностью соответствуют картине, полученной в конце эксперимента (спустя 8 ч).

Рис.3. Нейтронограммы, измеренные в ходе гидратации С₃А. Указан интервал съемки, отсчитанный от начала заливки воды. Для 8-го кадра указаны положения и индексы Миллера пиков, соответствующие С₃АD₆.

Временные зависимости полной интенсивности рассеяния и интенсивности некоторых дифракционных пиков показаны на рис.4. На представленных зависимостях можно выделить несколько характерных временных участков. В интервале 0<t<2 мин. происходит почти полное исчезновение пиков от сухого С₃А, начинают возникать пики промежуточных кристаллических фаз, хорошо наблюдаемые вплоть до t=4 мин. С этого момента начинается образование стабильной гидратной фазы C₃AD₆. Вплоть до t≈25 мин происходят сравнительно быстрые изменения дифракционных спектров, связанные с продолжающимся формированием конечной фазы,

Рис.4. Зависимость полной интенсивности (1) и интенсивности дифракционных пиков от времени для интервала 1.98≤d≤2.06 Å (2) и , 1.81≤d≤1.98 Å (3). За пунктирной линией – точки, измеренные спустя 8 ч после начала гидратации.

далее наблюдаются лишь незначительные медленные изменения, длящиеся до конца эксперимента (8 час).

В измерении на малом угле рассеяния (20=40°) с t_s=10 с наблюдалось возникновение характерного для C₃AD₆ рефлекса (211) с d=5.13 Å. Появление новой фазы, так же как и в предыдущем случае, происходило на 5-й минуте контакта вещества с водой и носило скачкообразный характер.

По результатам эксперимента можно сделать следующие выводы: - распад исходной фазы практически завершается за время 2 мин, - конечная фаза возникает на 5-й минуте контакта С₃А с D₂0 скачкообразно,

- в интервале 1<t<4 мин неитронограммы содержат большое число дифракционных пиков, быстро изменяющихся по интенсивности и положению,

Т.с., наши результаты дают альтернативную по отношению к выводам работы² трактовку процесса, а именно: гидратная фаза образуется через последовательность промежуточных метастабильных кристаллических состояний.

3.2. Химическая реакция синтеза

После открытия высокотемпературных сверхпроводников большое внимание было уделено процессам, идущим при их синтезе. В основном использовались методы DTA и TGA, а также рентгеновский анализ промежуточных фаз, полученных в различных вариантах внешних условий с остановкой реакции и быстрой закалкой продукта.

Мы применили НРМВ для исследования процессов синтеза некоторых ВТСП-материалов (иттриевых и висмутовых керамик), результаты которых частично опубликованы в 181. Эксперименты проведены по схеме, изображенной на рис.1. При синтезе YBa_Cu_Q, образец представлял собой стехиометрическую смесь исходных компонент Y203, BaCO3 и CuO в контейнере из платиновой фольги в форме параллелепипеда с размерами 1.5×0.5×4 см. Температура в печи плавно поднималась от комнатной до 940°С за ~5 ч, дифракционные спектры измерялись непрерывно с t_=5 мин. При 600°С началось образование основных промежуточных фаз этой реакции: ВаСиО2, Y2BaCuO5 и Y2Cu2O5. Формирование фазы 1-2-3 началось при 870 ℃ с одновременным уменьшением содержания промежуточных фаз. Подробное рассмотрение химических аспектов процесса проведено в 19, здесь мы анализируем только конечную стадию реакции: кинетику образования и структурные характеристики фазы 1-2-3.

Из дифракционных спектров от детектора D2, содержащих пик (001) с d=11.95 Å тетрагональной фазы YBa₂Cu₃0₆ (рис.2), можно определить его интегральную интенсивность, изменение которой характеризует рост содержания фазы 1-2-3 в реагирующей смеси (рис.5). Т.к. при t≥225 мин (T≥900°C) режим реакции почти изотермический, можно провести анализ кинетики идущей реакции. Как показано в работе²⁰ (методы DTA и TGA), возможными механизмами могут быть трехмерная диффузия или взаимодействие на границах раздела фаз. В первом случае линейной во времени должна быть функция (1-(1-у)^{1/3})², где у - доля новой фазы в образце, во втором - функция 1-(1-у)^{1/2}, если реакция идет на двумерных (цилиндрических) поверхностях раздела фаз, или 1-(1-у)^{1/3}, если поверхность раздела сферическая²¹. Соответствующие зависимости представлены на рис.6, из которых видно, что наилучшим образом экспериментальные точки описывартся уравнением кt=1-(1-y)^{1/2}, что для иттриевой керамики отвечает и данным работы 20, хотя нельзя полностью исключить взаимодействия фаз на сферических поверхностях раздела.

После того как содержание фазы 1-2-3 достигло максимума, примесь других фаз была уже незначительна, оказалось возможным выполнить структурный анализ по методу Ритвельда.

8

Рис.5. Зависимость содержания 1 фазы 1-2-3 в смеси от времени.

Он показал, что получена действительно тетрагональная фаза YBa₂Cu₃0₆₊₆ с *б*≈0.02-0.04 и небольшим дефицитом меди в позиции Cu1 (п(Cu1)=0.95). В нейтронограммах присутствовали два посторонних дифракционных пика при d=2.11 и 1.83 Å. Введение в качестве второй фазы металлической меди позволило описать нейтронограмму полностью (рис.7). Результаты анализа приведены в таблице 1.

Рис.?. Дифракционный спектр тетрагональной фазы YBa₂Cu₃O₈ при T=940°С. Показаны экспериментальные точки, рассчитанный профиль и разностная кривая. Время измерения 5 мин. Таким образом, применение HPMB позволило выполнить непрерывный дифракционный контроль хода синтеза керамики YBa₂Cu₃0_х из исходных компонент, определить закон кинетики образования продукта реакции и провести его структурный анализ. В частности, оказалось, что на последней стадии реакции возникает в виде отдельной фазы металлическая медь, при одновременном ее дефиците в позиции Cu1 структуры 1-2-3.

Таблица 1. Факторы заполнения, координаты атомов и параметры решетки YBa₂Cu₃0₆ при T=940°C, t_s=5 мин (пр.гр.Р4/mmm). В скобках – стандартные отклонения, выраженные в единицах последней значащей цифры. R_{wp} и R_{exp} – взвещенный и ожидаемый R – факторы.

Атом	n •	×	У	Z
Y	1	0.5	0.5	0.5
Ba	2	0.5	0.5	0.5
Cu1	0.95030	•••••••••••••••••••••••••••••••••••••••	0	Ο
Cu2	1.98(3)	0	0	0.360(1)
01	0.04(2)	0	0.5	0
02	2	ο	0.5	0.379(1)
03	1.92(2)	0	o	0.152(1)
aÅ	3.915(1)		R	0.0447
ъ́Å	11.966(3)		Rexp	0.0458

3.3. Процесс изотопного обмена в липидных мультислоях

Одной из наиболее существенных особенностей взаимодействия нейтронов с веществом является зависимость вероятности рассеяния от изотопного состава среды. Особенно ярко это проявляется во взаимодействии с водородом и дейтерием - когерентные длины рассеяния для этих изотопов b_н и b_D равны, соответственно, -0.374 и 0.665 в единицах 10⁻¹² см. Примерами кинетических экспериментов, основанных на большой разнице Между 11

bu и bn, являются наблюдения замещения H₂O на D₂O и обратно в коллагене, миелине и мультиламеллярных липидных структурах. В частности, в работе 5, выполненной на ДН-2, было показано, что процесс замещения с одновременным изменением уровня влажности является сложным, т.е. состоящим из нескольких стадий, различающихся постоянными времени. Начальную, самую быструю, стадию в этих экспериментах наблюдать не удалось, была лишь дана оценка, что ее постоянная времени близка к 1 мин. Две последующие стадии протекали с характерными временами 3-4 мин и 10-30 мин. Их конкретная величина зависела от начального и конечного уровней влажности. Мы выполнили эксперимент* по кинетике изотопного обмена в липидных мультислоях из фосфатидилхолина-фосфатидилглицерина (ФХ: ФГ, стехиометрия 1:1), основной целью которого было наблюдение начальной стадии пропокровное стекло Образец в виде нанесенных на uecca. (24×24 мм) ориентированных слоев смеси липидов помещался в герметичную камеру с окнами из алюминиевой фольги. Влажность в камере задавалась помещением в нее коветы с тканью, смоченной в тяжелой или легкой воде. Замена одной коветы на другую происходила в течение ~1 с, без сообщения с внешней средой.

Можно предположить, что изменение количества D₂0 в образце в процессе замены H₂0 -> D₂0 (или H₂0 при обратном процессе) будет происходить по экспоненциальному закону т.е.

$$m(t) = M \cdot (1 - e^{-t/t})$$

где t – время, прошедшее с начала процесса, M – соответствует массе воды в насыщенном состоянии, τ – характерное время. Поскольку полный структурный фактор липидного бислоя можно представить в виде суммы $F_T = F_L + F_W$, где F_L и F_W – структурные факторы липидной и водной частей, а $F_W \sim m(t)$, то зависимость F_T от времени должна быть также экспоненциальной:

 $F_{T}(t) = F_{\infty} + F_{1} \cdot e^{-t/\tau},$

где F_m и F₁ - некоторые константы.

На рис.⁸ показаны зависимости от времени интенсивности первого порядка дифракционного отражения от мультислоя (d≈40 Å), измеренные с t_c=2 с в течение первых 250 с процесса.

Рис.8. Зависимость от времени интегральной интенсивности пика (001) от мультислоя ΦХ: ΦΓ в ходе процессов обмена легкой воды на тяжелур и обратно. Стрелкой показан момент смены среды.

Увеличение интенсивности при замене H_2^0 на D_2^0 соответствует увеличению структурного фактора за счет большей длины когерентного рассеяния у D_2^0 . При отсутствии эффектов экстинкции $F_T \sim I^{1/2}$, где I – интенсивность пика, и, следовательно, зависимость lnIF(t)- F_{∞} I должна быть линейной во времени. Эта функция для обоих процессов показана на рис.9, из которого видно, что линейность действительно имеет место. Из наклона прямых определяются величины τ (H->D) и τ (D->H), которые оказались равными 92 и 71 с соответственно.

Рис.9. Графики ln |F(t)-F∞| для зависимостей, показанных на рис.8.

Итак, в этом эксперименте были определены постоянные времени начальной стадии процессов замены легкой воды на тяжелур и обратно в липидном мультислое из ФХ:ФГ. Оказалось, в частности, что легкая вода вытесняет тяжелур заметно быстрее.

3.4. Взаимодействие водорода с УВа₂Си₃0₂

Одной из особенностей нового высокотемпературного сверхпроводника YBa₂Cu₃O₇ является его высокая реакционная способность взаимодействия с газовыми средами. В нескольких работах⁷²²⁻²⁴ указывалось, в частности, на сильную деградацию YBa₂Cu₃O₇ при взаимодействии с водородом,а также на тетрагонализацию решетки 1-2-3, происходящую при возрастании концентрации внедренного водорода. Чтобы получить дополнительные данные об этом процессе, мы предприняли исследование взаимодействия водорода с керамикой 1-2-3 с помощью HPMB⁷²⁵.

Исследованный образец состоял из зерен ~8 мм² и помещался в кварцевой трубке в печь. Эксперимент был проведен в три стадии. Сначала водород пропускался через образец при комнатной температуре, затем температура поднималась с примерно постоянной скоростью ($\Delta T / \Delta t = 5$ град/мин) до 350°C. Далее водород был заменен на аргон, и образец был нагрет до 700°C.

При комнатной температуре (1-42 мин эксперимента), кроме незначительного увеличения некогерентной подложки, изменений дифракционных спектров не происходило. Подьем температуры происходил в интервале с 42 по 114 мин. Обработка спектров по методу Ритвельда дала эволюцию во времени параметров структуры. Так,на рис.10 и 11 представлены заселенность кислородом позиции 04 и размеры элементарной ячейки. Отмеченного в 24 уменьшения орторомбического расщепления в нашем случае не

наблюдалось, по крайней мере, до момента декомпозиции. Ha рис.12 показаны как функции времени (и, соответственно, температуры) содержание фазы 1-2-3 в образце, величина некогерентного фона, полуширина дифракционных пиков и количество новой фазы, которая, как показал анализ, является металлической медью. По достижении температуры 220°C все параметры. представленные на рис.10-12, обнаруживают заметные изменения. Анализ спектров по методу Ритвельда показал, что на заключительном этапе реакции вещество, находящееся в кристаллическом состоянии, может быть представлено как обычная структура 1-2-3, без признаков локализации водорода, и медь. При достижении 350℃ декомпозиции подверглось около 80% исходной структуры.

Рис.12. То же, что на рис.10, для ширины дифракционных пиков(0), некогерентной фоновой подложки (о), содержания в образце ромбической фазы 1-2-3 (с) и содержания в образце металлической меди (*).

На последней стадии эксперимента происходило удаление водорода в потоке аргона при температуре до 700°С. Переход 1-2-3 в тетрагональную фазу завершился до 500°С, что существенно ниже обычного значения (~650°С). По мере удаления водорода аморфизованная часть структуры и медь трансформировались в новые кристаллические фазы. Величина некогерентного фона при этом уменьшилась почти до стартового значения.

Итак, в процессе реакции водорода с керамикой происходила частичная аморфизация структуры без образования твердого раствора 1-2-3+H₂ и с выделением значительного количества металлической меди. Представленные результаты можно интерпретировать как адсорбцию водорода на поверхностях гранул керамики при низких температурах, а при температурах, больших, чем 220°С, активное разрушение им структуры 1-2-3 с отгонкой кислорода из цепочек Со-0 и с выделением металлической меди.

14

4. Заключение

Долгое время считалось, что нейтроны мало подходят для экспериментов в реальном масштабе времени вследствие относительно низкой светосилы источников. Создание высокопоточных реакторов и широкоапертурных детекторов позволило резко увеличить скорость набора данных и снизить время измерения одного дифракционного спектра до нескольких минут. Как продемонстрировано в настоящей работе, при постановке экспериментов в режиме НРМВ на импульсном реакторе ИБР-2 удается уменьшить это время еще на порядок.

Помимо рассмотренных экспериментов, на дифрактометре ДН-2 методом НРМВ проведены исследования кинетики окисления меди, процессов синтеза ВТСП на основе висмута, кинетики отжига закаленной из расплава висмутовой керамики состава 1-1-1-2, кинетики дегидратации геля полимера диэтилакриламида и др. Продолжается развитие методики, связанное с одновременным измерением брэгговской дифракции и малоуглового, а также диффузного рассеяния нейтронов.

Хотя потенциальные возможности метода далеко не исчерпаны, уже на существующем уровне развития имеются широкие возможности для его успешного применения при изучении кинетики химических реакций в твердой фазе, идентификации промежуточных фаз, процессов кристаллизации, отжига, интеркаляции и других переходных процессов в конденсированных средах.

Авторы признательны В.Л.Аксенову и D.M.Останевичу за внимание и поддержку, В.Б.Злоказову, В.Е.Новожилову и А.И.Островному за большую помощь в проведении экспериментов и обработке результатов.

Литература

1. Riekel C.-Proc. of the Workshop, Maria Laach, 3-5 Sept. 1984, p.17.

- Christensen A.N., Lehmann M.S.-J.Sol.St.Chem., 1964, 51, p.196.
- 3. Christensen A.N., Lehmann M.S., Pannetier J. -JAppl.Cryst., 1986, 18, p.170.
- 4. Miller A.-Brookhaven Symp. Biol., 1975, vol.27, p.111-86.
- 5. Балагуров А.М., Горделий В.И., Ягужинский Л.С. -Биофизика, 1986, 31, с.1004.
- Niimura N., Muto M.-Nucl.Instr. and Methods, 1975, 126, p.87.
- 7. Ishikawa Y-KENS Report IV, 83-4, KEK Internal, 1983.
- 8. Георгиев Д. и др.-ОИЯИ, Р14-89-578, Дубна, 1989.
- 9. Наумов И.В. и др.-ИАЭ, 4204/9, Москва, 1985.
- 10. Уиндзор К. Рассеяние нейтронов от импульсных источников, Москва, Энергоатомиздат, 1985, с.124.
- 11. Frank I.M., Pacher P.-Physica, 1983, 120B, p. 37.
- 12. Миронова Г.М.-ОИЯИ, Р13-88-326, Дубна, 1988.
- 13. Балагуров А.М. и др. ОИЯИ, 3-84-291, Дубна, 1984.
- 14. Балагуров А.М. и др.-ОИЯИ, РЗ-89-601, Дубна, 1989.
- 15. Балагуров А.М., Миронова Г.М.- Краткие сообщения ОИЯИ, 19-86, Дубна, 1986, с.50.
- 16. Cohen Addad C., Ducros P., Bertaut E.F.- Acta Cryst., 1967, 23, p.220.
- 17. Mondal P., Jeffrey J.W.-Acta Cryst., 1975, B31, p.689.
- 18. Balagurov A.M., Mironova G.M., Simkin V.G.- Prog. in High Temp. Superconductors, Ed. V.L.Aksenov, N.N.Bogolubov and N.M.Plakida, World Scientific, 1989, vol.21, p.263.
- 19. Балагуров А.М., Миронова Г.М.- Сверхпроводимость: физика, химия, техника, 1990, 3, с.545.
- 20. Bellosi A., De Portu G., Babini G.N. et al. --Mater.Chem.Phys., 1988, 20, p.261.
- 21. Gadalla A.M., Hegg T.-Thermochimica Acta, 1989, 145, p.149.
- 22. Reilly J.J. et al, Phys.Rev., 1987, B36, p.5694.
- 23. Fujii H. et al, -Jap.J.Appl.Phys., 1988, 27, p.1525.
- 24. Tran Qui Det al.-XII Europ. Cryst. Meet., Moscow, 1989, v1, p142.

25. Balagurov A.M. et al.-JINR, E14-90-246, Dubna, 1990. Рукопись поступила в издательский отдел 1 июня 1990 года.

16

P14-90-372

P14-90-372

Балагуров А.М., Миронова Г.М. Нейтронографические исследования в реальном масштабе времени

Рассмотрены возможности проведения нейтронных дифракционных экспериментов в режиме реального времени на импульсном реакторе ИБР-2 в ОИЯИ, Дубна. Приведены результаты исследования: реакции гидратации C₃A+D₂O, реакции синтеза ВТСП-керамики YBa₂Cu₃O_x, изотопного обмена H₂O-D₂O в липидном мультислое, взаимодействия водорода с 1-2-3-керамикой при нагревании. Характерные времена исследованных процессов составляли от одной до нескольких минут.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1990

Перевод авторов

Balagurov A.M., Mironova G.M. Real Time Neutron Diffraction Studies

The conditions for the real time neutron diffraction experiments on the pulsed reactor IBR-2 in JINR, Dubna are considered. The results of some studies are given: hydration reaction between C_{3A} and $D_{2}O$, reaction of synthesis of YBa₂Cu₃O_x ceramic, isotope exchange $H_{2}O-D_{2}O$ in lipid multilayer, interaction of hydrogen and 1-2-3 ceramic. The characteristic time of processes to be investigated varied from 1 up to several minutes.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1990