

620

P14-89-603

А.М.Балагуров, И.С.Любутин*, Г.М.Миронова, Хван Чан Ген, А.Я.Шапиро*

НЕЙТРОНОГРАФИЧЕСКАЯ ЛОКАЛИЗАЦИЯ ⁵⁷Fe В СТРУКТУРЕ YBa₂(Cu_{1-x}Fe_x)₃O_{6+ δ}

Направлено в "Письма в ЖЭТФ"

*Институт кристаллографии АН СССР, Москва

1. Введение

Одним из направлений в изучении природы высокотемпературной сверхпроводимости (ВТСП) является метод замещения катионов исходной фазы различными "примесными" катионами. Замещение меди в структуре 1-2-3 на железо представляет особый интерес. т.к. кроме исследования влияния парамагнитной примеси на сверхпроводящие свойства появляется возмож~ ность использовать мощный метод мессбауэровской спектроскопии для анализа электронных, структурных и магнитных свойств этих материалов. Однако, несмотря на значительное число экспериментальных работ, выполненных на системе $YBA_2(CU_{1-Y}Fe_V)_30_{6+\delta}$, однозначного ответа на вопрос о локализации атомов FE в структуре пока нет. В первую очередь неясен вопрос о распределении железа по двум неэквивалентным кристаллографическим позициям меди Со1 ("цепочки") и Со2 ("плоскости"), а также о зависимости этого распределения от концентрации FE и, возможно, от способа приготовления образцов. Противоречивы не только данные по мессбаузровской спектроскопии (см. /1/ и ссылки в ней), но и данные, полученные с помощью дифракции нейтронов/2-5/, что в основном связано с малостью ИЗУЧАСНЫХ ЭФФЕКТОВ.

Чтобы получить более точные сведения о катионном распределении, в настоящей работе выполнено нейтронографическое исследование керамических образцов системы $YBA_2(CU_{1-x}Fe_x)_3O_{6+\delta}$, обогащенных изотопом ⁵⁷FE. Для естественной смеси изотопов когерентная длина рассеяния нейтронов b_{coh} меди ($b_{Cu}=0.772\cdot10^{-12}$ см) лишь на ~20% отличается от b_{coh} железа ($b_{Fe}=0.954\cdot10^{-12}$ см), тогда как при использовании изотопа ⁵⁷FE ($b_{Fe}=57$ = 0,230·10⁻¹²см) заметно увеличивается.

and an and a second a

2.Синтез и характеристика образцов

2.1.Синтез. Серия образцов YBA₂(CU_{1-x}FE_x)₃O₆₊₆ с x = 0,0; 0,05; 0,10; 0,15; 0,20; 0,23 и 0,27 была приготовлена по известной керамической технологии: синтез смеси окислов и карбонатов 24 часа на воздухе при 950 С с последующим отжигом при 950 С и медленным охлаждением в кислороде.

2.2. Изотопный состав. Все образцы содержали железо, обогащенное изотопом ⁵⁷FE, а именно: ⁵⁶FE - 2.87%, ⁵⁷FE - 95.70%, ⁵⁸FE - 1.43%, средняя длина когерентного рассеяния - b_{cob} =0.270 · 10⁻¹²см. Остальные элементы состояли из природной смеси изотопов.

2.3. Рентгенофазовый анализ. Во всем интервале концентраций с точностью 1-3% наблюдалась полная однофазность образцов со структурой, типичной для фазы 1-2-3. Все образцы, содержащие железо, имели тетрагональную структуру. Параметры элементарной ячейки даны в таблице 1.

Таблица 1. Параметры элементарной ячейки и температура сверх-проводящего перехода T_c (на уровне 50% R_H) для $YBA_2(CU_{1-x}FE_x)_3O_{6+\delta}$. Среднеквадратичные отклонения для параметров а (b) и с составляют ±0.003Å и ±0.005Å, соответственно

×	a,Å	ь , Å	c.Å	т.к	
0. 00	3.819	3.891	11.674	91	
0.05	3.864		11.682	69	•
0.10	3.867		11.675	42.7	
D.15	3.872		11.616	9	
0.20	3.874		11.637		
0. 233	3.872		11.646		
). 26 6	3.873		11.640		

2.4. Электронно-зондовый рентгеновский микроанализ. Выборочное исследование элементного состава образцов на спектрометре САМЕВАХ показало близость химического состава к заданной композиции. В некоторых образцах зафиксировано небольшое (до 0.4% от атомов меди) содержание платины, попавшей из тигля при отжиге. Так, для образца с х=0 получено ⁹10106^{BA}19697^{CU}2.9904^{PT}0.0117^O6. 2.5. Измерение электросопротивления образцов проводилось четырехзондовым и бесконтактным методами в диалазоне 4,2 \leq T \leq 300 K. На рис.1 показаны результаты, полученные первым методом. Для всех образцов в интервале 0 \leq x \leq 0,15 наблюдается переход в сверхпроводящее состояние, значения температур T_C указаны в таблице 1. При x > 0,2 температурная зависимость сопротивления носит полупроводниковый характер.

Рис.1. Температурная зависимость электросопротивления образцов с различным содержанием железа.

3. Результаты нейтронографического исследования

Измерения дифракционных спектров выполнены на дифрактометре по времени пролета ДН-2 в ЛНФ ОИЯИ на импульсном реакторе ИБР-2. Образцы представляли из себя перемолотые порошки, помещенные в цилиндрические контейнеры из тонкой AL-фольги. Диаметр контейнера ~5мм, средний вес одного образца ~3г. Обработка данных велась по методу Ритвельда, по программе, рассчитанной на анализ многофазных, измеренных при различных углах рассеяния дифракционных спектров. Интервал межплоскостных расстояний, в котором обрабатывались спектры, составлял 1,3<<<4,0Å и содержал 40 дифракционных пиков (пр. гр. Р4/mmm). Пример измеренного и вычисленного спектра приведен на рис.2. Таблица 2. Структурные результаты по **YBA**₂(CU_{1-x}Fe_x)₃O₆₊₆. Стандартные отклонения приведенных величин: 0.001 - для координат, 0.02 - для 6, 0.015-0.025 - для n(Fe1) и n(Fe2). В последней колонке R-фактор профильного анализа. Отмечены концентрации (*), при которых структурные результаты искажены из-за наличия в образце магнитного порядка

×	z(Ba)	z(Cu2)	z(01)	z(02)	б	n(Fe1)	n(Fe2)	R
0.00	0.184	0.356	0.161	0.380	0.95	-0.03	0.03	0. 037
0.05	0.187	0.357	0.159	0.379	1.01	0.15	0.00	0.037
0.10	0.186	0.357	0.160	0.360	1.07	0.26	0.00	0.039
0.15	0.182	0.357	0.162	0, 380	1.18	0.32	0.12	0.042
0.20	0.184	0.356	0.160	0.379	1.25	0.40	0.14	0.038
о. 23 [*]	0.179	0.355	0.164	0, 390	1.21	0.42	0.15	0. 047
0.27*	0.179	0.352	0.164	0, 379	1.29	0. 43	0.23	0.058

Рис.2.Диффракционный спектр соединения YBa₂Cu_{2.4}Fe_{0.6}0_{7.25}, измеренный при 20 =150°. Показаны экспериментальные точки, рассчитаннный профиль и разностная кривая.

Рис.3. Зависимость средней длины когерентного рассеяния нейтронов для узла Сол от концентрации атомов Fe в образце: экспериментальные данные – точки; пунктирные прямые – расчет для р. =1/3 (вверху) и р. =1 (внизу).

Рис.4.Экспериментальные данные по содержанию железа в позиции Cu1/кружки/ и Cu2 (квадраты). Показаны также суммарное содержание (звездочки) и рассчетная прямая f(x)=3x (пунктир).

В ходе анализа, кроме экспериментальных параметров (нормировочный множитель, ширина пиков и др.) и параметров элементарной ячейки, варьировались z-координаты атомов Ba, Cu2 (0/0/z), 01 (0/0/z) и 02 (0.5/0/z) И ФАКТОРЫ ЗАСЕЛЕННОСТИ ПОЗИЦИЙ CU1 (0/0/0), CU2. 04 (0/0.5/0) И 05 (0.5/0/0) (номенклатура атомов соответствует пр.гр.Рттт, как в работе (3/). Тепловые факторы брались из (2/ и фиксировались. В нашея предыдущей работе /6/ на системе 1-2-3 с замещением CU/FE было показано, что для указанного интервала d вариация тепловых факторов меди в пределах ±0.5А² меняет заселенности этих позиция не более, чем на ±3%, т.е. их действительно можно фиксировать. На содержание р и координаты атомов меди и железа накладывались связи: n(Cu1)+n(Fe1)=1, n(Cu2)+n(Fe2)=2 и z(Cu2)=z(Fe2). Полученные структурные данные сведены в таблицу 2. Для иллюстрации наблюдаемых эффектов на рис.3 показано поведение средней когерентной длины рассеяния ь в позиции Сол. В общем случае $b_1 = b_{Cu} + 3p_1 (b_{Cu} - b_{Fe}) \times$, где p_1 - вероятность, с котороя происходит замещение меди на железо в узле Со1. При равновероятном

распределении железа по узлам Со1 и Со2 $P_1 = 1/3$, при 100% локализации железа в Со1 - $P_1 = 1$. На рис.3 верхняя из пунктирных прямых соответствует случар $P_1 = 1/3$, а нижняя $P_1 = 1$ (наклон прямых отрицателен, т.к. $b_{Fe} < b_{Cu}$). Экспериментальные точки рис.3 показывают, что вплоть до $x_0 = 0,1$ значение P_1 близко к единице, а затем к 1/3. На рис.4 точками даны экспериментальные значения содержания железа в позициях Со1 и Со2 и суммарного содержания в обеих позициях в зависимости от концентрации железа в образце. Изменение количества кислорода в цепочках Со-О показано на рис.5.

Рис.5. Зависимость количества кислорода в цепочках СО-О от концентрации железа в образце.

4.06суждение

Приведенные в таблице 2 структурные данные свидетельствуют о том, что даже при высоких концентрациях железа структура соединения YBA₂(CU_{1-x}FE_x)₃O₆₊₆ остается практически неизменной. Максимальные сдвиги атомов не превышают ±0,03 Å, что находится в пределах возможных систематических погрешностей. Сумма концентраций железа в обеих позициях CU1 и CU2 хорошо следует прямой $f^{(x)=3x}$, по крайней мере, до x=0,2 (см. рис.4), и этим подтверждается предположение о том, что именно медь замещается на железо. Концентрация железа в CU1 и CU2 изменяется существенно по-разному. Вплоть до $x_o = 0,10$ значение n(Fe2) близко к нуль, а n(Fe1) растет, как 3×. В интервале 0,1 < × < 0,2 наклоны этих зависимостей близки соответственно к 2× и 1×, т.е. в этом интервале происходит примерно равновероятное заполнение обеих позиций. При x > 0,23 полученные результаты несколько искажены из-за появления в нейтронограммах дополнительных пиков, природа которых, как показывают мессбауровские исследования, носит магнитный характер. По зависимости, приведенной на рис.5, можно рассчитать прирост содержания кислорода при увеличении концентрации железа. Он составляет 0,4 - 0,5 атома О на один катион FE.

Похожие результаты получены в недавней работе ⁷⁸⁷ для системы YBA₂(CU_{1-x}CO_x)₃O_{6+z}. Высокое качество нейтронограмм (эксперимент проведен на дифрактометре высокого разрешения D2B в ILL (Гренобль), при анализе учитывались 145 пиков) позволило получить информацию как о небольших систематических изменениях координат, так и о тепловых параметрах атомов. Сравнение показывает, что структурные характеристики обеих систем CU/FE и CU/Co практически совпадают вплоть до x=0,20. Следует отметить, что определенное в ⁷⁸⁷ изменение теплового фактора для позиции CU1, в которой преимущественно располагается Co, не превышает 0,06A² при x < 0,10 и только при x=0,22 тепловой фактор увеличивается на 0,4A².

Таким образом, из эксперимента следует, что в наших образцах при концентрациях вплоть до x=0,1 атомы железа располагаются преимущественно в позициях CU1, и лишь с дальнейшим ростом концентрации x=x_o+4x начинается примерно равномерное распределение по обеим позициям CU1 и CU2 "избыточного" количества железа 4x. Полученные результаты в основном подтверждают выводы работ $^{2-4}$ о предпочтительном размещении железа в цепочках CU-O при малых концентрациях. Степень занятости узлов CU2, по-видимому, зависит от конкретных особенностей приготовления образцов. Так, в работе $^{12/2}$ утверждается, что уже при x=0,05 около 1/3 атомов железа попадает в плоскости CUO₂. Наши данные, полученные на образцах с дефицитом меди $^{16,7/2}$, свидетельствуют о примерно равновероятном заполнении обеих позиций, начиная с x = 0,06.

В работе ^{/3/} высказано предположение, основанное на данных по дифракции электронов, о кластеризации железа в структуре 1-2-3. Предпола-

6.

7

гается, что образец разбивается на домены, разделенные прослойками железа, пространственная симметрия внутри доменов является орторомбической, а эффект тетрагональности возникает из-за макроскопического усреднения. Это явление, однако, не должно сказаться на результатах по замещению меди на железо, т.к. позиции меди имеют тетрагональную симметрию, но определяемое по дифракционным данным содержание кислорода в цепочках Со-0, будет зависеть от степени когерентности рассеяния нейтронов на отдельных доменах^{/7/}.

Мы выражаем благодарность И.П.Зиброву, Е.М.Смирновской и А.Н.Ходану за помощь в аттестации образцов, В.Л.Аксенову и Л.М.Останевичу за интерес к работе и обсуждение результатов.

Литература

- 1. I.S.LYUBUTIN FT AL. PHYS.LETT.A. 1989, 137, P.144
- 2. G.ROTH ET AL. Z.PHYS.B. 1988, 71, P.43
- 3. P.BORDET ET AL. SOL.ST.COMM. 1988, 66, P.435
- 4. В.П.Глазков и др., Сверхпроводимость, 1988, 3, с.5
- 5. B.D.DUNLAP ET AL, PHYSICA C, 1988, 153/155, p.1100
- 6. А.М.Балагуров и др. ОИЯИ, Р14-89-147, Дубна, 1989
- 7. A.M.BALAGUROV ET AL. PHYSICA C, 1989, 158, P.265
- 8, R.Sonntag et al, Physica C, 1989, 159, p.141

Рукопись поступила в издательский отдел 11 августа 1989 года. Балагуров А.М. и др. Нейтронографическая локализация ⁵⁷ Pe структуре $Pa_2(Cu_{1-x}Fe_x)_3O_{6+\delta}$

P14-89-603

P14-89-603

Проведен структурный нейтронографический анализ системы YBs_(Cu_{1-x}Fe_x)30₆₊8 в диапазоне концентраций 0 $\leq x \leq 0,27$. Для усиления зффекта использована изотолная смесь, обогащенная на 95% изтопон ⁵⁷Fe, для которого когерентная длина расселния нейтронов существенно меньше, чем у меди. Все образцы, содержащие железо /x $\geq 0,05$ /, имеют тетрагональную структуру, слабо изменяющуюся с ростом x. Сверхпроводящие свойства наблюдаются вплоть до x = 0,15. В интервале 0 $\leq x \leq 0,10$ содержание железа в позиции Cu₂ /плоскости Cu₂/ близко к нулю. С дальнейшим ростом концентрации x = * x₀ + Δx "избыточное" количество железа Δx примерно равновероятно распределяется по позициям Cu₁/цепочки Cu-0/ и Cu₂. С ростом концентрации Fe пропорционально растет содержание кислорода в цепочках : 0,4 + 0,5 атома на один катион железа.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследования. Дубна 1989

Перевод авторов

Balagurov A.M. et al. Neutron Diffraction Localization of ⁵⁷Fe in the YBa₂(Cu_{l-x}Fe_x)₃0₆₊₈ Structure

Neutron diffraction analysis has been used to study the crystal structure and iron localization in Cu1 and Cu2 sites of $YBa_2(Cu_{1-x}Fe_x)_{30G+\delta}$ for $0 \le x \le 0.27$. To enhance the difference in neutron scattering from Cu and Fe nuclei the samples containing iron enriched by 5^7Fe isotope (up to 95%). The Rietveld refinement of data was carried out and showed the tetragonal structure (space group P4/mmm) for all iron concentrations at $x \ge 0.10$. The superconductive properties were found up to x = 0.15. For $0 \le x \le 0.10$ region the iron content in Cu2 site is found to be close to zero. For higher concentrations $x = x_0 + \Delta x$ ($x_0 = 0.1$) the excess of iron Ax is randomly distributed over Cu1 and Cu2 sites. The oxygen content in the Qu-0 chains increases proportionally to the iron concentration in the quantity 0.4:0.5

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1989